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Abstract

Software designed to function in a hard-real-time environment where strict timing
constraints must be met often entails implicit assumptions about a programming
language and the underlying system which supports it. Programs which are logically
correct, i.e., they implement the intended algorithms, may not function correctly if their
assumed timing characteristics are not met. This can occur if the programming
language is not expressive enough to permit an adequate specification of the desired
timing characteristics of the software or if the expressible timing characteristics cannot
be verified before run time. For distributed systems in particular, the software must be
tailored to a myriad of implementation parameters, eg., communication bandwidth, thus
rendering subsequent modifications hazardous.

Our research investigates the basic problems in automating the design and mainte-
nance of ‘hard real-time software. After examining the limitations of the traditional ap-
proach to real-time software design via process-based. models, we shall previde a
graph-based computation model which is more suitable for expressing the computation-
al requirements of the hard real-time environment. This mode! is an extension of CON-
SORT (Control Structure Optimized for Real-Time), an experimental software design sys-
tem which has been implemented to generate process contro! application programs
from block diagram schemata. While our graph-based model is abstract, it can serve
as a useful intermediate representation between textual requirements specifications and
target application programs. Using the graph-based model, the complexity of the
relevant resoutce allocation problems for meeting stringent timing constraints is investi-
gated.
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Chapter 1

Introduction to Hard Real-Time Systems

1.1 Introduction

A major application of computers has been to control physical processes such as
regulating a power plant or manipulating a robot arm. In these applications, the compu-
tation required for responding to external events is often repetitive and cannot be de-
layed beyond certain time limits which are determined by the nature of the physical
processes under control. Failure to observe critical timing constraints might bring about
castastrophic .results with the deétruction of physical plants and even loss of lives.
Computer systems which must continuously observe critical timing constraints are said
to tunction in a hard real-time environment. For these systems, it is not sufficient for
the software to be logically correct, i.e., to implement the intended algorithms. The sys-
tem must also respond in a timely fashion so as to meet stringent timing constraints
such as m;'iximum response time or minimum periodic computation rates.

There are many hurdles. to cross in meeting this requirement. A serious difficulty is
that the actual timing characteristics of software is determined not only by raw proces-
sor speed, but also by the sharing policy for scarce resources. For example, the real-
time response of a time-shared system depends heavily on the processor scheduling
strategy of its operating system. In most high level languages, this dependency is con-
sidered as non-essential detail that is to be hidden from the programmer. As a result,
the performance of software implemented in these languages becomes sensitive to sys-
tem resource allocation strategies and outside the control of individual programmers.
System reliability is often contingent on a number of implicit assumptions about inter-
face details between a programming language and the run-time system which supports

it. More complex resources such as the communication subsystem of multiprocessor




distributed systems further accentuates the problem with the introduction of (sometimes
distributed) resource allocation algorithms which are usually inaccessible to the appli-
cation programmer.

Current practice in designing systems for the hard real-time environment is rather
ad hoc. There are few tools to verify that timing constraint specifications can invari-
ably be satisfied. In fact, systems are often built with little provision for guaranteeing
that stringent timing specifications can be met. Performance evaluation is accom-
plished either by stochastic simulation or by actual measurements on prototype
testbeds, and system performance is improved by fine tuning certain system parame-
ters. When specifications cannot be met, structural modifications may become neces-
sary so that at least the major performance objectives can be achieved. While this
iterative approach seems to suffice for building the less critical data processing sys-
tems, it is not suitable for systems which must function in a hard real-time environment.
Unless the interactions among different components of a system are well understood
and taken into account in the design process, there is no easy way to simultaneously
satisfy multiple stringent ﬁming constraints by fine tuning. Furthermore, there is no ab-
solute guarantee .that a timing constraint will invariably be met by the use of stochastic
simulation or by taking performance measurements for a limited set of load conditions.
For this reason, most current systems are better categorized as soft real-time in that
they lack hard guarantee on vital performance characteristics.

The objective of this thesis is to develop a methodology, i.e., a basis for mechaniz-
ing the design and maintenance of software which must operate in the hard real-time
environment. While impressive systems have been built for many hard real-time applica- -
tions, as witnessed by the progress in space exploration, problems in the reliability and
maintainability of current systems, mostly soft real-time, are far from being solved. For

example, the first flight of the Space Shuttle was delayed by a synchronization error
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which was traced to an improbable race condition in the flight control software [GARM
81]. Indeed, the largely undisciplined approach that is current practice in designing
real-time systems exacts a heavy -price, e.g., a study by B.W. Boehm of TRW Corpora-
tion indicated that the life-cycle cost of real-time software products has been three
times as much as analytical software products, not to mention the less readily
quantifiable but important costs of safety risks %o life and property. Ac a reflection on
the state of the art, designers of one complicated system reportedly opted for retaining
existing software and instead modified the hardware to accomodate design change re:
quests.* ‘ . “

In proposing an alternative methodology, however, it is incumbent upon us to justi-
fy that the ability to design truly hard real-time systems as pursued in this thesis offers
significant advantages 0\.ler the traditional soft real-time approach. The following points

will hopefully convince the reader of the value of the hard real-time approach.

1.1.1 Elimination of Timing Related Bugs

There are two kinds of software bugs that are attributable to timing faults. One
kind involves computational events that occur in an improper sequence and results in
undesirable system behavior such as deadlocks, lack of safety, e.g., buffer overflow, or
violating logical relations on data. These are relative timing faults and are identifiable
solely by the relative order in which computational events occur, i.e., the absolute time
values marking event occurrences are irrelevant. Relative timing faults can be avoided
by prohibiting undesirable grderings of events. The other kind of bugs is caused by the

violation of some specified stringent timing constraints such as missing a deadline,

* The following news item about the F18 aircraft is from ACM SIGSOFT Engineering
Notes, vol. 6, no. 2, pp.1. "Apparently the effort that has gone into developing and
testing the software is so extensive that, when changes are required, it is now prefer-
able to modify the plane to fit the existing software, rather than to modify the software
to match the plane."”




thereby vioiating correctness assertions that involve the absolute timing of events.
These are absolute timing faults and are germane to hard real-time systems. The follow-

ing is an example of a program which is susceptible to an absolute timing fault.

EXAMPLE

/* COMMENT
This program takes the derivaiive of a sensor input at nominally 5 seconds . -
intervals. The timer has a long enough range so that it never overflcws
during the entire run of the program. The delay command suspends the GG
process for an interval at least as long as the argument, but has no effect
(i.e., a no-op) if the argument is non-positive. ' v

*/

process time_bomb

begin
variable next_period,current_time,last_time : second;
variable current_sample,last_sample : sensor_data;
variable derivative : sensor_data per second;

do /*COMMENT initialization */
{ next_period := 5
last_sample := 0;
last_time := O,

} od;
loop: delay(next_period-read_timer());

do /* COMMENT update the derivative */ :
{ current_sample : = read_sensor();

current_time := read_timer();

derivative := (current_sample-last_sample)

/. (current_time-last._time);

last_sample := current_sample;

last_time := current_time;
} od;

next_period := next_period + 5;
goto loop;
end
The above program computes the derivative of a sensor input by taking the

difference between successive samples and dividing it by the length of the intetval

between samples. Following the recommendation of the designers of Ada ® [ADA MAN
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80], the program uses a variable delay between samples to prevent cumulative drift in
the actual period which would occur had a constant been used for the delay argument.
As in Ada, the basic resolution of the timer can be as large as a second and the delay
command suspends a process for an interval at least as long as the argument, but has
no effect (i.e., the command is treated as an no-op) if the argument is non-positive.
The nominal sampling period is 5 seconds, but the actual interval between samples
may vary because of fluctuations in multiprocessing load. i

- The hazard here is that a divide-by-zero exception may occur if at transient peak
load, a delay command actually takes over 10 seconds to complete. The arithmetic ex-
ception occurs because at the next time, the derivative may be updated twice without
at least 5 seconds in between. If it takes less than a second in real time to compute
the derivative twice, then the measured interval between the two updates might be 0
second owing to the limited resolution of the timer.

A cautious programmer would of course provide a check to make sure that the
time betweé'n two samples is at least one second. However, this program will not cause
arithmetic exceptions if one makes the assumption that the program is run on a dedi-
cated processor 6f uniform speed, i.e., a program w§th the same input always takes the
same time to execute and this holds even if the processor is too slow to compute a
Inop in § seconds. This is an especially tempting assumption since it is consistent with
the widely held programming principle that sequential processes should be programmed
to run on virtual processors. . (In light of our example, "real-time programmers" should
be warned that a virtual processor may have a not only unknown but also variable pro-
cessor speed.) The important point here is not that a check should be included to -

prevent an arithmetic overflow, but that a real-time program may deperd on implicit as-

® Ada is a registered trade mark of the United States Defense Department.
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sumptions about the absolute timing characteristics of the run-time system. These as-
sumptions may hold at the time the program is designed, but may be violated later on,
e.g., the timing fault in the example may not surface until the processor load reaches a
critical point after more computational requirements have been added by maintenance
programmers in the field.

To avoid the arithmetic exception, the system must guarantee that the sensor input
is sampled once every 5 seconds. This is a hard real-time constraint which cannot be
enforced by the delay command of Ada since there is no upper bound on the delay-in
real time. In general, soft real-time systems are concerned almost exclusively with rela-
tive timing faults which can be avoided by designing software to function without
knowledge of actual hardware speed. They do not eliminate absolute timing faults
which are left to be de;tlt with by recovery mechanisms. In contrast, hard real-time
systems prevent absolute timing faults by enforcing hard real-time constraints and

thereby maintaining correctness assertions that involve the absolute timing of events.

» More coherent allocation of system resources

The capability to specify and enforce stringent timing constraints provides a
mechanism for the designer to control the allocation of system resources to achievé
multiple performance goals. This mechanism is different from the run-time optimization
mechanisms in traditional operating systems in two significant ways. First, the stringent
timing constraints specified in hard real-time systems enables the designer to shpply in-
formation directly from the.abplication domain whereas the traditional source of infor-
mation for system optimization is from the observed behavior of application programs.
Second, it is possible to carry out deterministic analysis before run time to meet the
performance goals of a hard real-time system whereas traditional operating systems use

mostly adaptive feedback techniques which are necessarily limited by the predictive



value of the stochastic models employed. In particular, while current stochastic
methods are relatively successful in analyzing aggregate system throughput, they are of
limited value in estimating or controlling response times.

In practice, simple schéduling discipiines such as round robin or static priority list
are often used for resource allocation in the hard real-time environment. While these
scheduling mechanisms are simple to implement, they offer only limited and rather
inflexible control over response times. Much better control can be achieved by making
use of timing constraint specifications. Consider the following example.

A microprocessor is to be used for analyzing data from two sensors. The design
requires that data must be collected from sensor A every 20 milliseconds and from sen:
sor B, every 50 milliseconds. It takes 10 milliseconds to process each sample of data
from sensor A and 25 milliseconds for data from sensor B. A real-time clock which runs
continuously interrupts every 10 milliseconds so that scheduling decisions are made
every 10 milliseconds or when the processor becomes idle. It is easy to verify that nei-
ther a round robin scheduler (which switches to the next ready task at every schedul-
ing decision) nor a static priority scheduler (which selects the ready task with the
highest priority) is sufficiently flexible to satisfy the performance requireme?nts which
can in fact be met by always selecting the task with the nearest deadline at every
scheduling decision.

The important point hsre is not what type of scheduling algorithm to use, but that
knowledge of the timing constraint specifications is essential to making proper schedul-
ing decisions in the hard real-time environment. It is therefore useful to incorporate

precise performance specifications in the design of the system resource scheduler.

1.1.2 More Reliable Man/Machine Interface

Consider a toggle button which a human operator uses to interface with a comput-




er controlling some physical device. In a soft real-time system, the time it takes the
computer to respond to a request to turn on/off the device may show considerable
variance, depending on the instantaneous work load. In particular, the response time
may be much ionger under emergency conditions when the work load on the computer
is likely to be heavy. Fearing that the button may not have been pushed properly, an
operator who has grown accustomed to a relatively fast response in ordinary times will
be tempted to push the button again when the response is slow in coming, thus negat-
ing- the original request which the computer may in fact be processing. This
man/machine interface problem will be substantially alleviated if the operator can be
assured that the system will invariably respond within a specified deadline. There is ex-
perimental evidence which seems to support that

"... increasing the variability of response time generates poorer performance and
lower user satisfaction. Users may prefer a system which always responds in 4.0
seconds to one which varies from 1.0 to 6.0 seconds, even though the average in the
second case is 3.5." [SHNE.79).

Although the cited experiments pertain to common interactive systems, it is not un-
reasonable to ex;'>ect that similar conclusions can be drawn for life critical applications
where it is especially important to reduce the probability of operator errers due to pan-
ic or confusion. T The capability to specify and enforce response time limits for
different operator commands should be valuable for man/machine interface engineer-

ing.

Titis interesting to relate ‘an observation that the author made while watching people
play a home-brew version of the arcade video game PACMAN on a popular time-
sharing system. In this version, the movement of the player through a maze on a CRT -
was controlled by pushing a set of keys on a standard keyboard. When the system was
heavily used, the time it took to respond to a push became highly variable. Since the
movement of the pursuing "monsters” and that of the player were not synchronized, it
was very difficult to track the player's position in relation to the "monsters”. This ver-
sion of the game was never very popular.




1.1.3 Improvement in System Throughput

A potential bottleneck ior distributed systems is the efficiency of interprocess com-
munication. Substantial overhead is often incurred by the overhead in synchronizing
the software running on different processors. This overhead can sometimes be re-
duced if there are guarantees on how fast messages are moved across the communica-
tion network. Consider, for example, a communication processor which multiplexes data
packets from 10 satellite processors. The transmission delay between the communica-
tion and satellite processors is 10 milliseconds, and the communication processor au:
tomatically buffers one packet for each of the satellite processors. The transmission
length of a packet and the time it takes the communication processor to process an in-
put packet are both 100 microseconds.

If a satellite process.or must wait for an acknowledge signal from the communica-
tion processor after sending each packet, then the effective bandwidth per satellite pro-
cessor will be limited by the transmission delay to one packet per 10 milliseconds. This
bandwidth ¢an be substantially increaced if the communication processor guarantees
that a packet delivered to any input buffer in any order will be removed within a max-
imum time bound. In this case, the communication processor requires 10 X100 = 1000
microseconds to pro:ess packets fro.m all ofA its input buffers. Since the transmission
length of a packet (304 miéroseconds) is shorter, the bandwidth limit per satellite pro-
cessor is deéided by the processing time of the communication processor, resulting in
a tenfold increase in bandwidth. This improvement is possible only if the communica-
tion software can be tailored to enforce a timing constraint on the processing time of
packets. With the anticipated wide use of fiber optics for data transmission, it is worth
noting that this optimization technique will be increasingly significant as transmission
delay dominates packet length.

In general, we can identify iwo extreme approachés to controlling distributed cori-




putation. On one extreme, the distributed system is coordinated by a single system
clock to which all system components are synchronized so that computation progresses
by distinct steps as marked by the system clock and that communication is pro-
grammed to occur only at specific times. On another extreme, concurrent components
of a distributed system are synchronized only When necessary and do so by executing
appropriate hand-shake protocols. The former approach requires less communication
overhead but is rigid and not very robust, since all system components are designed to
progress in lock step at all times. The latter approach is flexible but may be costly in
terms of communication overhead, since many acknowledge signals may be required to
maintain proper synchronization. The use of strihgent timing constraints to establish a
weak form of synchronizaticn among system components represents an alternative in

the middle.




1.2 Systems Issues

Given that the capability to design hard real-time systems is desirable, our task is
then to identify a suitable design methodology. The design problem can be tackled by
many'approaches. For example, one can select a prcaramming language and provide
tools for verifying any program against the timing constraint specfications when it is
run on some target hardware configuration. Alternatively, one can dictate a set -of
software design rules and specify restrictions on resource usage so that there is an
efficient algorithm to determine, for any hardware configuration, if some program written
to conform with the rules can meet the specified timing constraints. SR

In general, a well defined methodology must have a model of computation in terms
of which the computation requirements of the application domain can be expressed.
The function of a methodology is to provide (meta)rules and algorithms for feasibility
analysis and to suggest a solution when appropriate. For this purpose, the model of
computation must be sufficiently precise so that software tools can be brought to bear
to determine the feasibility of a design. A simple measure for evaluating the
effectiveness of a design methodology is its efficiency, ie., the range of stringent
design requiremeﬁts that can be met by adopting the design methodology. There are,
however, other systems issues that ought to be considered for judging the
effectiveness of a design methodology. These issues are not readily quantifiable but be-
fore we formalize our problems, they should be reviewed so that pertinent system ob-

jectives will be given proper consideration.

1.2.1 The Maintainability/Efficiency Dichotomy
In practice, there is often a need to modify complex software systems to accomo-
date hardware updates or, during development, changes in design specifications.

Software modifications are especially error prone for hard real-time systems since they




may introduce subtle resource conflicts. For instance, the absolute timing fault shown
earlier will not occur if the processor load is sufficiently low, a condition which méy
hold initially but which may be violated subsequently in the field as more computation
is added. The fact that it is possible to invoke an exception with the same input data
and no modification to the program itself attests to the hazardous nature of maintaining
hard real-time systems. In general, when design changes are made, the instance of the
computation model used by the design methoddlogy must be modified to reflect
changes in application domain specifications. To evaluate the effectiveness of a design
methodology with respect to maintainability, we can examine the costs of modifying the
computation model.

A easy solution is to start from scratch and generate a new model from the revised
application domain spec;fications. However, this may not be desirable because of cost
considerations, or it may not be possible at all if only incomplete knowledge of the en-
tire system is available because of administrative reasons. For examgle, consider a sys-
tem of parzi’llel processes where the only form of interprocess communication permitted
in the model is through the use of global variables and where every input device is
modelled by a periodically scheduled system process. Two subsysiems A and B periodi-
cally update their outputs from the input vaiue of a sensor which is computed by a
system process and stored in a global variable. Since A updates its output twice as
often as B, ihe period of the sensor process is initially set to that of A. Later, it is
found necessary to reduce the update rate of A fourfold because of numerical instabili-
ties. Since the update rate of B is now twice that of A, the period of the sensor pro-
cess should only be doubled instead of multiplied by four. Clearly, knowledge of sub-
system A's specifications alone is insufficient to revise the period parameter of the sen-
sor process. Futhermore, local modifications 'may have far reaching consequences,

e.g., the output of A may be uséd by other processes, ‘or the sensor process may refer-
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ence the output of other processes to determine its own internal parameters such as
filter coefficients for signal processing. In general, it may not be easy to determine all
the necessary modifications to the computation model and certainly not without globai
kno'wvledge of the system.

Relative to a fixed class of design changes and a suitably defined metric on the
magnitude of a design change, one can presumably measure the effectiveness of a
design methodology with respect to maintainability by studying the complexity of the
computation required to determine the corresponding modifications to the computation
model. However, intuition suggests that maintainability is not free and one must consid-
er the potential loss in efficiency. Fbr instance, the maintainability problem in the above
example will be greatly eased if input devices are modelled as monitors [HOAR 74] so
that processes A and B can individually request sensor input updates as they are
needed. However, an efficiency price is paid in this model in that the sensor must now
be sampled to field every individual request of all the calling processes, whereas only
one updaté' may be sufficient to simultaneously satisfy multiple requests. This
represents redundant work and a waste in computing time.

While maintainability and the control of design complexity are best achieved by us-
ing a computation model close to the application domain, efficiency in resource alloca-
tion requires more direct access to the available physical resources; these are
conflicting objectives. There are two keys to resolve this maintainabilty/efficiency dicho-
tomy. First, the translation of application domain specifications into the computation
model ought to be mechanizable. Second, the computation model should permit direct

expression of performance objectives for resource aliocation purposes.

1.2.2 System Integrability

Owing to the size and complexity of many real-time systems, it is unlikely that a




single designer will be able to attend to all the details of an entire system. Thus an
effective design methodology should have provisions for integrating separately designed
components into a system to meet global requirements. For hard real-time systems, this
obiec{ive is complicated by the need to share resources for meeting timing constraints.
If each component is itself a hard real-time system, then system integration is achiev-
able only if it is possible to resolve the resource conflicts among the components, and
this in turn requires an -appropriate quantification, specialized to the hard real-time en-
vironment, of the demand for various kinds of system resources. For example, the max:
imum bandwidth utilization of a shared data bus alone is in general insufficient for
characterizing the demand for bus access if transmission delay cannot be ignored. In
other words, there is insufficient information to determine whether two hard real-time
systems sharing a data bus can function properly if we are given only the bus access
rates of both systems.

The effectiveness of a design methodology with respect to system integrability is
indicated b} the variety of system resources that can be adequately characterized, i.e.,
given the computational requirements expressed in an instance of the computation
model, a decisior; procedure should exist which determines whether there is sufficient
resource of every type to satisfy the requirements. For an ideal design methodology,
the computation model should be able to characterize the demanded load on any kind
of existing or to-be-invented resource by a hard real-time system. More realistically, we
would like our design methodology to be able to integrate systems using conventional
hardware, e.g., shared data’busses, and the more esoteric VLSI devices such as systol-
ic arrays. We shall attempt to accomplish this objective by charactel"izing resources uni- -
formly as (possibly distributed) servers capable of meeting some types of stringent tim-

ing constraints.




1.2.3 Implementation Independence

For well defined design methodologies, implementation independence is achieved if
the computation model does not intruduce any artificiality which biases the implementa-
tion towards a particular system architecture, i.e., the computation model should not be
based implicitly on the availability of certain kinds of hardware support. For instance, a
model of parallel processes where interprocess communication is via global variables
only presumes the existence of a shared memory 6r an efficient broadcast facility in
general. A more subtle example is the use of acyclic data communication graphs to
mode! industrial feedback controllers ThlS approach is predicated on the fact that
feedback loops can always be broken by storing the feedback information in state vari-
ables which are implicitly available to the processing nodes that would have formed a
cycle. Such assumptions. are unrealistic when, for example, a sparsely connected net-
work of processors with local memories is used for implementation. A parallel processes
model which supports message passing is likely to be more appropriate in this case.

It is difficult to justify that a computation mode! is not biased agairst or in favor of
any particular system architecture. We note, however, that the primary purpose of'the
computation model is to reduce the often informal application domain speciﬁcation.;
into precisely stated computational events wﬁich are physically implementable. To this
end, we cén identify two primitive types of computational events: the functional
transformatioﬁ and transmission of information. A computation model which builds on
these two types of primitive events alone is less likely to be biased. Moreover, there is
always the possibility of transforming an unbiased model into one which is more amen-
able to optimization analysis that takes advantage of the special features of a given ar-

chitecture.




1.3 Software Automation

The above discussion of systems issues leads to a better perspective on our work.
Whereas the study of design methodologies has been the key activity in software en-
gineering research and many useful principles have been introduced for managing
design complexity, e.g., the use of layers of abstraction for vertical decomposition and
the encapsulation of data and procedures in modules for horizontal decomposition,
there has been only limited progress in providing a formal basis for the discipline which
often resorts to philosophical arguments. (Some related theoretical work is being done;
most notably research in ébst_ract data types.) This lack of an encompassing formal
framework should not be surprisiné since an impbrtant goal of software engineering is
to improve programming productivity which is mostly a human enterprise and as such
cannot be subject to formalization. Without formalization, however, it is very difficult to
compare the merits of contending methodologies or to evaluate a new design tech-
nique. Incremental improvements are limited in scope and more importantly, they do
not point t;) potential trouble spots or areas for further improvement.

A more profitable approach is to judge a design methodology by how much it con-
tributes to software automation, i.e., the success in eliminating the intermediary pro-
grammer from the design loop. As the above discussion of systems issues illusirates, a
lot of the limitations of a design methodology can be related to the imperfections of
the underlying computation model. Thus the usefulness of any automation tool will ulti-
mately depend on the propriety of the computation model on which it is built. There-
fore, an important objective of our research is to identify an appropriate computation
model for the hard real-time environment before we can tackle some of fundamental
resource sharing problems in automating the design of hard real-time systems.

The rest of this chapter will review past research in real-time systems and give a

synopsis of our work.




1.4 Review of Past Work

There has been a lot of research in the production of real-time software. We shall
list only those that are intended for application in the hard real-time environment. Most
work reported in this area falls into one or more of three categories: specification tech-
niques, language concepts, design disciplines and related scheduling techniques.
Specification techniques are concerned mostly with the functional completeness and
consistency of the application domain descriptions of real-time systems. Examples are
[HAM & ZEL 76}, [ALFO 77]. The specification of stringent timing constraints is treaied
in some detail in [DEW & PRI 77], [COHE 78). [HENI 80] describes a complete
specification of the avionics software of the A-7 aircraft including timing specifications.
Some commercial languages have been augmented by scheduling primitives to support
real-time programming, e.g., PL/1 [BARN 79], Fortran [KNEI 81], and a number of new
languages have been designed specifically for real-time applications, e.g., Tomal [HEN
et al 75], Pearl [MART 78], lliad [KRUL 81]. The best known language of this genre is
probably Ada [ADA MAN 80]. Some authors have investigated special language con-
cepts for concurrent processes to facilitate real-time processing, e.g., [HANS 78a], [ICH
et al 79], [MAO & YEH 80]. |

For our purposes, the cited literature in spéciﬁcation falls short of defining -a com-
putation model which can be mechanically processed for feasibility analysis. Further
translation is needed to associate timing constraints with the concrete computation that
needs to be carried out, and it is not clear that the specification techniques provide
complete and consistent information for this necessary step. However, the mentioned
work, especially [HENI 80] provides useful examples of 'application domain -
specifications. The work in language concepts almost exclusively assumes a process-
based model. While innovative concepts for process coordination have been inverted,

the use of processes as the syntactic unit for specifying performance requirements in-




troduces artificialities which will become clear when we examine the problem of
franslating application domain specifications into computation medels.

The work that is most closely related to our research are the design methodologies
that have been proposed for writing real-time programs. Some of these methodologies
are of limited use for hard real-iime applications in that they do not discuss the prob-
lem of verifying compliance to timing constraint specifications. Almost all are process-

based and can be roughly categorized as adopting one of two approaches.

1.4.1 Virtual Processor Methodology
In this approach, each process is presumed to he running on a dedicated proces-
sor. The objective is to guarantee bounded completion time for all required computa-

tion. To this end, the designer needs to guarantee that no deadlock can result from

the control structure of the program and that no part of the computation will be denied
progress indefinitely, i.e. no live locks, provided that all resource schedulers are in
some sense fair. The prohlem of verifying compliance to timing constraint
specifications is deferred and must be solved for the aciual scheduling strategy in an
implementation, presumably by computing the worst case bounds for all completion
times and comparing them against the specifications.

The viability of this approach is based on the availability of cheap computing
power such as multiprocessors on a chip, an assumption buttressed by the promise of
advances in VLSI technology, so that as long as all the computation can be carried out
in finite time, then the timiqg constraint problems should be solved, if necessary, by ad-
ding another processor. By the same token, scheduling is necessary only for the pur-
pose of process activation and suspension on individual processors which are not
shared. This approach requires minor extensions to existing high level languages to

support explicit process scheduling and some mechanism for interprocess communica-
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tion and coordination. An example of this approach is [YAU et al 81] where the time
bounds are computed by assuming round robin scheduling for all resources.

Wirth [WIRT 77] proposed a discipline for real-time programming which adopts the
conceptual simplicity of thé virtual processor methodology but relies on priority inter-
rupts as an essential means for achieving response times for 1/0 devices. Cyclic timing
constraints are imposed on device processes which are assigned static priorities. Furth-
ermore, it is assumed that high priority devices have proportionately longer cycle times
than low priority devices in order that all response times are met. The exact condition
for verifying compliance to timing constraints is, however, not given.

The virtual processor methodblogy is viable only i_i the premise about resource
availability is valid, and only up to the point that interprocessor communication does
not become a bottleneck. Even if there are enough processors so that each process
can be run on a dedicated processor, timing constraints may still be violated because
of the corpmunication delay between processors. In general, there is a tradeoff between
communicaﬁon (routing delay) and computation (scheduling and context switching
overhead) costs. For more demanding applications, the simplistic approach of assigning
nne process to one processor may not work. The basic problem of balancing comput-
ing and communication costs cannot always be ignored.

The communication bottleneck of the virtual processor methodology has been
recognized by Hansen [HANS 78b] who argued that a hierarchical organization of pro-
cessors will reduce communication overhead and is also a natural organizational struc-
ture for the solution of many practical problems. While a hierarchical organization may
be a good match for the solution strategy of many problems, its generality is limited.
We note, in particular, that if we associate a process with each state variable in the
standard state space formulation of control engineering problems, then the interprocess

communication pattern in the solution to the control problem is in general closer to a




densely connected graph than to a tree.

Some attempts have been made to formulate the processor allocation problem in
the presence of stringent timing constraints, e.g., [CHU et al 80], [MA et al 82]. Howev-
er, none of the published formulations seems to he satisfactory since all of them are
formulated with algebraic constraints cn mean value parameters such as communica- .
tion bandwidth and processor utilization factor. These parameters are in principle deriv- .
able from the process model, but unfortunately, they are more useful for average time
rather than worst case analysis. The bursty nature of many real-time applications is
such that there is no guarantee that individual timing constraint will be met even if the
average load does not exceed either processor or communication capacity. In this
thesis, we shall provide a formulation of the resource allocation problem that is more

amenable to the requirements of the hard real-time environment.

1.4.2 Processor Sharing Methodology

In this,' approach, processes are expected to be sharing resources subject to
known scheduling discip!inés and usage restrictions which are part of the design
methodology. Since the scheduling disciplines are fixed, the run-time behavior of the
system is predictable and this offers potential for exploitation. First, the designer nee&
not guarantee that a process system is inherently deadlock-free or may have otﬁar un-
desirable properties; it is su'ﬁi’cient that the system will function properly under ihe
given resource scheduling disciplines. For example, the system scheduler might require
that all shared resources‘be explicitly declared and apply banker's algorithm for
resource allocation. Second, there may be (intentional) asymmetry in the resource
scheduling disciplines which can be exploited to favor processes with tighter timing

constraints. This can be facilitated by introducing scﬁeduling attributes, e.g., deadlines



for interfacing with the system scheduler.

Some examples of the processor sharing methodology are found in [WEi et al 80]
and in [REG et al 78]. In both cases, processes are assigned deadline and period attri-
butes and are run on a single processor. The scheduling disciplines used are variations
of the earliest deadline algorithm which always runs the ready process with the nearest
deadline, or the rate monotonic static priority algorithm which assigns, higher (fixed)
priorities to processes with higher repetition rates.‘ In [LEIN 78], processes may also
contain device segments (I/0 delays) and resource segments (critical sections) which
are scheduled on a FIFO basis.

An earlier methodology was proposed by Dertouzos [DERT 74] where process-like
daemons are given boolean conditions for their activation. Conditions must be recog-
nized within certain recc.Jgnition times and the daemons must complete their computa-
tion within given deadlines. Daemons are supposed to be implemented on a multipro-
cessor architecture with global memory. The earliest deadline algorithm is used for dae-
mon scheduling on each processor and (ignoring scheduling and context switch over-
heads) has been shown to be optimal [DERT 74] in the sence that it always results in a
feasible schedule i; one exists. However, it is no longer optimal when there are mutual
exclusion restrictions or when there are two dr more piocessors.

It should be noted ihat if we can find an optimal scheduling algorithm for every
resource, thén there is no reason wt{y the processor sharing methodology should not
be adopted with the optimal scheduling disciplines. However, it can be shown [MOK &
DER 78] that wnen proceésses may request service with no a priori known request
times, then not all feasible sets of timing constraints can be met by any one multipro-
cessor scheduiing algorithm.

In general, the processor sharing methbdology makes better use of system

resources than the virtual proceésor methodology. Hov@ever, there may not be any fasy




way to systematically take advantage of the resource scheduling disciplines adopted by
a processor sharing methodology. For example, while there is an efficient assignment of
static priorities to processes when every timing constraint can be expressed in terms of
a deadline on a periodic process 1'.' there is a significant semantic gap between static
process priorities and timing constraints that involve the cooperation of two or more
processes to satisfy. However, the use of a static priority as a process scheduling attri-

bute has been adopted by many "real-time languages", most notably Ada.

T The combinatorial problem of static priority assignment has been treated in [LIU &
LAY 73]. The proof of theorem 1 in the cited paper is, however, not quite complete
since it does not deal with the case when a task of higher priority is being executed at
the request time of the task being analyzed for its critical instant [CESA 80], but the
theorem and the priority assignment procedure given are correct.
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1.5 A Synopsis

In this chapter, we have argued that there are significant advantages in building
hard real-time systems and that we need a better understanding of the fundamental
probléms for automating the design and maintenance of these systems. Since the obvi-
‘ous way to organize the software for these systems is via straightforward extensions to
process-based models, we shall formulate in chapter two the problems of designing
hard real-time software in terms of process-based models and discuss some techniques
for- on-line scheduling. There is, however, a serious semantic gap between process-
based models and hard real-time applications. After discussing the intrinsic weaknesses
of process-based models, we shall introduce in chapter three an alternative graph-
based model (a generalization of the CONSORT block diagram schemata [WARD 78))
on which stringent timing constraints can be naturally expressed. This model is
machine independent and makes no assumption about the availability of physical
resources. Relevant problems in resource scheduling with critical timing constraints can
then be fo.imulated and studied. A technique called latency scheduling which can be
used to meet asynchronous timing constraints (spontaneous service requests) by shift-
ing most of the \;vork off-line will be formalized and studied in tefms of the graph-based
model. Chapter 4 presents a general approach to model the constraints imposed by
communication delays in a distribuied system so as to provide a precise formulation of
the processor allocation problem for the hard real-time environment. We shall also
show how communication delay constraints can be met by solving analogous deadline
scheduling prcblems for a broadcast communication system such as a backplal{e bus.
Chapter 5 describes the architecture of a design system and also some implementation-

ideas. Chapter 6 is the conclusion and remarks about avenues for further research.




Chapter 2

Design via Traditional Process Models

2.1 Process-Based Models of Computation for the Hard Real-Time Environment

Our objective in this chapter is twofold: to examine the use of process-based
models for the design of hard real-time systems, and to introduce on-line scheduling
techniques for meeting stringent timing constraints. There are two incentives for exa-
mining process-based models. First, they represent a conservative extension of the
vast majority of sequential programming languages in providing a parallel processing
capability. Design techniques for process-based models are therefore of considerable
practical interest. Second, by investigating the problems with process-based models, we
can gain a better appret;iation of the computational requirements of the hard real-time
environment. Our investigation will also provide justifications for an alternative computa-
tion model which is more suitable for expressing performance requirements in the hard
real-time envircnment.

Informally, a (sequential) process is an abstraction of a single sequence computer
which, at any point of a computation, Can be characterized by‘ its state information,
namely, the program counter, the stack and fhe value of its static variables. A process
interacts with another process by exchanging information only at specific points in its
program and.has only one-thread of control, i.e., the program counter of a process is
determined solely by the result of its own computation and cannot be set directly by
asynchronous external everts. (Thus interrupts are a processor-related concept and are
logically transparent to a process.) A variety of process-based models for parallel pro-
cessing have been proposed, e.g., communicating sequential processes [HOAR 78],
distributed processes [HANS 78a), the tasking mode! of Ada [ICH et al 79]. These

models differ primarily in the méchanisms they providé for interprocess communication




and in the amount of internal parallelism (coroutining) inside a process. We shall con-
cern ourselves with only those problems about process-based models that are relevant

to the design of hard real-time systems. oy

» Decomposition of computational requirements
Given the performance specifications of a hard real-time system, the problem is
how to decompose the required computation into processes with the appropriate timing

constraints so as to meet performance and other system objectives.

P Process scheduling
Given a set of processes with’ timing constréints, the problem is how to schedule

them at run time so as to meet their timing constraints.

» Adequacy for concurrency cbntrbl

Resource sharing in the hard real-time environment requires facilities for con-
currency control. The problem is to determine the appropriate interprocess coordination
mechanisms which support control structures commonly required for hard real-time sys-
tems. .

It should be emphasized that the above problems are not independent of one oth-
er. In particular, many simple primitives for concurrency control are so powerful that
their unstructured use may céuse undesirable system behavior which s very difficult to
analyze. The corresponding scheduling problem is likewise computationlly intractable.
On- the other hand, scheduiing algorithms which are efficient to analyze and implement
may permit so little concurrency control that they are adequate for only a very limited
class of problems. We shall provide some answers to the above problems by analyzing
a sequence of increasingly sophisticated process-based models. Our investigation wili

also reveal some semantic weaknesses and possible improvements to current process-




based "real-time languages" such as Ada.




2.2 The Scheduling Model and Timing Constraints
For scheduling purposes, a process Ti consists of a chain of scheduling blocks, {

-1 Each Ti,j has a

bound on computation time, Ci.j which is known a priori and the sum of the Cij is the

total computation time, C; of process Ti' Interprocess coordination is achieved through

T,J, j=1.ni } where Ti i is a piece of code to be executed safter Ti

communication primitives which may appear only between scheduling blocks. These
communication primitives are used to pass information among processes or for coordi-
nation purposes. Their semantics is important only to the extent that they impose cer-
tain scheduling restrictions which will be defined for each process model.

When a process is made ready to run, say at time t, it must be finished by a
specified'deadline, di relative to t, i.e., the last scheduling block of Ti must complete
execution on or before t.+ di' There are two types of processes: periodic and sporadic.
If T; is periodic, it is requested (becomes ready to run) every p; time units, starting from
time 0. The deadlines of periodic processes are normally shorter than the correspond-
ing periods..' if it is sporadic, then it may be requested at any time, but consecutive re-
quests of Ti are kept at least P; time units apart, where p; is a specified minirﬁum
period which is required to prevent a sporadic process from monopolizing sy;ster;\
resources. (In practice, sporadic processes aée often invoked by external events, e.gt,
device interrupts. The minimum period restriction may be enforced by keeping a queue
of pending réquests for Ti which is made ready every p; time units until all pending ré-
quests are exhausted.) |

Formally, an instance 6f a process model M = MpUMsis a finite set of processes
which is the union of two disjoint subsets: Mp (the periodic processes) and Ms (the
sporadic processes). The ith process, Ti = (c;:p;d;) has three parameters: Cj (compu-
tation time), di (deadline), p; (period) such that 'cigdigpi.lf a process T; € Mp. then it

is requested at time=kpi for evéry non-negative integér k. It on the other hand, T, €




Ms' then it can be requested at any time instant t, but two successive requests must
be at least P time units apart. All time parameters are non-negative integers. (In prac-
tice, time parameters are presumably given in integral multiples of a basic time unit,
e.g., a processor instruction cycle.) Process preemptions are allowable only at integral
time instants and may be subject to additional scheduling restrictions imposed by com-
munication primitives placed between scheduling blocks of a process. A set of

processes is schedulable if at a request-time t, the process (c,p,d) requested is execut-

ed completely on a processor for ¢ units of computation time in the interval [tt+d].




2.3 Real-Time Process Scheduling

Although much progress has been made in deterministic scheduling theory in the
last decade, the classical scheduling model studied by most authors (e.g., [LAG et a
81] contains a complexity classification of deterministic scheduling problems based on
a parameterized model) deals with tasks that are to be performed only once, i.e., each
task has a given request-time after which it can be scheduled, and a task is never con-
sidered again after it has been completed. These results are not directly applicable to
our problem which differs from them in two essential aspects: our tasks (processes)
may be invoked an infinite number of times, and the request-times of sporadic
processes are not known a priori. |

Nevgrtheless, we can use some of the techniques developed for the classical
model if all processes are periodic in which case it is sufficient to examine schedules
of length on the order of the least common multiple of the periods. Although algo-
rithms following this approach are at best pseudo-polynomiai in complexity, they suffice
in many pl:'actical applicatians since the parameters involved (deadlines, periods) are
neither expected to be very large integers nor relatively prime. However, it should be
noted that compiexity results derived for the classical model cannot be carried over
directly to our model owing to the periodicity of processes. Specifically, a necessary
condition for scheduling in our model is that the sum of the utilization factors, c;/p; of
all the processes must not be greater than the number of available processors. Difficult
problems in the classical model may not be computationaliy intractable when they are
restricted to the subsets ‘which meet the utilization constraint. To emphasize the
difference between the classical deterministic scheduling problemé and our problems, -
the problems of continuously meeting periodic and sporadic timing constraints in real-

time will be called real-time scheduling problems. Algorithms which solve real-time




scheduling problems are real-time scheduling algorithms.

In general, a real-time scheduling problem involves two schedulers: an off-line
scheduler and a run-time scheduler. The off-line scheduler examines the instance of
the process model and creates a run-time scheduler together with a database for mak-
ing scheduling decisions at run time. The run-time scheduler is the code for allocating
resources in response to requests generated at run time, e.g., timer or external device
interrupts. The purpose of a real-time scheduling algorithm is to create an off-line
scheduler for a class of real-time scheduling problems. A run-time scheduler is fotally
on-line if its decisions do not depend on a priori knowledge of the future request-times
of the process(es). A run-time scheduler is clairvoyant if it has an oracle which caﬁ
predict with absolute certainty the future requesttimes of all processes. A run-timé
scheduler is optimal if it. always produces a feasible schedule whenever it is possible

for a clairvoyant scheduler to do so.

2.3.1 Single Processor Scheduling

For the case of a single processor, Dertouzos [DERT.74] showed the existence of
a totally on-line, optimal run-time scheduler for the case where interprocess communi-
cation primitives do not impose any scheduling restrictions, i.e., the scheduler can
choose to preempt a process by any other ready process at integral time instants. The
algorithm embodied in the run-time scheduler is the earliest deadline algorithm which
runs at every instant the ready process with the nearest deadiine. It is interesting to
note that there are more th.an one totally on-line optimal scheduler under the same as-
sumption. Let us denote the remaining computation of a ready process at time t by
c(t) and its current deadline by d(t) and define the slack of the process at time t by
maximum{d(t)-t-c(t),0}, i.e., the slack is the maximum time the run-time scheduler can

delay running the process before it is bound to miss the current deadline. Another to-




tally on-line optimal algorithm is the least slack algorithm which schedules at any time
the ready process with the least slack, ties being broken arbitrarily. The optimality of
the least slack algorithm can be proved by the same “time slice swapping" technique

used in [DERT 74].

Theorem 2.1
The least slack algorithm can be used as a totally on-line optimal run-time
scheduler under the assumption that the scheduler can choose to preempt a process

by any other ready process at any integral time instants.

Proof: ' ‘ j

By definition, the least slack algorithm is totally on-line. The key observation is that
at any time t, we can always transform a feasible schedule for the interval [0,t] (say
one that is produced by a clairvoyant scheduler) to one that is produced by the least
slack algorithm without missing a deadiine within that interval. This is trivially true at
time t=0. éuppose the hypothesis holds for [0,t], and a process Ti is scheduled in the
interval [tt+ 1] while there is another ready process Ti with a smaller slack at time t.
Notice that the process Tj' must be scheduled at least once before d(t), the current
deadline of process Ti in the feasible schedule. Otherwise, the slack of process Ti
must be at least as big as d(t)-t which is greater than the slack of process T;, a con-
tradiction. Thus, we can simply schedule process Ti in the interval [tt+1], and
schedule process Ti in the first unit interval occupied by process Ti before the deadline
d(t). Tne resulting schedule remains feasible. QED

Figure 2.1 gives an illustration of the "time slice swapping" technique involving
two processes: T1 with computation time c1=1. deadline d1 =4, and T2 with cz=3,.

d2=5. The earliest deadline algorithm schedules process T, first whereas the least

slack algorithm would schedule process T2 first.
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Figure 2.1
Example of time slice swapping

Corollar‘y (Liu and Layland)

For the case where the deadline and period are equal for the same process, (i.e.,
di"'pi for every process Ti)' a necessary and sufficient condition for scheduling a set of
all periodic"proc&sses on a single processor is that Eci/pi <1 where Cj is the compu-

tation time of the process Ti'

Proof:

This result was first proved in [LIU & LAY 73]. The technique of "time slice swap-
ping" used in the above thedrem provides a simpler way to pr;nve the same result.
Specifically, we note that if a round rohin scheduler allocates C;/Pp; of every time unit
to process T;, then T; will be guaranteed to receive c; units of processor time in every
period of length p; thus meeting its deadline. Since preemptions are permitted only at
integral instanis of the basic time unit, we have to transform the schedule produced by |

the round robin scheduler to one in which process switching occurs only at integral in-

stants of time. This is easily done by using an optimal scheduler such as the earliest




deadline or the least slack algorithm and not allowing the processor to stay idle when-
ever there is an unfinished ready process. Since all request-times, computation times
and deadlines are integral, the "time slice swapping” technique will yield a schedule in

which process switching occurs only at integral instants of time. QED

Remark

There are in fact an infinite number of totally on-line optimal schedulers, e.g., any
combination of the earliest deadline anc ‘he least slack algorithm may conceivably be
used in a run-time scheduler to minimize process switching overheads.

The assumption that any ready process can be freely selected to preempt another
process poses a cubersome restriction on the design of some real-time sofMare. For
example, the position of an -aircraft is updated by a periodic process which cdmputes
the X and Y coordinates from sensor measurements. A sporadic process may read the
X value before being preempted by the tracking process and then reads the new Y
value. This.inconsistency can be prevented by enforcing a mutual exclusion constraint
on the two processes, i.e., they are not allowed to preempt each other. With this res-
triction on the real-time scheduling problem, however, the earliest deadline algorithm is
no longer optimal. In fact, we can show that in general. a run-time scheduler cannot

be optimal unless it is clairvoyant.

Theorem 2.2
When there are mutual exclusion constraints, it is impossible to find a totally on-

line optimal run-time scheduler.

Proof:
Consider the following instance cf a process model with two mutually exclusive

processes. T  is a periodic process with computation time c, =2, deadline dp=4. and

p p




period pp=4. Process Ts is a sporadic process with computation time cs=1, deadline
ds=1, and minimum period ps=4. Let us examine the problem of scheduling them on
a single processor. We can always meet the deadline specifications by using a clairvoy-

ant scheduler as tollows. At every instant t when process T. is requested, (i.e., t=0

p
mod 4), schedule Tp for the interval [tt+2] if the oracle claims that process Tg will not

be requested at t+ 1. Else defer running process T, to the interval [t+2t+4]. Schedule

P
process Ts immediately whenever it is requested. (Figure 2.2 illustrates the situation
where process Tp is scheduled at time 0 and the adversary requests process Ts at time
1)

For any totally on-line schedulér, we can prdve that it is not optimal by giving ar;
adversary argument. Specifically, at any instant 14, a decision must be made either tol
run process Tp in the interval [tt+2] or to defer it. If process Tp is scheduled at tim'e
t, then a request for process Ts at time t+1 cannot be met since Tp cannot be
preempted at time t+1. If the decision is deferred, then the adversary will not request
process Ts 'at time t+1, and the scheduler is forced to make the decision again. Since

the scheduler cannot defer running process T, past time t=2, it is bound to miss one

p
of the deadlines. QED

Remark

This theorem can be genéralized trivially to the case of multiprocessors by creating
for each additional processor, a periodic process whose deadline and computation time
are both equal to its period. More significantly, it can also be proved [MOK 76] that for
the multiprocessor cese, it is impossible to find a totally on-line optimal run-time
scheduler even i¥ any ready process is permitted to preempt any other process in pro-

gress.
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Example for adversary argument in theorem 2.2

Thé nejative result above certainly does not imply that a clairvoyant schéduler is
required for ALL problem instances. One might suspect that the process model con-
cocted for the proof puts too heavy a load on the single available processor. However,
it is easily seen tha;t the proof holds even if we set the period of both processes to any
integer bigger than 4. Thus' an optimal scheduler may not exist even if the processor
utilization factor is kept arbitrarily small. The crux of the problem lies in the relative ur-
gency of the processes.

The following lemma shows that a clatrvoyant scheduler is not necessary for
scheduling a set of sporadlc processes if they can be replaced by a set of
“equivalent” (in the sense of the following lemma) periodic processes for which a
feasible on-line scheduler exists. For this purpose, let us define the nominal slack, I; of
8 process Ti to be Ii=d|—ci where di and c; are the de:.‘line and computation time of

process T'.

Lemma 2.3

Let M=MpUMsbe an instance of a process model. Suppose we replace every




sporadic process Ti=(ci,pi,di)' € Ms by a periodic process T'i=(c'i,p’i.d'i) with c'i=ci,
p’i=MIN(Ii+1,pi), and Q’i;ci. If the resulting set of all periodic processes M' can be
successfully scheduled,~then the original set of processes M can be scheduled without
a priori knowledge of the request-times of the sporadic processes in Ms' .
Isroof:

It the periodic processes in M' can be scheduled, then a run-time sched:uler car:
repeat the finite schedulé fo'r';the interval [0,L] ad infinitum to meet all future deadlines
where L is the LCM (least common multiple) of the periods. We can modify lhis;
scheduler to schedule the original processes as follows. At a request-time of a procass
Ti' if T; €Mp. then schedule it by following the recurring schedule above. If. the pro-
cess T, € Mg, then schedule it at the earliest time when an instance of its eqﬁivaler-t
periodic process is next run on the recurring schedule. This modified scheduler does
not use a priori knowledge of the request-times of the sporadic processes and it
remains for.'us'to show that the sporadic processes will not miss their deadlines.

The worst case occurs when the request-time of a spc::radic process Ti occurs one
time unit after the latest instance of its equivalent periodic process has started running.
By the definition of the transformation, the next request-time of process T'i occurs at
the most li+1-1 ='i timg units later, and the next instance of process T’i is completed

¢; time units after that. Hence, the sporadic process is completed at the most L+c=d

time units after its request time. QED

-

rlemark

The above scheduler makes use of a database (the finite schedule) which is com-
puted off-line by exploiting the fact that the request-times of periodic processes are
known a priori. Thus it is a question of philosabhy whether to call the scheduler totally

on-line or not. We would chodse to reserve the term totally on-line for schedulers




which do no make use of any a priori knowledge of request-times.

In general, we can replace a sporadic process T with computation time ¢, deadline
d and minimum period p by a periodic process T' with computation time c¢’, deadline d'
and period p’ as long as the following conditions are satisfied: (1) d>d'>c(2) ¢'=c;(3)
p'<d-d'+1. This is an example of a general technique called ‘atency scheduling which
is used to schedule sporadic computation by exploiting periodic computation and

which will be investigated in detail in the next chapter.

Intuitively, a sporadic process is mou;e demanding (i.e., it makes it more unlikely to
find a run-time scheduler which is not clairvoyant for the problem instance) the shorter
its nominal slack is, and this is reflected in the shorter length of the period, p’i=li of
its "equivalent" periodic process. Howevér, it is important to point out that thé tfansfc;r-
mation used in the above Iefnma is not unique. In fac*, there are many ways to
transform a sporadic process into equivalent periodic process(es). We shall defér thé
scheduling -problem of sporadic computation until the next chapter and deal with only
periodic timing constraints in the rest of this chapter. We shall also concentrate on thé
single processor case singé a discussion of the multiprocessor case is unrealistic
without addressing the related problem of interprocessor communication whidﬁ we shall
address in a later chapter. |

When there are no restriétions on selecting a process for preemption, we have al-
ready remarked that the feasibility problem of scheduling a set of periodic processes
whpse deadlines and periods‘ are equal can be solved efficiently. In general, we can
test for feasibility by using an optimal scheduler to simulate the execution of the
periodic processes over a sufficiently long interval. (If the deadlines are all shorter than
the periods, then the simulation interval needs no longer than the LCM of the periods.)'

We now turis to the issue of interprocess coordination which is to be supported by the




communication primitives. We have noted that the ability to enforce mutual exclusion
constraints is important to some real-time applications. Cur next task is then to select
the communication primitives which are sufficiently powerful for our purposes and study
their implications on the scheduling problem. In general, a communication primitive may
be used to coordinate parallel activities of concurrent processes and thus put some
restrictions on the run-time scheduler by disallowing a subset of of the schedules
which the scheduler may otherwise generate. Perhaps the most well known mechanism
for- interprocess coordination is the use of semaph‘ores which are known to have wide
applications, e.g., it can be used to enforce mutual exclusion and precedence con-
straints. (The spinning lock implementation of the P operation is inappropriate in the
hard real-time environment. One can assume that processes will be blocked and
queued at a semaphore when they cannot proceed.) The natural question to ask is
how difficult the scheduling problem becomes when P and V operations are permitted
to delineate the scheduling blocks of a process. Unfortunately, the problem of schedul-
ing a set c;f periodic processes to meet their deadlines is NP-hard even if semaphores
are used to enforce mutpal exclusion only (i.e., each P(x) operation must be followed
by a V(x) operati.on and every semaphore is initialized to permit only one process to
proceed.) Our proof is a straightforward modification of the NP-completeness proof of
the SEQUENCEING WITHIN INTERVALS problem [GAR & JOH 79, pp. 102-103] which

uses the well known NP-complete 3-PARTITION problem.

Theorem 2.4‘ .

The problem of deciding whether it is possible to schedule a set of periodic

processes which use semaphores only to enforce mutual exclusion is NP-hard.

Proof:

We shall transform an instance of the 3-PARTITION problem to an instance of our




scheduling problem as follows. Let A={ a4.8p, .., 89 } be a set of 3m elements, B a
positive integer, and Wi, Wy, ooy Wao be integral weights of the elements of A respec-
tively such that B/4$wigB/2and_ Zw; = mB. The decision question is whether A can
be partitioned into m disjoint sets each of which has weight (the sum of the weights of
its elements) B.

The corresponding instance of our scheduling problem has 3m+ 1 processes all of

which have the following form.

Prbcess T;

Attribute period = Py deadline = di

P(x) .

{ Scheduling block which together with the P and V operations takes G

time units } ‘

V(x)

end T,
For each element a in A, we create a process T i with pi=di=mB+m and ;=W
In addition, we create a process T3m +1 with Pam 4+ 1 =B+1 and d3m +1°%3m+1 =1.
This transformation obviously takes polynomial time. Notice that all feasible schedules
must_ run process T:_,’m +1 in the intervals [tt+1] where t=0 (modulo B+1) sincé
T3m +1 has 0 nominal slack. This leaves m separate slots of time each of which has
length B in the interval [0,mB+m]. There can be no idle time in any of these slots
since the m processes corresponding to the elements of A must be executed once be-
fore mB+m. Furthermore, none of these m processes can appear in more than one
slot, otherwise process T3m +1 would have been blocked from running by the sema-
phore. (Figure 2.3 illustrates the form which any feasible schedule must take.) Thus a
feasible schedule exists for the interval [0,mB + m] iff the 3-PARTITION problem can be

solved. The scheduling problem obviously cannot be solve if there is no feasible

schedule for [0,mB+m)]. If there is one, then a run-time scheduler can simply repeat



this finite schedule ad infinitum to meet the deadlines. Hence our scheduling problem

is at least as hard as 3-PARTITION. QED

T3m+1 T3m+1 T+l
0 1 B B = tme
Subset of processes with
computation time = B t
Figure 2.3

The form of any feasible schedule in theorem 2.4

Thus there is strong evidence to support that insisting on finding a run-time
scheduler whenever one exists can be prohibitively expensive. One alternative is to use
suboptimal algorithms. (It should be emphasized that the run-time scheduler must be
guaranteed not to miss any deadline. Sub-optimal algorithms are permissible only for
off-line con‘iputation.) Another alternative is to put as many restrictions on the use of
the communication primitives. as it is deemed reasonable for programming real-time sys-
tems and hope that the restricted scheduling problem can be efficiently soived. The
simple form of the periodic processes in the NP-hardness proof above seems to sug-
gest that nbt much more can be done by way of restricting the use of the P and V
primitives. The reason for the "NP-hardress" of the above scheduling problem lies in
the possibility that there are mutually exclusive scheduling blocks which have different
computation times. (These mutually exclusive scheduling blocks are similar to the criti-
cal sections of Dijkstra who originally defined a critical section as a single code seg-
ment which is shared by two or more processes such that at most one process may be.
executing it at any time.) As we shall show later, the scheduling problem becomes a lot

more tractib’e if mutually exclusive scheduiing blocks must have the same computation



time.

In general, interprocess coordination by means of semaphores is far too unstruc-
tured for our analysis, e.g., the same semaphore may be used to enforce mutual exclu-
sion sometimes and to enforqe a precedence constraint at other times. The complexity
of the corresponding scheduling problem will very easily get out of hand. While we can
impose conventions to structure the use of semaphores and thus keep the analysis
more manageable, the availability of a global memory implied by the use of semaphores
imposes an architectural constraint which is hard to justify if we are to apply our
results to distributed systems. For these reasoﬁs. we shall adopt a communicaﬁon prim-
itive which is closer to message passing among processes. Specifically, we shail allow

a process to rendezvous (borrowing the terminology from Ada) with another process.



2.3.2 The Deterministic Rendezvous Model

The rendezvous communication primitive has the following syntax and may be

used to delineate scheduling blocks within a process.
rendezvous (process_name) .

For brevity, we define processes which have rendezvous primitives targetting each
other to be communicants. (This definition induces a communicant relation on the set
of processes.) When a process Ti attempts to exeéute a rendezvous primitive, it must
wait until the corresponding communicant also executes a rendezvous primitive with T-i
as its argument. Presumably, information may be exchanged by the two processes at a
rendezvous, but the nature of the exchange is not of interest to us. The primary pur-
pose of the rendezvous primitive is for synchronizing two processes. More specifically,
a rendezvous establishes. a precedence constraint which requires that all the computa-
tion before the rendezvous primitive in each process must precede all the computation
after the corresponding rendezvous primitive in the other process. |

For séﬁeduling purposes, a rendezvous is assumed tQ take zero time. In practice,
this can be justified by splitting the rendezvous overhead and including it in the
scheduling blocks right before the rendezvous. This raises a fihe point in that a ren-
dezvous may be interrupted if the run-time s;cheduler preempts the process to whicf;
the rendezvous overhead has been charged. The rendezvous primitive by itself does
not guaranteé mutual exclusion, e.g., it should not be used to manipulate sets of vari-
ables for which some mutual consistency constraint must be maintained.

It should be pointed out that a rendezvous between a periodic process and a
sporadic process is incompatible with the semantics of the timing constrainis since a
periodic process must be executed regularly while by definition, there is no guarantee
that a sporadic process will request computatiori at all. If a periodic process must com-

municate with another process, .then that other proces;s must be made ready regularly
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and is no longer sporadic. However, if two periodic processes with different periods
need to communicate with the same process Ti' then there is the question of how io
mode! Ti' We may specify Ti as a periodic process with appropriate parameters or we
may treat T, as a sporadic brocess with the provision that Ti is made ready whenever a
periodic prc;cess wants to communicate with it. The second alternative suggests that
these processes are likely to be "servers" which cater to the periodic processes on
demand. These "pseudo sporadic" processes will be treated separately in the nextl
model.
Two'periodic processes are defined to be compatible if they have the same period‘
or if one period is an exact multiplé of the other. We require that if two processes aré
related via the transitive closure of the communicant relation; then they must be com-
patible. This requirement does not seem to be too restrictive since processes which
must synchronize with one another are likely to have the same period; in any case, the
scheduling problem is not significantly harder without this restriction. Also, two com-
municants é’re assumed execute the same number of rendezvous primitives targetting
each other in every (the longer of the two) period in order not to miss any deadline.
The scheduling problem will now be tackled. The following example shovys that the
earliest deadline algorithm mcdified to run the ready process which has the nearest

deadline and which is not blocked by a rendezvous primitive is not optimal.

Example

. There are three periodic processes. T1 consists of two scheduling blocks with
€41=Cq=1, dq=3, py=5. T2 has two scheduling blocks with Cpy=1, c22=3.
d2=p2=10. T3 has one scheduling block with c3=1. d3=9. p3=10. T1 must rendez-

vous with Ty after the first scheduling block, and T, must rendezvous with T, after the.
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first and second scheduling block.

The earliest deadline algorithm fails because it does not make use of the informa-
tion that T2 is forced by the second rendezvous to finish before the second deadline
of T,, i.e., the real deadline for T, is at time 7 instead of at time 10 and is therefore
nearer than the deadline of T3 which is at time 9. Figure 2.4 illustrates the situation

when the earliest deadline algorithm fails.

Process
A | 5.dy=3
T 117
1 12 ‘u | ‘2 \l, 1 ==l
4\ d ¥ ! N ' '
: rendezvous 7 rendezvous
2 7)) 2 r=1ey=3
| 1 ] [l 1 } } CS i 3 C3 i 1

Earliest Deadline Schedule
‘Niain|{% |2 u » ‘12 fails at time = 8
= time

. Figure 2.4
Example of scheduling constraint imposed by interprocess synchronization

This problem can be easily fixed by adopting a technique for revising deadiines to
eliminate precedence constraints in the classical model of scheduling e.g., [BLAZ 76]. .
We shall apply this technique to build a database for the run-time scheduler so that
the earliest deadline algorithm can again be used with dynamically assigned process

deadlines. Let us consider the computation that must be performed for process T, in



the interval [0,L] where L is the longest period among the processes which belong to
the same equivalence class (induced by the communicant relation) as Ti' Denote the
chain of scheduling blocks generated in chronological order for T; in [o,L] by T,
Ti(2), Ti(ni). These scheduling blocks must also obey additional precedence con-
straints introduced by the rendezvous primitives. Specifically, suppose process T ; tar-
gets process Tj for a rendezvous between the scheduling blocks Ti(k) and Ti(k+1), and
the corresponding rendezvous primitive occurs between the scheduling blocks Ti(l) and
Ti(l+1). Then T;(k) —»T‘-(I+1), and Tj(l) —T,(k+1). Having thus defined the precedence
constraints, we proceed to assign a deadline to each of the scheduling blocks generat-

ed in [O,L].

(1) Sort the scheduling blocks generated in [0,L] in reverse topological order.
(2) Initialize the deadline of the kth instance of Ti.i to (k—1)‘pi+di.
(3) Revise the deadlines in reverse topological order by the formula: dS =
MIN(dS.{dS,fcs. : 8§ —+8'}) where S and S’ are scheduling blocks and cg, dg are
respectively the computation time and current deadline of S.

The purpose of the above procedure is to move up the deadline of a scheduling
block if it must precede another scheduling. block which has a nearer deadline but

which is not yet ready to run. These revised deadlines can now be used to update the

current deadlines of the processes at run-time by recycling them every L time units.
Specifically, if a process T; is executing the kth (modulo L/p;) instance of its jth
scheduling block, then it lpust be assigned a deadline equal to the revised deadline
(relative to the kth requesi-time of T, in [0.L]) of the kM instance of the jth scheduling
block generated in [0,L]. Since all the revised deadlines have been moved up, a suc-
cessful schedule obeying the revised deadlines certainly meet the old deadlines. On the

other hand, the amount of time by which a deadline has been moved up is sufficiently



tight (consider the chain along which the MIN function returns its value.) so that any
schedule which violates a revised deadline must also miss one of the original dead:

lines. We summarize the above arguments in

Lemma 2.5

Suppose M is a process mode! and all of the processes in M are periodic and may
have rendezvous communication primitives. Then the feasibility of the process model M
is not affected by dynamically updating the process deadlines as described by the pro
cedure above. Furthermore, whenever the dynamic deadline of a ready process Ti is

ll
violate any precedence constraints involving the two processes.

nearer than that of another ready process T, then scheduling Ti ahead of Ti will not

Proof:
Let S and S' be two scheduling blocks in [0,L]. It follows directly from the formula
for revising deadlines that dg < dgs if S —S'. The claim in the lemma simply states the

contrapositive of this statement. QED

-

Theorem 2.6

if a feasible schedule exists for an instance of a process model restricted by ren-
dezvous scheduling constraints, then it can be scheduled by the earliest deadline algo-
rithm modified to schedule tﬁe ready process which is not blocked by a rendezvous

and which has the nearest dynamic deadline.

Proof:

The “"time slice swapping" technique can be applied to transform any good
schedule to one produced by the modified earliest deadiine algorithm. Lemma 25
guarantees that swapping will not violate any precedence constraint imposed by ren-

dezvosu primitives as long as the process with the nearest dynamic deadline is



scheduled first. QED

Remark

Obviously, scheduling is feasible if the modified earliest deadline algorithm pro-
duces a feasible schedule for the interval [O,L]. In practice, it may not be necessary
for the earliest deadline scheduler to observe all the dynamic deadlines if the timing'
constraints are not too demanding. A simple procedure for minimizing the size of thé
databasé is to use the. process (static) deadlines for scheduling until a deadline és
mis.sed. In that case, insert dynarﬁic deadline(s) one by one in reverse chron&ogical

order until the missed deadline can again be met.

Monitors
To deal with the "pseudo periodic" processes that we alluded to earlier, we now
introduce a special type of process called a monitor which performs some service for
ordinary processes on demand. Our monitors are a simplified version of Hoare's con-
cept [HOAR" 74] and have the following syntax.
Process <monitor_name>
Att;'ibute monitor
rendezvous(ANY_PROCESS T;)
{ A single scheduling block with no communication primitives }
rendezvous(T i)
end <monitor_name>
The body of a monitor consists of a single scheduling block which is prefixed by a
rendezvous primitive with any process (a wild card) as the target. An ordinary process
requests service from a monitor by attempting to rendezvous with the monitor. If two or
more processes are requesting service, the system scheduler is free to choose (in ac-

cordance with some scheduling policy) a single process to rendezvous with the moni-

tor. The wild-card parameter is needed to avoid deadlocks which might result if the



monitor must rendezvous with user processes in a fixed order. After the scheduling
block has been executed, the monitor attempts to rendezvous with the same process'a
second time. Even though a monitor does not have an explicit timing constraint attri-
bute, it must meet the current deadline of the process for which it is parforming a ser-
vice.

It is obvious that a monitor realizes a critical section and so can be used to en-
force mutual exclusion constraints. For example, é binary semaphore may be imple-
mented by using the first rendezvous as a P operation and the second rendezvous as
a V operation. The scheduling problem with monitors is therefore NP-hard (in the
strong sense) by Theorem 2.4. As we have mentioned earlier, the problem becomes a
lot more manageable if mutually exclusive scheduling blocks must have the same com-
putation time. This car; be enforced by requiring processes to execute the sscond
rendezvous with a monitor immediately after the first one, i.e., the two rendezvous prim-
itives targetting the same monitor must occur one right after the other in the code. This
has the samie effect as using the two rendezvous primitives.as a macro for inserting thé
scheduling block of the monitor into a process with the guarantee that no more than
one process can be executing the monitor code at any one timé (i.e., a critical sec-
tion). For scheduling purposes, every monitof will be treated as a critical section. The
monitor concept is brought' in so that we may look at the related scheduling problem
(which is NP:hard in general), and also to be consistent with our goal of not relying on

a global memory for process coordination in our process model.
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2.3.3 The Kernelized Monitor Model

In this model, the operating system kernel enforces mutual exclusion by allocating
processor time only in uninterruptible quantums, say of size q which is chosen to be
tigger than the longest mo‘niior. For simplicity, we shall require the computation times
of all scheduling blocks to be exact multiples of q so that each scheduling block takes
an integral number of quantums to execute. This restriction seems reasonable if critical
seciions are kept very short, e.g., for accessing a small set of variables which must be
kept mutually consistent. {In the next model, even this restriction will be relaxed.) In
fact, it will become obvious that the shorter the time quantum is, the better is the
chance to design a run-time sched‘uler with a small database. Notice that with this pro-
cessor allocation discipline, critical sections no longer impose any more restrictions on
the scheduler. As far as the scheduling problem is concerned, the only difference
between the kernelized monitor model and the previous one is that a process may be
interrupted only after it has been allocated an integral number of time quantums.

We shall adopt a scheduling technique [GAR et al 81] involving a concept called
"forbidden regions" which has been invented to yield a necessary and sufficient condi-
tion for generating a (fini*e) schedule for a set of (one-time) unit-length taslfs with real
number request-times and deadlines in the classical scheduling model. For simplicity,
we shall assume that all (periodic) processes to be compatible and let L be the longest
period. Relaxing this constraint does not make the scheduling probiem significantly
harder, but increases the size (from O(L) to O(LCM{pi})) of the database for the run-
time scheduler. The following example shows why a simplistic earliest deadline

scheduler might fail.

Example

There are two periodic ‘processes Ty T2. T, consists of a single critical section of




length c4=2 and has a deadline d;=2 and period py=5. To. has two scheduling
blocks with the following parameters: Coq =2, c22=2. p2=d2=10. The second
scheduling block of T2 is the same critical section as T1. The preemption time quan-
tum is set to be 2.

The second deadline of T, will be missed if the second scheduling block of Ty is
scheduled at time 4, since the second instance of T, must be scheduled as soon as .it
is requested at time 5,7 and T2 cannot be preempted before it uses up the second
guantum of processor time allocated to it at time 4. A cleverer scheduler will leave the
processor idle in the interval [4,5] and execute T,, in [7.9]. The (open) interval (3,5) is
an example of a forbidden region in which a scheduler must not allocate a new quan:
tum of processor time to any process so that a future deadline may be met. Figure 2.5

illustrates the situation when the second instance of T1 misses its deadline because

T22 is started in the forbidden region (2,3).
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Example of a forbidden region imposed by mutual exclusion constraints

The da,tabase to be used by the run-time scheduler contains a collection of forbid-
den regions in the interval [0,L] where L is the longest period among the (compatibie)
processes. The run-time scheduler recycles the database every L time units to Iocaté
forbidden regions at all future times t, and allocates a quantum of processor time io
the ready process which has the nearest dynamic deadline and which is not blocked
by a rendezvous iff t does not lie on the within a forbidden region. To compute the set
of forbidden regions, each process is considered to be a chain of mini scheduling
blocks each of which is a quantum (the basic time unit of processor allocation). Con-
sider all the mini scheduling blocks generated in the interval [0,L]). As in the previour
section, these mini scheduling blocks form a partial order imposed by the (intra and in-
terprocess) precedence constraints, and each of these mini scheduling blocks can be

given a request-time and deadline consistent with the partial order as follows:




(1) Sort the mini scheduling blocks generated in [O,L] in forward topological order.

(2) Initialize the request-time of the kth instance of each mini scheduling biock of Ti in
[oL] to (k-1)*p;.

(3) Revise the request-timés in forward topological order by the formula: g =
MAX(rS,{rS.+q : §' —8}) where S and S’ are mini scheduling blocks in [0,L], and
rg q are respectively the current request-time and the computation time of S (i.e. a
quantum). - : . . Cat

(4) Sort the mini scheduling blocks generated in [0,L] in reverse topological order. - : t:

(5) Initialize the deadline of the kth instance of each mini scheduling block of T; in
[oL] to (k-1)*p; +d;.

(6) Revise the deadlines in reverse topological order by the formula: AdS =
MlN(dS,{dS.—q : § —8'}) where S and S’ are mini scheduling blocks; dg and dS'
are respectively the current deadlines of S and S'.

The effect of the above procedure is to assign to each mini scheduling block S in
[oL] a reqijest-time s which is the earliest time at which it can be scheduled, and a
deadline dS which is the latest time by which it must be completed if their partial ord-
ering is to be maintained. The request-times are optimistic for two reasons. First, twe
mini scheduling blocks, S and S' may be assigned the same request-times if they are
unrelated, i.é., if it is not true that S—S'or S'—S. Second, the processor may have to
be be kept idie at time t in anticipation of more urgent computation that will not be
made ready until a short while after t. For each request-time rg, we can declare the in-
terval: (xS.rs), q> fg—Xg 20 to be a forbidden region if we cannot delay scheduling
the scheduling block S beyond xg+d. If the processor is unwisely allocated to seme
process after time=xs, then it cannot be released until after time=x3+q whence it will.
be too late to schedule the scheduling block S. The set of forbidden regions in the in-

terval [O,L] is computed recursively by the following algorithm.
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(1) Sort the request-times in reverse chronological order and determine the forbidden
region associated with each request-time as follows. Initially, there are no forbidden
regions.

(2) For each request-time, rs and any deadline d for which LZdZdS, let M d be the
number of mini scheduling blocks which must be scheduled in the interval [rs,d];
i.e., count the number of all scheduling blocks S' for which rS.ZrSand dS.zgd.
Given a set of forbidden regions in the interval [rs.d], schedule N d mini schedul-
-ing blocks (time slices of length q) in [rS,d] so that none of them starts in a forbid-
den region. Let Sr.d be the latest time at which the first mini scheduling block must
be so scheduled. (There may be more than one way to fit N d time slices in the in-
terval {rS,d] without violating any forbidden regions. A easy way to find Sr.d is to
work backwards in time and place each time slice as close as possible to the left
of the previous one, starting from time =d. If placing a time slice right next to the
previous one will result in the left boundary being inside a forbidden region, align
the left 'boundary of the time slice with the left limit of the forbidden region.) If Sr.d
{rg. (i.e., there is no way to fit N d time slices of size q each in the interval [rs.d]
without puttin;; the left boundary of at least one of them in a forbidden region),
then declare failure. Otherwise, declare (sr,d - q,rs) to be a forbidden region if
S.d < rg+a.

The above aigorithm constructs a set of O(n) forbidden regions:
W= {(xi,yi) * y; is the revised request-time of some mini scheduling plock in [0,L], and
"no process shiould start past x; before y;}

in time O(n2) where n is the number of mini scheduling blocks geﬁerated in [O,L). The -

set W can be used to locate forbidden regions at run time as follows: At any time t, t

lies in a forbidden region iff X; <t(modL)< Y; for some ("i'yi’ EW.

We give a simple proof (different from the approach in [GAR et al 81]) that a run-




time scheduler can use the following modified earliest deadline algorithm to produce a
feasible schedule whenever one exists.
The kernelized monitor scheduler:

At any time t when the processor is free, and t does not lie in a forbidden region,
the scheduler allocates the next quantum of processor time to the ready process- which
has the nearest dynamic deadline and is not blocked by a rendezvous. Ties are broken
arbitrarily. If t lies in a forbidden region, then the p}ocessor is allowed to>idle unfil th;

end of the forbidden region.

Theorem 2.7
If a feasible schedule exists for an instance of the process model with rendezvous
and monitor communication primitives, then the kernelized monitor scheduler can be

used to produce a feasible schedule.

Proof:

By the"construction of the kernelized monitor scheduler, we only need to concen-
trate on the interval [O,L]. First, we show by induction that if the algorithm for finding
forbidden regions fails, then no feasible schedule can exist; furthermore, in any feasible
schedule, no mini scheduling block can start i.n a forbidden region.

If the algorithm declares failure when it is processing a request-time, Yj before any
forbidden reéion is declared, then there must be a deadline d such that the computa-
tion to be scheduled in the interval [yj,d] exceeds d—yj. a clearly hopeless situation.
For a forbidden region (xi,yi), any mini scheduling block starting in it will not finish until
after time=x.+q. But by the construction of forbidden regions, Yj is the request-time of

)

some mini scheduling block which must be started no later than Xj+Q. Hence starting a

mini scheduling block in a forbidden region will cause a deadline to be missed.

Suppose the hypothesis is irue for all forbidden }egions associated with request-




times later than some request-time y; and the algorithm declares failure when it is pro-
cessing Yje Then there must be a deadline d such that the computation required in
[yi,d] cannot be fit into that interval ‘without starting some mini scheduling blocks in a
forbidden region after Y; By the induction hypothesis, no feasible schedule can exist.
Consider the forbidden region (xi,yi) such that the hypothesis holds for all forbidden re-
gions associated with request-times after time=yi. From the algorithm for finding for-
bidden regions, there is a deadline d such that one of the mini scheduling blocks that
must be executed in the interval [yi,d] must start running by time=xi+q in order not to
violate any of the forbidden regions in the interval [yi,d]. But any mini scheduling
block starting in the forbidden regibn (xpy;) will not finish until after time=x;+q, so no
mini scheduling blocks with request-timesZyi can be executed before time=xi+q, and
the induction step holds.

If a feasible schedule exists for the interval [0,L], there must be one whose com-
pletion time (i.e., the time at which the last mini scheduling block in it finishes) is the
earliest. If fhere is any processor idle time in this schedule, then it must be the case ei-
ther (i) the idle time lies in.a forbidden region or (ii) all the processes are either not
ready or are waiting to rendezvous with some not yet ready process. Othqn:vise. the
next mini scheduling block in the schedule can be started earlier, and we can repeat
the argument to postpone the. idle time to after the last mini scheduling block and ob-
tain another feasible schedule with a shorter completion time, a contradiction. We can
now apply the "time slice swapping” technique (with q as the size of a time slice) to
transform any feasible schedule with the shortest completion time to one that is pro-
duced by the kernelized monitor scheduler. Again, no precedence constraints will be
violated by swapping since the deadlines have been revised so that mini scheduling.
blocks with earlier deadlines cannot be preceded by ones with later deadlines. Further-

more, the resulting schedule will have idle time if and only if the kernelized monitor




scheduler also idles the processor. QED

Corolla.ry

If a feasible schedule exists for the interval [0L], then the kernelized monitor
scheduler always generates one with the earliest completion time. Furthermore, none of
the start-times in this schedule can be pushed to an earlier time without causing a

failure.

Proof:

Any idle time before the start-time of a mini scheduling block in the schedule gen-
erated by the above algorithm must be either (i) inside a forbidden region or (ii) when
l‘ every process is either not ready or is waiting for a rendezvous. In both cases, the

rhini scheduling block cannot be started any earlier.

Re;in\ark

I\f the .kernelized monitor scheduling algorithm generates a feasible schedule for
[O,L], thgn a run-time scheciuler which repeats this schedule at run time is guaranteed
not to m\l any deadline. It is actually unnecessary to simulate the kernelized monitof
algorithm for the interval [0,L] since if the algorithm for computing forbidden regioné
does not declare failure, then we can show that the kernelized monitor schedulér must
succeed at all times. To seé'this, assume the contrary and let S be the first' mini
scheduling block to miss its deadline, dS and let s be its request-time. Notice that the
kernelized monitgr schedulgr guarantees us that all the mini scheduling blocks that
have been allocated processing time in the interval [rs,dS] must have deadlines no
later than dg. If lhgre is nc idle time in the interval [rs,dS], then the forbidden region |

algorithm would have failed in trying to fit the mini scﬁeduling block S and all the other

mini scheduling blocks i [rs,dS]. On the other hand, the kernelized monitor scheduler




guarantees us that the only processor idle time in the interval [rs,dS] must lie inside a
forbidden region since the process which contains the mini scheduling block S is ready
and cannot be waiting for a rendezvous after time=rs. Again, the algorithm for con-
structing forbidden region would have declared faiiure in computing the forbidden re-

gion associated with the request-time g

The kernelized monitor model imposes two restrictions ori the scheduler. Firs‘t...‘it
disallows. preemption of critical sections by ordinary scheduling blocks. Second, the
scheduler cannot take advantage of the semantic difference between different crliti.c.:'al
sections since they are not permitted to preempt one another. Both restrictioné are
tolerable if all critical sections are relatively short. This seems to be a plaﬁsible as-
sumption since in practice, an operating system usually assigns a process a minimurﬁ
quantum of computation time in order to keep process switching overheads within réa;
sonable bounds. As long as the critical sections are short relative to the minimu‘m

quantum, the scheduler can execute only an integral number of scheduling blocks

within a quantum without incurring unacceptable waste.



2.4 Implications on the Design of Real-Time Languages

The term "real-time languages"” has been used loosely to denote a class of high-
level languages which are designed to support real-time applicationsT There is, howev-
er, little consensus on what qualifies as a real-time language. Some of the language
features that are often cited in relation to real-time applications are:
(1) Parallel processing capability — : . T
(2) Access to a timer
(3) Direct interface with 170 devices . : : P
(4) Fast execution o : S

The last feature is primarily ah implementation issue although it may be argued
that the selection of language primitives, especially facilities for concurrency control
can have significant influence on implementation efficiency. Direct access to a timer
and 1/0 devices are important for control applications, but they can usually be imple-
mented with an appropriate function package and therefore do not require conceptual
innovations"to conventional sequential languages. The capability to coordinate parallel
activities indeed raises many interesting issues, and many language constructs have
been proposed for concurrency control, e.g., Dijkstra’s semaphore, Hoare's monitor,
Hansen’s distributed process, the rendezvous concept in Ada, etc. While the later pro-
posals are 'generally "cleaner", comparison among them often tends to be ad hoc.
Having examined the process scheduling procblem in some detail, we are in a position
to shed some light on the subject by examining the implications of real-time scheduling

requirements on the design of process-based real-time languages.

2.4.1 Incorporation of Performance Objectives into a Real-Time Language

Since the basic unit for scheduling computation is the process, compliance with

Vin military jargon, they are also known as embedded systems.



the stringent timing constraints required by an application must be achieved by proper
scheduling of processes. An obvious approach is to augment high-level languages with
a set of constructs, e.g., delay <time>, start <{process> at <time>, so that processes can
be exblicitly scheduled. Unless every process runs on a dedicated processor, these ex-
plicit scheduling commands cannot always be used to guarantee that a process will be
started on time. For example, if a process is delayed to a time at which ancther pro-
cess is scheduled to run and there is only one processor, then the resource conflict is
usually resolved according to some priority assignment so that except maybe for the
process with the highest priority, explicit scheduling commands can guarantee only
minimum but not maximum bounds on response times. Thus explicit scheduling com-
mands are convenient for building soft but not necessarily hard real-time systems.
More importantly, most explicit scheduling commands in current real-time languages are
too restrictive for specifying timing constraints since they usually leave little room for
resolving resource conflicts.

Concei'\'/ably, this problem can be solved by modifying these commands to take ad-
ditional arguments so as to allow for margins in their timing parameters. A more serious
pitfall with using ‘explicit scheduling commands is that processés are scheduled wiih
respect to the "current” value of time which must be read from a timer, e.g., comput-
ing a start-time for a process to be used as an argument in a start command. In a mul-
tiprocessing environment, a process may be interrupted for an indefinite amount of time
immediately after it reads the timer, thus invalidating the timer value. For this reason,
explicit scheduling commands must be executed without preemption so that oniy up-
to-date time values are used. Unlass time-valued arguments are restricted fo be simple -
expressions, explicit scheduling commands represent non-preemptible scheduling

blocks of arbitrary length, thus greatly increasing the complexity of the scheduling



problem as we have seen.

In general, a penalty in efficiency is incurred if a programming language permits 6r
even requires individual processes to allocate system resources with an authority that is
normally delegated to the operating system. This is so because scheduling decisions
are best made with global information about system demand. The efficiency problem in
both carrying out the scheduling function and the resulting allocation of resources sug-
gests that | | |
the function of scheduling constructs should not be as much to directly alloéaté coh‘.nz-'
putational resources as to implement a protocol between the system scheduler and tI:re.
user processes requesting for resources.

The assignment of static priorities to processes can be viewed as an example of
such a protocol which is: widely used in practice. This protocol is not the most efficie:.'n}
since it offers only limited control over response times. For example, consider the prob-
lem of scheduling a set of periodic processes whose deadlines are the same as their
periods. Wt;'en there are no restrictions on the selection of. processes for preemption, it
has been shown [LIU & LAY 73] that there are sets of processes with a processor utili-

Jt

zation factor ~0.7 for which no static priority assignment can ’meet the timing con-
straints, whereas full processor utilization is aiways achievable by using the simple ear)-
liest deadline scheduling algjorithm.

In practiée, the assignment of priorities is coften based on the relative importance
of the computation performed by a process, timing constraint specifications being only
secondary considerations. For example, periodic processes that are essential to the
continuous operation of a system are often assigned high priorities regardless of their
specified repetition rates. This precautionéry approach is appropriate for soft real-time

systems where there need not be any absolute guarantee on response times; in such

cases, a conservative scheduling policy is in order. The penalty is that the processor



may not be fast enough to also meet the timing specifications of less essential
processes which are assigned lower priorities even if all the timing specifications can in
fact be met by an appropriate assignment of priorities. The ability to design truly hard
real-time systems offers a more effective alternaiive since essential processes are not
unnecessarily given higher priority at the expense of less essential ones. In fact, hard
real-time systems are made more robust since by design, monopolizing system
resources should be deliberately forbidden. To support this assertion, we must also
deal with the contingency when the actual workload exceeds the specifications; the
robustness aspects of hard real-time systems against unfaithful usage specifications will
be discussed later. We shall only nbte that

the use‘o! static priorities as a protocol for resource allocation should be considered
primarily for robustness rather than efficiency reasons.

Given that the process is the atomic unit for scheduling, a straightforward protocol
for allocating computing resources is to add scheduling attributes (e.g., deadline,
period) to 5 process. (Static process priorities could be used to resolve conflicts when
there is insufficient computing resources to meet all of the timing constraint
specifications.) In practice, however, the specification of timing constraints is usually
complicated by the need for processes to communicate with one another. In the next
section, we shall discuss some implications of timing constraint requirements on the

use of concurrency control mechanisms.

2.{!.2 Choice of Concurrency Control Mechanisms

Concurrency control mechanisms have traditionally been designed to meet two im-
portant needs: synchronization between processes and the enforcement of mutual ex-
clusion constraints. It is well known that both types of interprocess coordination can be

implemented by the use of semaphores or simple message passing constructs (i.e.,



send, receive). These constructs have been considered to be too unstructured by re-
cent designers of real-time languages and a number of alternative concurrency control
mechanisms have been proposed. It is difficult, however, to make an objective evalua-
tion of the different proposals, since many of the pros and cons for one construct or
another is often based on conflicting language design principles. In the following, we
shall first review some of these principles and then attempt to evaluate their applicabili-

ty in the context of the hard real-time environment.

» Localization of control information:

i

Programs tend to be difficult to maintain if the contro! information associated with
a single type of interprocess coordination is allowed to be scattered over different
places in a program. This is especially true with the use of semaphores or simpie mes':
sage passing constructs for which aaditional programming rules must be observed sc;
as not to subvert the intended use of a construct, e.g.,, a process may inadvertently
exit out of.a critical section after tripping an exception handler before the proper exit
protocol has been performéd. It has been suggested that the maintainability of a pro-
gram can be improved by keeping control information (both code and data) close tol-

gether.

» Minimality in language constructsi

While it is conceivable to achieve concurrency control by defining a language con-
struct for every major type of interprocess coordination, 2.g., the monitor construct for
enforcing mutual exclusion,” the size of the resulting language may be too unwieidy as
to be practical. The opposite view is to strive for simplicity by minirhizing the number of -
distinct control structures that are built into a language. For example, the designers of
Ada have sought to unify mutual exclusion and synchronization between processes by

providing a single interprocess communication facility (the rendezvous construct of
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Ada) which can be used for both purposes.

P Implementation efficiency:

Informally, the run-time efficiency of a concurrency control mechanism can be
measured by the run-time overhead it incurs in realizing interprocess coordination (i.e.,
by the difference in length between the actual schedule which takes into acco;mt thé
execution time of the concurrency control mechanism and the shortest ideal schedule
which miraculously meets all the concurrency constraints without any concurrency con ;
trol mechanism at all.) There are two important reasons why the run-time effncnency o a
concurrency control mechanism may not approach the ideal. First, a mechanism may
be too restrictive as to exclude some schedules which would otherwise be aéceptable.
i.e., the semantics of the mechanism may not permit the maximal amount of parallelism.
Second, the inherent cost of the coordination mechanism may be unacceptably high,
either in the amount of interprocess communication or the amount of compile-time>
analysis negdéd to optimize the translation of the concurrency control mechanism into.
executable code. For example, it has been reported [ROB et al 81] that a straightfor-
ward implementation of the rendezvous mechanism in Ada incurs, even for thé sirﬁplé
operation of transferring one byte of data from a sender task to a receiver task, sub-'
stantial context switching overhead (between the run-time system scheduler and the
sender and receiver) whereas an alternative solution using semaphores requires essen;
tially no context switching at all (provided that no acknowledgement signal is require&
from the receiving task.). The problem of optimally implementing the rendezvous.
mechanism by means of semaphores is, however, non-trivial in general.

it should be obvious that the above design principles are not necessarily compati-
ble with one another. Whereas locaiizing control information and keeping control con-

gtructs to a minimal are generally considered a plus to the programmer, they often in-



cur an efficiency penalty which may not be negligible for real-time applications. These
conflicts have been alluded to in the previous chapter as manifestations of the
maintainability/efficiency dichotomy whose resolution ultimatély depends on the degree
to which we can automate ihe process of generating efficient software. It follows that

a more objective criterion for evaluating a concurrency control mechanism is by its im-
pact on software automation; in this case, how does it impede or facilitate the con-
struction of scheduling tools to satisfy stringent timing constraints.

By this criterion, we have concrete evidence that the undisciplined use of sema-
phores is undesirable; the related scheduling problem quickly becomes NP-hard. Anoth-
er lesson from our study of scheduling problemé is that there is substantial benefit in
making the enforcement of interprocess' synchronization and mutual exclusion syntacti-
cally distinct since this piece of information is crucial to the solution of the related
scheduling problems; and there may not be any easy way to deduce whether a control
construct is being used to enforce a synchronization or a mutual exclusion constraint.
it should bé mentioned that the syntactic distinction need not be built into the pro'-
gramming language and a purist who feels strongly about minimizing the number of
language constructs may prefer to annotate each instance of a control construct in-
stead. However, stylized annotations of code in effect introduce subclasses of control

constructs and this extra information must be supplied to the code generator.

2.4.3 Scheduling of Indeterministic Constructs

‘ Another design issue which is closely related to the choice of concurrency control
mechanisms and the incorporation of performance objectives and which is not very well
understood is the scheduling of indeterministic constructs. Other than process
scheduling, a system scheduler is also needed to make a choice among alternativé

paths of execution when thé real-time language has indeterministic constructs, e.qg., the




select statement in Ada. There is, however, little concensus on how the scheduler
should behave other than that it ought to be in some sense "fair" (for which the com-
mon interpretation is round-robin scheduling.) This approach is problematical since a
straightforward implementation of a "fair" scheduler may not guarantee that the com- |
putation will make progress.

For example, consider two variables x, y which are guarded by individual sema-
phores and are both updated by two processes T1, T2 with the provision that they
must be kept mutually consistent (i.e., if x is updated by T1 before T2. then y must
also be upiated by T, before T2 and vice versa.) In order to avoid a deadlock, the
order in which x and y are accessed may be arbitrarily fixed, (say x before y) by ad-
ministrative decree. However, this solution is deemed unacceptable since it puts an in-
tolerable constraint on how future programs can be written. As a compromise, the ord-
er in which x and y are accessed at run-time is left to be decided by the execution of
an indeterministic construct in both T, and T,, and both processes release the sema-
phores thai' they are holding whenever they are blocked hy the other one. It is easy to
see that both processes may never make any progress if the execution of the indeter-
ministic construct. which updates the variables follows the round-robin discipline in both
processes (e.g., T1 may access x first and T2 may access Yy first and so on.) The par-
ticular problem encountered here étems from the fact that fairness is a global property
and may not be achieved by schedulers which are only locally fair. While the above ad-
mittedly academic problem can be solved by randomizing the scheduler, it serves to il-
lustrate the problems of spécifying the semantics of the scheduler in general.

The stringent timing constraints of the hard real-time environment suggest an ap--
proach for resolving the above issue. The key observation is that indeterministic con-
structs need not be stochastic but are better regarded as providing a margin of free-

dom to the scheduler for achieving performance objectives. Instead of (over)specifying




the behavior of the scheduler, it is more profitable to devise language mechanisms with
which the scheduler can be manipulated to achieve desired performance obijectives. In
other words, the behavior of the scheduler should not be defined by the language but
by the application. In fact, there is no reason why the scheduler should be "fair" if a
particular set of performance objectives does not require some execution path to be
exercised at all. The default behavior of the scheduler may be decreed as part of the
specification of a real-time language, and for that 'purpose. the adoption of just about
any scheduling strategy, e.g., round-robin is defensible. The important point is for a
real-time language not to unnecessarily usurp the scheduling function but to provide
the programmer (or more importantly, software automation tools) with sufficient handle
for improving system performance.

For example, if the. indeterministic rendezvous in our version of the monitor con-
struct is restricted by the language to select a user process by random, then it will not
be possible to make the best use of available processing power by applying clever
scheduling algorithms.

We have already discussed the language mechanisms for incorporating perfor-
mance obijectives of hard real-time systems into programs. It is an interesting problem
to design an appropriate protocol between ihe system scheduler and user processes
for soft real-time applicatioris. For example, we might permit the programmer the option
of fine tuniné the system scheduler in terms of a policy function which selects an exe-
cution path when an indeterministic construct is encountered. The selection may be
made according to the current values of a set of scheduling parameters which are
modifiable by the policy function at appropriate moments in real time. The definition of
the policy function is of course dependent on the target performance objectives. This

is a potentially rich research topic but is, however, outside the scope of this thesis.




Chapter 3

Design via a Graph-Based Model

3.1 Graph-Based Model of Computation for the Hard Real-Time Environment

In adopting a process-based computation model for studying resource scheduling
problems, there is an implicit assumption that the computational requirements of an ap-
plication have been somehow translated into a set of processes with the appropriate
scheduling attributes. Owing to a semantic gap, this translation can be a serious
source of inefficiencies during system design and substantially complicates software
maintenance later on. As such, 'a'{ process-baséd model is less than desirable for
defining computational requirements in the hard real-time environment. However, thé
process ‘abstraction has been the basis of the computation model for the majority of
software designs, and prudence requires us to present concrete evidence in order to
justify an alternative.'r

To this' end, we shall examine three general strategies for decomposing the com-'
putational requirements of a. design problem into a set of concurrent processes. It will
be demonstrated that in the presence of stringent timing constraints, efficient decompo-
sition of the required computation into processes is inherently implementation depen-
dent, and that a set of processes resulting from a highly efficient decomposition is like-
ly to be unstructured and difficult for human programmers to maintain. The design ex-
ample will also illustrate the concept of latency scheduling for meeting asynchronous
timing constraints (i.e., computation performed in response to sporadic external events),

sometimes by exploiting the periodic computation required for satisfying periodic timing

T Whereas English-like languages have been used to describe system requirements, a
process-based model is almost invariably used for software design and resource alloca-
tion. From a practical point of view, learning a new language for software design is
usually a major undertaking that most people are justifiably reluctant to pursue.




constraints. We shall then introduce a graph-based computation model which is more
amenable to representing design requirements in the hard real-time environment. The
latency scheduling technique will be formalized in terms of the new model and the

computational problems of latency scheduling will be investigated.

3.2 Decomposition of Design Requirements: an Example

In this section, we are going to examine the systems issues that are involved in
decomposing the compﬁtation of a hard real-time system into processes by examining
the'relative merits of three different decomposition strategies. In a narrow sense, it can
be shown formally that there is no unique best decomposition since the most efficient
implementation depends on system parameters such as interprocess communication
costs. This observation is hardly surprising and is only one of the concerns.arising
from the semantic gap between the hard real-time environment and a process-based
language. The broader purpose of this discussion is to bring focus on the important
but less readily quantifiable systems issues, e.g., maintainability, implementation in-

dependence which we have.identiﬁed in the first chapter.

3.2.1 Statement'of Design Requirements

Figure 3.1 is the block diagram of an automatic control system which is the design
problem to be considered. This control system has three inputs %, y, z and a single
output u. There are five function blocks: fx. fy, fZ' fS and fK' The function block fS
has two outputs one of which is fed back via fK to itself so that u is a function of x',
y', ' and its own previous Value. The other output is to the external environment and
has the same value. For brevity, we use the same name, u to denote the two outputs.
The computation times of the five functions are assumed to be bounded and their max-

imum values are respectively Cy: Cy» €71 Cg and Cck:
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Example control system function block diagram

The design objectives of this system can be stated in terms of the computation re-
quired by two periodic and one asynchronous timing constraints as follows. The input
x is to be Qampled at the regular rate of 1/p, cycles per second. (Sampling rates are
determined by the dynamics of the physical process under control.) The output u must
be recomputed by executing the function fS with the new value of x' and recent values
of y', 2 and v (to be determined by their individual update rates). The internal state v
must then be updated by éxecuting fK with the new value of u. The input y is to be
sampled at a- rate of 1/py cycles per second and the variables u and v must be like-
wise recomputed. The input z is a boolean signal, i.e., z € {0,1}, and can change state
asynchronously. When a sfate transition occurs, the new value of z must be detected
and a new z' computed by executing fz- The output signal u must also be recomput-
ed by fS within d, time units. The input z is assumed to change state very infrequently
compared with p, and Py-

A physical interpretation of this block diagram is to regard 'X and fY as the




preprocessors of signals from two sensors measuring the physical quantities x and y
one of which changes much more slowly than the other, hence the different sampling
rates. The signal z can be regarded as the output from a toggle swiich and u is the
control signal to an actuator. The signal u is also used to compute an internal state to
be used in subsequent calculations, e.g., fK may be a state estimator in a compensa-
tor. 'S is used to determine the output from the inputs x and y and the internal state.
The variable z' may be a parameter which selects a different mapping for fS depending

on the operating regime selected by a human operator via the toggle switch z.

3.2.2 implementation Environment

The example system will be implemented by a set of concurrent processes running
on one or more processors with commnn access to a shared memory. For concrete-
ness, each process will be prngrammed in an Algol-type language augmented by the
rendezvous and monitor constructs of the previous chapter for concurrency control. A
library of programs will supply the code for the functions fx, fY' ’S' fK' fz. The signals
x', ¥, v, Z will be stored as global variables in the shared memory. The input signals x,
y, z are read from the exter_nal environment by fx, fY' fZ respectively.

it should be noted that a shared memory is not essential to a process-based
model since each global variable may be implemented by the private variable of a mon-
itor whose sole function is to éerialize access to the global variable, and in general, the
implementation environmerii = . inconsequential to the validity of our observations about
prqcess-based models. The crucial assumption is that the basic object to be scheduled
is the process.

All functions have a nominal (constant) execution time of 10 ms (milliseconds).
The nominal sampling periods of x and y are respectively, 80 and 160 ms, and u must'

be recomputed within 80 ms after z has changed state. A timer is accessible to all pro-



cessors and initiates pericdic interrupts as required by the periodic processes. When
an interrupt occurs, one or more processes are made ready to run, but are not neces-
sarily allocated processor time immediately so that the scheduler will not be unduly res-
tricted. Hence, a sporadic process does not have a priori priority over periodic
processes. For ease of reading, we give a summary description of the pertinent

language features.

3.2.3 Summary of Exa-mple Process-Based Real-Time Language
. A process is declaréd py:
process <{process_name>
activated by <signal_name> | timer
attribute <attribute_name> = <attribute _value>
<code body>
end {process_name>
A process may be either periodic or sporadic and may have a period and/or dead-
line attribute. Pr~riodic processes are activated by timer interrupts and a sporadic pro-
cess is actj_vated when a signal variable changes value in response to external inter-
rupts. The period of a spo}adic process is the minimum time between two successive
activations. (In practice, external interrupts may be queued to maintain a specified
minimum period and an overload condition may be declared if the queue overflows. For
this example, we need not worry about the period attsibute of a sporadic procesé since
the external signal z, e.g., a tbggle switch is assumed to change very infrequently com-
pared with ;he periodic signals.) The deadline attribute will be defined as default in
which case the system will set it to the smallest feasible value.
A process may communicatg (synchronize) with another process by executing:
rendezvous <{process-name)

A process in a rendezvous is suspended until the target process also executes the

corresponding rendezvous statement. To enforce mutual exclusion, a process may in-



voke a monitor by executing:

rendezvous <monitor_name>

A monitor is declared bv:

monitor {monitor_name>

{code body>

end <monitor_name>
A rendezvous with a monitor is completed by exe#uting the body of the monitor. In
general, monitors embody critical sections and may be implemented |n various ways,
e.g., by a process which is activated by any process attempting to rendezvous with it,
or by expansion of macros augmented with appropriate scheduling mechanisms.

For accounting simplicity, the computation time of a process will be the sum of

each function call to fX.' fy, fS' fK, fz plus the cost of executing rendezvous state-
ments. Initially, we shall ignore the overhead incurred by the operating system kernel

and the communication network and let ¢ (nominal cost of a rendezvous) be zero.

Sys
The effects” of these overheads will be considered when they are significant in deter-
mining the relative merits of decomposition strategies.

In the following, we shall describe three decomposition stratégies which represent
extreme approaches spanning the design spéce. The results of applying different stra-

tegies to the design problem will then be compared.

3.2.4 Decomposition by Timing Constraints

In this strategy.‘ a process is created to perform the computation required by each
and every specified timing constraint. A process is usually made up of a sequence of
function calls representing the operations (signal processing steps) on the data path
betweer: input and output devices, but a process may also be created to update a vari-

able which holds some internal state information of the physical plant under control.
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Since a function may be called in more than one process, some of the arguments may
not be variables local to the process. To preserve data integrity, a monitor is created to
enforce mutual exclusion on the execution of every function called by two or more
processes. The scheduling attributes of a process are set according to the associated
timing constraint in the obvious way. The following program implements a solution to

the design problem. : n



/* COMMENT )
This program uses a process for each timing constraint. The name of each
process is denoted in capital letters by the names of the functions called
by the process. The processes XSK, YSK are for meeting the two periodic
timing constraints. The asynchronous timing constraint is met by the
sporadic process ZS which is invoked when a change in the sensor input
(read into the variable z) is detected '

v/

process XSK
activated by timer;
attribute period =80, deadline =80;

X := sensor-x();
x = fx(x);
rendezvous S;
rendezvous K;
end XSK

process YSK
activated by timer;
attribute period = 160, deadline = 160;

y := sensor_y();
y = fyly)
rendezvous S;
rendezvous K;
end YSK

process ZS
activaicd by z;
attribute deadline =80, pericu = default”

z := sensor-z();
y A fz(z);
rendezvous S;
end ZS

monitor S

u:= fgx'y'.z'v);
end S
monitor K

vi= Ry z'w);
end K



The nominal timing constraints have been specified so that the above program will
work on a single processor with any process scheduling discipline which does not idle
the processor when there is one or more ready processes. The timing diagram (com-
monly known as a Gantt chart) in figure 3.2 shows an example execution sequence of

the function calls.

(XS KYSKZSXSK | XS KYS K\

40 80 120 160 200 7 time
Figure 3.2

Gantt chart for decomposition by timing constraint

This is perhaps the.most straightforward way to decompose the computation and
the resulting design is very easy to understand. Insofar as maintainability can be
quantified, this decomposition strategy should yield a highly maintainable design solu-
tion. However, the gain in maintainability may be offset by a loss in efficiency owing to
the unneces:'sary duplication of some computation in two or more processes with com-
patible timing constraints. In the above program, the functions fS and fi are executed
in both XSK and YSK while in'fact. it suffices to execute these functions only once
after both x' and y' have been updated. With ‘this saving, it is possible to sample x and
y at the tighter speciﬁcationé of 60 and 120 ms respectively. The Gantt chart in figure

3.3 shows the required execution sequen"ce.

XYSK ~XSK XYSKZSXSK
0 60 120 180 7 time
Figure 3.3

Gantt chart for example of eliminating redundant function calls



it should be emphasized that it is not always possible or desirable to eliminate the
unnecessary duplication of computation. In particular, the saving noted above will not
be as easy to achieve if Py and py are relatively prime and in general, decomposition
by timing constraints is conducive to designs which are stable against changes in
parameter values. However, the loss in efficiency may be significant since it incurs not
only extra processor time but also communication costs for enforcing mutual exclusion.
This efficiency issue may be alleviated by a variety of decomposition strategies which

may be viewed as tradeoffs between two diametrically opposite approaches.

3.2.5 Decomposition by Minimizing Interprocess Communication

Whereas the previous approach assigns the computation require. . by one timing
constraint to one process, the objective. of this decomposition strategy is to minimize
interprocess communication by clustering as many timing constraints as possible into
each process. This is done by partitioning the computation required by the timing con-
straints into sets such that () only compatible timing constraints are assigned to the
same set (Two periodic timing constraints are compatible iff they have the same period
or one period divides the otl;er), and (ii) two compatible timing constraints are assigned
to the same set if some of the operations (function calls) required by them are the
same. The computation in each set is assigned to a periodic process whose period at-
tribute is set to the highest cbmmon factor of the periods in the set. Each asynchro-
nous timing constraint is assigned to a sporadic process as before. (In faét, we may
wapt to satisfy an asynchronous timing constraint by means of an "equivaleat" periodic
process and do away with sporadic processes altogether.) Under this decomposition
strategy, the design solution now requires two instead of three processes.

/* COMMENT

The process XYSK replaces the two processes XSK, YSK in the previous
solution. Since YSK needs to be executed only every 160 ms, a boolean



procedure skip_Y is used every 80 ms to determine if fY need to be
executed. (This procedure may be implemented by using the real-time clock
or simply by toggling a static bociean variable.) The sporadic process
ZS associated with the signal z and the monitor S are the same as before.
*/
process XYSK

activated by timer,
attribute period =80, deadline =80;

1= sensor.x();

"= fylx)

if skip-Y() =FALSE then {y := sensor_y(); ¥’ := fY(y); }
rendezvous S;

V= fK(u);

end XYSK

In this solution, 'fS and fK are executed only once every 80 ms instead of three
times every 160 ms. With this improvement, we can in fact sample x and y at respec-
tively 60 and 120 ms and guarantee to meet a 60 ms deadline for responding to a
change in the signal z. These tighter parameters are impossible to meet with the previ-

ous decomposition strategy. Figure 3.4a shows an execution sequence of this program.
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XYSKZS XS K |, XYS K N
40 80 120 160 200 7 time

Figure 3.4a
Example Gantt chart for decomposition by minimizing communication

XY YisKzZs XYYy s K XY V1S K
40 80 120 160 200 7 time
Figure 3.4b

Example Gantt chart for two-stage pipeline implementation
(Y takes 40 msec and exccutes in two stages)

Figure 3.4
Example of decomposition by minimizing communication and pipelining

In general, this decomposition strategy improves efficieny in two respects. First, it
may eliminate substantial redundant computation among compatible timing constraints.
Second, since there are fewer processes and the processes tend to be independent
(they have fewer common operations), less interprocess communication is required for
concurrency. control. Whereas in principle this approach can be pushed to the ex-
treme by clustering all the required computation into a single process, it defeats the
whole purpose of a process as a structural unit for software design. Efficiency im-
provement gained in this way must be paid for by an increase in design complexity
which in turn makes maintenance more difficult.

Because the nominal parameters of our design example are rather lax, process
XYSK is only slightly more complicated than the two processes it combines. Neverthe-
less, some scheduling decisions must now be programined inside a process (calling
skip-Y so as to execute fY only in alternate cycles). In general, the control logic which
implements these internal scheduling decisions is likely to be sensitive to system
parameters and can be quite ad hoc when resource allccation is highly optimized. For

example, if the function fY is replaced by a new version which requires 40 ms instead




of 10 ms computation time (field trials suggest that the value y' must be computed with
double precisiont), then the above program for XYSK will not work. For in the worst
case, there is only 80 ms to execute both XYSK which now requires a maximum of 70
ms, and ZS which requires 20 ms. However, if the computation in fY is split into two
stages of 20 ms each, the;l we can compute one stage of fy, in each 80 ms and there-
by meet all the timing constraints. The modified program for the process XYSK IJs

shown below. An example execution sequence is shown in figure 3.4b.




/* COMMENT .
This is a modification of the previously shown version of a periodic
process for meeting the two timing constraints for x and vy.
The computation y':=fY(y) is performed in stages by two assignments:
(1) temp::fY1 (y) to be executed in the first half of a 160 ms cycle
(2) y‘:=fY2(temp) to be executed in the second half of the cycle

*/

process XYSK

activated by timer,
attribute period =80, deadline =80;

1= sensor-x();
= fy(x)

if skip_Y() =FALSE then {y := sensor_y(); temp := fY1(y); }
elsey:= fY2(temp);

rendezvous S;
Vi= fK(u);

end XYSK

By implementing fY as a two-stage pipeline, two successive samples of x are pro-
cessed in 1§0 ms while the same sample of y is processed in both halves of a 160 ms
cycle. We would like to draW attention to the fact that it is impossible for any process
scheduler to automatically simulate this "pipelining” technique with the previous ver-
sion of XYSK since at most one sample of x can be processed in each activation of
XYSK and a process can have only one thread of control at a timgl |

As might be expected, tﬁé nptimized design is more difficult to understand since
there is no logical necessity for explicitly splitting a function into stages. Modifications
are harder to make since a local change in parameter value may bring about substan-
tial reorganization in the control logic elsewhere, e.g., if fz requires 35 instead of 10
ms to execute while all other parameters retain their nominal values, then it is still
necessary to pipeline fY into two stages of 5 ms each. in general, optimization meas-

ures which minimize interprocess communication can easily create maintenance night-




mares for human programmers. However, when interprocess communication costs are
high and if "spaghetti control logic" is tolerable, then this decomposition strategy may

be preferable.

3.2.6 Decomposition by Maximizing Concurrent Processes

The objective of this decomposition strategy is to partition the required cox-nputa-
tion into as many processes as possible so as to maximize parallelism. The decombcl
sition procedure is best explained in terms of the data flow gréph of the given proble;n‘
such as the function block diagram of figure 3.1. Specifically, a periodic process‘ i;
created for each node in the data flow graph. We stress the distinction betweén.é
node which represents an opé;’ation on some data flow path and the function ‘which is
called to process the data passing through the node. Thus it is possible for two o;
more processes to call the same function in which case a monitor is needed to enforce
mutual exclusion. In general, a node may be involved in the computation required by
one or more periodic timing constraints, and the process assigned to the node is giveﬁ
a period attribute equal to the highest common factor of the periods of the relevant
timing constraints. Each asynchronous timing constraint is assigned a sporadic procesé
which contains the appropriate function calls. (Again, there is the possibility of satisfy-
ing all the asynchronous timing constraints by means of "enuivalent" periodic
processes, in-which case no process wi_ll need to call more than one function.) '

When a periodic process is activated, it must synchronize with an appropriate sei
of processes which preced_e it, call the function to perform the operation associated
with it, and then synchronize with the set of processes which it precedes. Intuitively,
the predecessors of a process P at time t correspond to the operations before P re-

quired by some timing constraint whose period divides t. (The definition of a predeces-

sor relation will be made clear in our graph-based computation model later.) Under this




scomposition strategy, the design solution now has five processes. The following pro-
gram shows the four periodic processes. The sporadic process for z and the monitor S

are the same as before.

/* COMMENT
This program uses a process for each node in the data flow graph of the
design problem (figure 3.1). The period attribute of a process is set to
the highest common factor of the periods of the periodic timing constraints
that require the execution of the corresponding operation.

*/

process X

activated by timer;

attribute period =80, deadline =80;

x := sensor-x();
X' = fy(x);
rendezvous S;
end X

process Y
activated by timer;
attribute period = 160, deadline = 160;

y := sensor_y(); -
y = fyi

rendezvous S;.

end Y

process XYS
activated by timer;
attribute period = 80, deadline =80;

rendezvous X;

if skip_Y() = FALSE then rendezvous Y;
rendezvous S

end XYS

process K
activated by timer;
attribute period =80, deadline =80;

rendezvous S;
v:= f.(u)
end KK



Since the nominal parameters have been set so that computation time predom-
inates the costs for communication and concurrency control (e.g., the nominal cost of
a rendezvous, csys is 0), a wider range of timing constraints can be enforced when
each 'process is run on a separate processor. The timing diagram of Figure 3.5 shows
an example execution sequence with five processors such that the input signals x and
y are sampled at respestively 30 and 60 ms, and the deadline for responding to a

change in z can be as tight as 30 ms.

-
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5 bl e, time
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Figure 3.5

Example Gantt chait for decomposition by maximizing concurrent processes

By assigning a separate process to each function block, this decomposition stra-
tegy maximizes the computation that can be performed in parallel. Redundant computa-
tion is reduced since timing constraints that require the same operation to be per-
formed in compatible time intervals are recognized in the construction of the synchroni-
zation code for each periodic process. If as many processors are available as there are
processes and computation time indeed dominates Csys'
tegy will generally tolerate a wider range of timing constraints than the others. Like the

previous strategy, however, there is also a price to be paid in the increased complexity

of the design solution.

then this decomposition stra- -



3.2.7 Comparison of Decomposition Strategies

The semantic gap between a process-based computation model and the hard real-
time environment is best illustrated by a comparison of the three decomposition stra-
tegies presented above. If feasibility is the only concern, then decomposition by timing
constraints would be the least preferable. In general, a feasible solution will depend on
the tradeoff between computation and communication costs. When interprocess com-
munication costs are relatively low, decomposition by maximizing concurrent processes
is more likely to succeed, e.g., the tightest timing constraints for the design example
are achieved by this approach. This will not be the case when interprocess communi-
cation costs become significant.

As an illustration, let each rendezvous statement add an overhead of 10 ms (which
is the nominal computat;on time of a function call) to the computation time of either

participating process. Specifically, c., =10 ms if the participating processes reside on

Sys

separate processors and Cgys=5 ms if they are on the same processor. If the five

yS
processes fésulting from the last decomposition strategy are run on separate proces-
sors, it is easy to check that Py and py cannot be simultaneously shorter than 60, 120
ms respectively while at these sampling rates, dz cannot exceed 50 ms. On the other
hand, if we use two processors to implemeﬁt the decomposition by minimizing com-
munication strategy, then p*, py can be held to 50 and 100 ms respectively without ad-
versely affecﬁng dz. More surprisingly, we need only one processor to achieve the
same periodic sampling rates if a longer dz (70 ms) can be tolerated. Specifically, the
the compuiation required Gy all the timing constraints can be clustered into a single
periodic process as follows.
/* COMMENT A
The process XYZSK replaces the two processes XYSK, ZS in a previous

solution. Since ZS needs to be executed only when z changes value,
a boolean procedure skip-Z is used to determine if fz need to be



executed. (This procedure may be implemented by comparing the new
reading from the sensor for z with its previous value which is kept in
a static variable.)

*/

process XYZSK

activated by timer;
attribute period =50, deadline =50;

x := sensor-x(); C o
x —

"= fx(x); |
if skip_Y() =FALSE then { y := sensor.y(); ¥’ := fY(y); }
if skip-Z() =FALSE then { z := sensor_z(); z’ := f-/(2); }

u:= fs(x',y',z',\));
vi= fi(u);
end XYSK : ‘ _ o
The technique employed ébove is an example of latency scheduling which will bé
formalized and studied later. In general, it works by (more or less) periodically perform-
ing the computation required by asynchronous timing constraints while taking advan-
tage of the computation that is already required by the periodic timing constraints. For
now, it suffices to note that .the strategy of minimizing interprocess communication méy
be pushed to the extreme by clustering all the computation in a single periodic pro-
cess. When interprocess communication overhead is predominant, there may be only
one process in a feasible deéomposition whereas many processes may be needed in
the case where it is crucial to maximize concurrent processes. In between the two ex-
trerpes lie a wide range of alternatives.
Aside from efficiency, an important criterion for comparing decomposition strategies
is the maintainability of the resultant design. Intuition suggests that decomposition by
timing constraints should rank highest among the three. But unfortunately, there is;

currently no concensus on how maintainability should be defined and hence, the validi-



ty of our evaluation is necessarily a matter of judgement. However, we believe that a
reasonable measure of maintainability is the stability of a design against changes in the
problem specification. Specifically, let us consider the minimum adjustments that must
be made when (a) a period or deadline assumes a different value; (b) a new timing
constraint is added or an old one is deleted.

If the decomposition is along timing constraints, then (a) will simply require a
scheduling attribute to be updated and (b) will require the creation of a new process
or the deletion of an old one. Both adjustments are straightforward and involve only
one process. If the decomposition has been to minimize interprocess communication,
then both (a) and (b) may require updating a scheduling attribute and/or modifying the
control logic in one process; (b) may also require creating or deleting a process. The
adjustments involve only one process but may now require the maintainer to modify
some "spaghetti control logic". If the decomposition has been to maximize concurrent
processes, then both (a) and (b) may require substantial modifications to the schedul-
ing attribute:S and control logic of a number of processes.

Although decompositjon by timing constraints seerﬁs to require the least adjust-
ment in responsé to specification changes, it shou!d be said that maintainability and
efficiency are not entirely separate issues. If a change in the specifications -causes
some deadline to be missed after the straightforward design adjustments have been
made, then either faster hardware must be bought or a different decomposition strategy
must be pursued. This type of major overhaul is less likely with a more efficient decom-

position strategy.

3.2.8 Implications of The Semantic Gap on Software Automation
In order to automate the design and maintenance of software to run in the hard

real-time environment, we need a computation model with which to express the compu-



tational requirements of a syster- lIdeally, appropriate software tools can then be built
to translate an instance of the model all the way to executable code. In the traditional
approach, a process-based model is almost invariably chosen. Unfortunately, metho-
dologies which use a process-based model to define design requirements are neces-
sarily limited in their usefulness inasmuch as the first precise problem representation
that an automation tool can work on is a set of processes. : o

As the above discussion suggests, the semar;atic gap between a process-based
model and the hard real-time environment has serious implications with regard to the
systems issues raised in an earlier chapter. To wit: (1) The maintainability/efficiency di-
chotomy has been amply demonstrated. (2) System integrability suffers since a process
is essentially an abstraction of the traditional von Neumann computer architecture and
mzay be difficult to map Airectly into other types of machine architecture, e.g., VLSI sys-
tolic arrays. A uniform way is Iac_:king for determining the feasibility of a set of
processes to be implemented on a combination of current computers and other types
of computir;'g resources. (3) Implementation independence is limited by the natural bias
for implementing processes on the traditional architecture because of the obvious
efficiency advantages.

We contend that these are sufficiently étrong reasons for finding an alternative
madel of computation which is semantically closer to the hard real-time environment. It
ought to be'admitted, however, that the validity of our contention is necessarily a

matter of judgement in the absence of more discriminating metrics.



3.3 Definition of a Graph-Based Computation Model

Tt - purpose of the computation model underlying a design methodology for hard
real-time systems is to provide an abstract representation of a design problem with
sufficient precision to allow the specification of stringent performance requirements so
that automation tools can be built for resource allocation and feasibility analysis. As
such, the model should be as close as possible to the problem representation familiar
to control system designers. To this end, we udopt a graph based model which is in-
tended to capture the data flow and computational requirements that control engineers
often describe via a block diagram,

Our model is 2 tuple (G,T) whére G is a communication graph describing the data
dependency among the operations (functional elements) of the system, and T is a set
of timing constraints. Specifically, G = (V,E,WV) is a digraph (which may contain cy-
cles) where V and E are respectively the set of nodes and edges, and WV is a function
which assigns a non-negative integer weight to each node in V. The nodes denote
functional elements which take their inputs from the incoming edges and produce out-
puts on the outgoing edges. Edges denote data paths connecting functional elements
and two nodes may be connected by more than one edge. The weight of a node is the
computation time of the corresponding functional element. Edges may be labelled by
the names bf the variables whose values are transmitted along the corresponding
edges. To simplify drawing, some edges in a communication graph may not have an
originating or destination node in which case the omitted node is understood to denote
the external environment.

T is the union of two finite sets of timing constraints: Tp (periodic timing con-
straints) and Ta (asynchronous timing constraints). Each timing constraint is a tuple.
(C,p,d) where p, d are respecti :ly the period and deadline which aie non-negative in-

tegers and C (the timing constraint graph) is an acyclic graph compatible with the



communication graph G. We say that the graph C is compatible. with the graph G if
there is a mapping h such that: (1) If v is a node in C, then h(v) €V; and (2) lf e is
an edge from a node u to another node v in C, then h(e) is an edge from h(u} to h(v)
in E. A timing constraint graph C is meant to define the precedence relation of the
computational events that must occur to satisfy a timing constraint. A node in the tim-
ing constraint graph C denotes an operation (an execution of the corresponding func-
tional element in the communication graph). An edge in the graph C denotes the
transmission of some output value from one functional element to another. We do not
rule out multiple instances of the same node or edge of the graph G in the graph C so
as to allow for limited iteration. The computation time W of the ith timing constraint Ti
is the sum of the weights of the nodes in the timing constraint graph C. If the timing
constraint is periodic, i.e., (C,p,d) € Tp, then it is activated every p time units, starting
from time=0. If it is asynchronous, i.e., (C,p,d) € Ta, then it can be activated at any
time t for any non-negative integer t with the provision that two successive activations
must be at least p time units apart.

A timing constraint graph C is said to be executed in a time interval | if a subset
of the (multi)set 6f operations that have been executed in | forms a partial order such
that: (1) There is a bijective mapping between the operations in the partial order and
C. (2) Under this mapping, the partial order is consistent with C. (3) In the case the
operations are distributed, an execution of C must also include the transmissions of
data that are denoted by the edges of C. More precisely, if the graph C contains an
edge from the node u to' the node v, then an execution of C must include the
transmission of the last output o1 u to v before the output of v can be computed. -
When a timing constraint is activated at time t, the corresponding timing constraint
graph must be executed once in [t, t+d].

Intuitively, the set T defines all the computation that the system is required to per-



form in real time. The purpose of the comnatibility condition is to make explicit any
communication that may be required for synchronization purposes. (Another way to in-
terprete compatibility is that one operation need to precede another only if the output
of the former is an input to the latter.) We also allow the same operation to appear
more than once in a timing constraint graph so as not to rule out bounded iteration.

(As an option, a timing corstraint C may also have an non-negatrive integer
release time attribute, r in wnici: case there must Abe an execution of C in [t+rt+4d]
whenever the timing constraint is activated at time t. In general, the addition of a
release time atiribute will not affect the complexity of the related scheduling probiems
and we shall assume that r=0 to simplify our discussion.)

Asynchronous timing constraints are usually activated by the occurrence of an
external event or when :qome predicate on the state variables of the physical process
under control is satisfied. In either case, we assume that mechanisms exist for an ac-
tivation condition to be automatically detected, e.g., interrupt detection hardware.
However, if ‘an activation must be detected by explicitly evaluating a predicate, then the
computation involved must be included in the graph and the timing constraint activated
whenever the variables in the predicate change value. (For scheduling purposes, we
must assume that in the worst case, the predicate is satisfied every time it is evaluat-
ed.) Alternatively, the desigher may specify a periodic timing constraint to evaluate the
predicate and to perform the required computation at a chosen rate.

In addition to the critical time parameters, there are other scheduling constraints
that must also be observed in performing real-time computation so that data integrity is
preserved. As a motivation for these data iniegrity constraints, we shall first illustrate
the use of the graph-based model by defining the computation requirements of the pre-

vious example design problem in figure 3.6
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Figure 3.6
Specification of Design Example in Graph-based Model
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Notice that the graphs for both periodic and asynchronous timing contraints con-
tain the edge (labelled z') from the operation fz to the operation fS but only the asyn-
chronous tirning constraint requires the operation fz. Suppose that the two operations
fz and fS are implemented on separate processors and that the input z changes value
when the last value of z' is being transmitted to fS as part of the execution of a
periodic timing constraint. In response to the asynchronous timing constraint for the
signal z, the function f; is executed and a new value of z' is also transmitted to fs. An
anomaly may occur if the new value of z' arrives at fS before the old one does siﬁl:e in
this case, the output of fS will be based on the old value of z after the function fS ‘is
exscuted for a second time and will remain so until the next execution of the periodic
timing constraint. In order to eliminate this kind of anomaly, we require real-time com-
putation to be pipeline-ordered.

(1) Two executions of the same functional element in G are pipeline-ordered if they
have distinct start-times and that the execution which has an earlier start-time must
also have an earlier finish-time than the other.

(2) Two data transmissions along an edge connecting the functional element u to the
functional eleﬁent v in G are pipeline-ordered if they are sent at distinct instants at
the site of u and that the earlier transmission must also be received earlier at the
iste of v.

When all executions of operations and data transmissions are pipeline-ordered, it
can be easily shown by induction that if the output of each operation is given an up-

ward counting version numbBer, then the input used in the execution of every ope}ation

must show only increasing versioin numbers. (We do not require the version number of -

an input used in an execution to be sxactly one bigger than that used in the previous

execution.)

The graph-based model is an attempt to abstract the computational events in real-
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time feedback' control problems, e.g., avionics systems, industrial processes. While we
do not claim universality for our model, we note that the usual state space formulation
familiar to control engineers can be naturally translated into our model. From a compu-
tational point of view, the graph-based model is also capable of simulating a restricted
version of the well known data flow model of computation. In fact, any data flow- sche-
ma which has only bounded iteration constructs (with fixed limits) can be simulated by
a single asynchronous timing constraint with approp.riate time parameters. (While simple
conditionals can be readily incorporated into our model, unbounded iteration is funda-

mentally inconsistent with real-time computation.)
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3.3.1 Scheduling Problems with the Graph-Based Computation Model

The graph-based computation mode! provides us with a language which does not
suffer from the semantic-gap problems confronting process-based models in defining
the computation requirements of hard real-time systems. An obvious strategy for auto-
mation is io design algorithms to decompose the computation defined by an instance
of the graph-based model into an appropriate set of processes which can be run on
the available processor(s). However, there are two limitations to the generality of this
approach. First, when there are multiple processors, a wide variety of mechanisms may
be used for interprocessor communication, e.g., shared bus, Banyan switch, multiport
memory. The optimality of a decombosition algoriihm necessarily depends on the pecu-
liarities of the interconnection devices so that the applicability of any one decomposi-
tion algorithm is limited. Sacond, some of the operations performed by a real-time sys-
tem may be best implemented by special hardware, e.g., systolic arrays for signal pro-
cessing. Thus an optimal decomposition algorithm must also be able to make efficient
use of spe;cial devices which may be awkward to model in terms of the process
abstraction.

The first limitation can be eased by finding a uniform characterization of communi-
cation resources for the hard real-time environment and will be dealt with in the next
chapter. It suffices to mention here that the decomposition problem is in general com-
putationally intractable (NP-hard). The second limitation is a more fundamental
difficulty with the process abstraction. In practice, the decomposition of the computa-
tion required by a real-time system may also be subject to artificial constraints which
stipulate that certain operations must be executed on the same processor. In any case,
a decomposition algorithm must be able to decide if the computation assigned to a
processor can indeed be scheduled. In this chapter, we shall examine the single pro-

cessor scheauling problem for the graph-based computation model, and in particular,
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the technique of /atency scheduling.

3.3.2 Design Constraints on the Run-Time Scheduler

Given a problem instance in terms of the graph-based model (G, T), our objective
is to design a run-time scheduler which will execute the operations in G in an ap-
propriate sequence so that the timing constraints in T are satisfied. In addition, the
run-time scheduler must also guarantee that the data integrity constraints are observe&.
The following theorem éuarantees that the computation performed on a single proces:

sor implementation will be pipeline-ordered by introducing two implementation assump-

tions.

Theorem 3.1
If the following two implementation assumptions are satisfied, then the computation
performed on a single processor will be pipeline-ordered.

(1) The outputs of a functional element u are stored in unique variables which are up-
dated as the last action. in an execution of u. The inputs of a functional element v
are parameters which are passed by value to v when v is executed.

(2) The run-time écheduler will permit only one execution of an operation to be in pro-
gress at any time (i.e., an operation is not permitted to preempt itself), but- we do

not preclude the preeemption of an operation by a different one.

Proof: follows directly from the definition of pipeline-orderedness.

We shall be primarily iqterested in exploiting the class of run-time schedulers that
can be simulated by a round-robin scheduler which makes scheduling decisions by re-
peating a precomputed (possibly very long) schedule. If all the timing constraints are
periodic, then this class of schedulers is as powerfui as any run-time scheduler. The

techniques developed for the process-based models can be used to help solve the
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scheduling problem. For dealing with asynchronous constraints, some advantages of
our approach are: (1) It opens up the possibility of exploiting the computation that is
already required to satisfy the periodic timing constraints. (2) The on-line computation
required to make a scheduling decision at run time may be shifted off-line. (3) It is re-
latively easy to trace back a segment of the immediate history of a computation -at any
point during run time, a significant help for debugging systems which must cope with
asynchronous events. |

Given a round-robin scheduler, the scheduling problem of interest is to decide
whether there is a finite schedule which the scheduler can repeat to meet all the asyn-
chronous timing constraints. To study this problem, we now formalize the concept of

latency scheduling (first introduced in [WARD 78).)
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3.4 Latency Scheduling

We shall first introduce some terminology.

An execution trace of a processor is a mapping F from the non-negative integers
to the set of nodes (functional elements) in a communication graph G plus a nuli sym-
bol @ such that F(i) = u if the scheduler executes u the time interval [ii+ 1] and F(i)
= g if the processor idles in that interval. (The null symbol ¢ may be subscripted with
an integer to indicate the length of the idle interval.)

An execution trace can be represented by a semi-infinite string of ¢ symbols and
node labels with the interpretation that the scheduler performs the first operation v in
[0, cv] where ¢, is the computatidn time of v, and then sequence through the rest of
the operations in the string. For any pair of non-negative integers s and t, the function
F induces a natural mapping which assigns to every time interval [st], the finite string
of operations which are completely executed in that interval, i.e., (with a slight abuse
of notation) the first operation of F([s,t]) starts no earlier than time=s and the last
operation 6'ompletes no later than time=t. Using our favorite design example (with all
functions having a nominal computation time of 10 ms), the run-time scheduler which
repeats the string:

"ty fy Iz Ig f"
will generate an execution trace F where F([0.20])="fx fY" and F([15,25]) = w, the null
string.

For brevity, a timing constraint (C,p,d) will be denoted simply by C whenever there
is ho confusion. An execution trace F is said to contain an execution of the timing
constraint C in the time interval [s,t] iff the sequence of operations in F([s,t]) contains
a subsequence S such that (1) There is an isomorphic mapping between S and the
nodes of the timing constraint graph C; and (2) The linear order of S is consistent with

the precedence relation defined by the acyclic qraph C. The execution of the timing
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constraint C starts at the start-time of the first operation in the. subsequence S and
finishes at the time when the last operation in S completes execution.

An execution trace F is said to have a latency of | time units with respect to the
timing' constraint C iff for every non-negative integer s, F([s,s +1]) contains an execution
of C.

We remark that the above definition implies that if an execution trace a = &y
(where §is a finite suffix of a) has a latency of | with respect to the timing constraint

C, then y is also an execution trace with a latency of | with respect to C.

A static schedule L (a finite string of operation symbols) ié said to have a latency | with
respect to the timing constraint C iff the execution trace F which a round-robin
scheduler generates by repeating L ad infinitum has a latency of | with respect to C.

If a static schedule L has a latency | with respect to an asynchronous timing con-
straint C such that | <d (the deadline of C), then a round-robin scheduler which re-
peats L ad_infinitum obviously satisfies C. A static schedule L is said to be feasible
with respective to a set of ésynchronous timing constraints T, if for every C€Ta.L has
a latency <d, the deadline of C. For our design example, the static schedule:
xty 215 ik 210 |
has a latency of 80 ms with respect to the asynchronous constrair_lt which requires the
functions f, and fg to be eiécuted within 80 ms of an activation. This is in fact a
feasible schedule which meets all the nominal timing constraints of the design problem.
We shall use the terms Iatqncy and deadline interchangeably as long as it causes no
confusion.

Since external events may not occur at integer points on the time axis, the physi-
cal response time guaranteed by our definition of latency may be late by a fraction of

our chosen time unit. However, we can allow latency to be measured on the real line
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by making the following observation: If an integer latency d must be satistied for any
interval on the real line, a static schedule is feasible if and only if it has a latency of
d-1 when measurements are taken at integer points only. We shall be concerned with

discrete-time time systems only.
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3.4.1 Upper Bound on the Length of a Static Schedule

Given a finite set of n asynchronous timing constraints { Ci }, i= 1,...,n, our prob-
lem is to determine if there is a feasible static schedule and how hard it is to compute
it. Notice that there are two potential reasons why a static schedule may not exist: (1)
The deadline specifications are too tight to be met. (2) Any feasible schedule might be
necessarily infinite in length, i.e., any execution trace which has latencies <the dead-
lines of the respective timing constraints must be aperiodic. (Consider the proposition
that there is a set of asynchronous timing constraints involving 10 operations labelled
from O to 9 such that the only feasible schedule is represented by the fractional expan-
sion of =#.) We shall first give an ubper bound on the length of a static schedule if one
exists and show that (2) is impossible.T :

The basic idea of our proof is to. demonstrate that any feasible execution trace
(one that meets all the latency requirements) can always be simulated by a program
with a finite number of states. Without loss of generality, we shall assume that all
operation éymbols in an execution trace have unit computation time. (We can always
replace every node v in a communication graph G by a chain of Cy uniquely labelled
nodes where Cy is the computation time of v.) The simulation is done by moving timers
around the timing constraint graphs each of which is augmented by a new node and

extra edges as follows. For the ith

timing constraint Ci’ we add a node called sink and
we add an edge to sink from every node in Ci which does not have any successor.
Each sink node also has an alarm which increments with time and is reset to a new

valiue whenever an execution of the timing constraint Ci completes. (When there is no

T Teixeira [TEXI 78] has also proved that (2) is impossible for a computation model
pertinent to the monitoring of bandwidth-limited analog signals which propagate
through an acyclic network of function elements.
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confusion, Ci will be used to denote the corresponding augmented. graph.)

Intuitively, a timer records the "age" of an execution of the timing constraint Ci
that is in progress. Specifically, a timer of value t on the output edge of a node v indi-
cates that there is an execution of v and all its predecessors starting exactly t time un-
its ago. During the simulation of a feasible execution trace, a bounded number of ti-
mers may exist on an edge, but no two timers on the same edge will have the same
value. The alarm records the time that has elapsed since the start-time of the latest
completed execution of Ci' Given an execution trace, the simulation proceeds by
sequentially scanning the string of operation symbols and follows the simulation pro-
cedure below. Each round of the simulation starts at step (2) and ends when the next
operation symbol in the execution trace is to be scanned at step (2) or (6). An example

of the simulation procedure is shown in figure 3.7.
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Simulation Procedure

(1) Initialize the alarms to 0. The graph is initially clear of timers.

Apply the following procedure to every augemented graph Ci'

(2) Scan the next symbol v in the execdtion trace. Increment all the timers on the
graph and the alarm by one. If v is @, then go to (2). (The current round -of the~
simulation ends.) Else go to (3).

(3) Let S be the set of nodes with label v such that each node in S either has no input
edge or has at least one timer on each of its input edge(s). For every node x in S
which does not have any input edge, remove x from S and create a new timer (ini-
tialized to 1) to be added to every output edge of x after S becomes emptyl

(4) If S is empty, update ‘the appropriate output edges and go to (6). Else go to (5).

(5) For every node x in S, repeat the follewing until at least one of the input edge(s) of
x becomes empty and then remove x from S: Let the maximum value of the timers
on the input edge(s) of x be t; remove all the timer(s) with value t from the input
edge(s) of x and create a timer with value t to be adaed to every output edge of
the node after S becomes empty. When S is empty, update the appropriate output
edges and go to (6).

(6) If the sink has an empty input edge, then go to (2). (The current round of the simu-
lation ends.) Else go to (7).

(7) Repeat the following until at least one input edge of the sink becomes empty: Let
the maximum value of t'he timers on the input edge of the sink be t; remove every

timer with value t from the input edge(s) of the sink and reset the alarm io t.
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The simulation procedure is designed to ensure that an execution trace satisfies
all the latency constraints if and only if none of the alarms exceeds the corresponding
deadiine at the end of every round during a simulation. The distribution of timers and
their values on the edges of the augmented graphs together with the values of the
alarms at the end of a round of simulation constitutes a state of the simulation. The
upper bound of a static schedule is obtained by considering the number of states any
feasible simulation can ‘be in. In what follows, the simulation clock always starts a;
time O and is incremented at the end of each roun&. Without. confusion, the letter F

will be used to denote the execution trace under consideration.

Lemma 3.2
At the end of every round of a simulation, the timer(s) on the output edge(s) of

every node are strictly greater than the timer(s) on the input edge(s) of the same node.

Proof

Suppos"e that the lemma holds after k symbols of an execution trace have been
scanned. If the next sympol vis ¢, or if all the nodes with label v have either no input
edge or at least éne empty input edge, then all the t_imers are incremented by_ the same
amount and the lemma holds. If a node with label v has no input edge, then step (3) is
performed and a new timer .(initial-ized to 1) is added to each of its output edges.
Since all the timers already on the graph have been incremented at step (2), the new
timers created at step (3) must be strictly smaller than the ones already on the graph.
So the lemma holds. If a node with label v has at least one timer on every input édge,
then step (5) is performed and the new timer(s) added to the outbut edge(s) of v are -
initialized to the maximum, t of the timer values on the input edge(s). But all the timers
with value t are removed from the‘ input edge(s) in the same step, and so the new

timer(s) on the output edge(s} must be strictly greater than the remaining ones on the
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input edge(s). Hence the lemma holds at the end of processing the k+1th symbol.
Since the lemma is trivially true for k = 0 when the graph does not have any timer, it

must hold at every step of the simulation. QED

Corollary 1

During a simulation, the values of new timers added to an output edge m;Jst b‘e‘
strictly smaller than the ones already on the edye and hence no two timers on the
same edge of an augmented graph can have the same value at the end of every simu-

{ation round.

Proof . . |

New timers created at step (3) are initialized to a value strictly smaller than the
timer(s) already on the e.dge. Timers created at step (5) are to be added to an output
edge but are initialized to the value.of a timer on an input edge. By the lemma, they

must be strictly smaller than the ones aiready on the (output) edge. QED

Corollary 2

{

At the end of every round of a simulation, the value of the alarm is at least as big

as any of the timers on the corresponding graph.

Proof
Since the alarm has been initialized to 0, its value must be at least as big as any

timer on the graph betore it is reset for the first time. Step (7) of the simulation pro-

~ cedure always resets the alarm to the maximum of the timer value(s) that are on the in-

put edge(s) of the sink. The result follows from the acyclicity of the augmented timing

constraint graphs. QED
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Lemma 3.3
If F([0,t]) contains an execution of a node and all its predecessors, then at least
one timer will be added to the output edge(s) of the node before the end of the simu-

lation rcund which ends at time t.

Proof

If the node has no predecessor, then a timer will be added to its output edge(s)
the first time it is executed. Suppose the node has predecessors and that the lemma
holds for all of its predecessors. Let r be the smallest integer such that F([O,r]) con-
tains an execution of the node and all its predecessors. Then F([0,r-1]) must contain
an execution of all the predecessors of the node and by the induction hypothesis, at
least one timer must have been added t6 every input edge of the node before the end
of the simulation round which énds at time r-1. If any of these timers is removed, then
a new timer will be added to the output edge(s) of the node. If none of them has been
removed before time r-1, a timer will be added to the output edge of the node by step
(5) in the simulation round which ends at time r, thus completing the induction step.

QED

Lemmz 3.4

During ihe simulation round ending at time t, if a timer of value d is added to the
output ecya(s) of a node by step (3) or (5) of the simulation procedure, then F([t—d,t])‘
contains an execution of the node and all its predecessors. If the last timer added tb
the output edge has value x, then t-x is the start-time of the latest execution of the
node and its predecessors up to time t, ie., t-x is the largest integer such that
F([t-x,t]) _contains an execution of the node and all its predecessors. If no new timer.
is added to the output edge(s) of a node in this round, then the start-time of the latest

execution of the node and all its predecessor has not changed since the ‘ast round,
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i.e., either (i) F([0,t]) does not contair 2n execution of the node and all its predeces-
sors; or (i) if d is the smallest integer such that F([t-1-d,t-1] contains an execution of
the node and its predecessors, then d+1 is the smallest integer such that

F({t-(d +1),t]) contains an execution of the node and its predecessors.

Proof

If the node has no predecessor, then a timer with value 1 is added to its output
edge(s) by step (3) of tﬁe simulation procedure if and only if the node is executed in
[t-1.,t]. Thus the lemma holds for all nodes which do not have any predecessor.

Suppose the node has predecessors and the lemma is true for all the predeces-
sors of the node. If a timer with value d is added to its output edgels), then every in-
put edge of the node must have at least one timer with value 2>d before the new timer
is created by step (5). Any one of these timers must have been added to the
corresponding output edge of an immediate predecessor of the node at an earlier
round which ends, say, at time r. If this timer was initialized to a value y, then by the
induction hypothesis, F([r-y.}]) must contain an execution of this immediate predeces-
sor and all its predecessors. In the interval [rt], this timer increases its value from y to
d, ie, t-r = d-y and so F([r-y,r]) = F([t-(d-y)-y,r]) = F{t-d,r]). In other words, every
immediate predecessor of the node and all their predecessors must have been éxecut-
ed in [t-d,r] for some r < t. 'I"herefore F([t-d,t]) must contain an execution of the node
and all its predecessors which starts at tifne sy, i.e., at td.

When the last timer is ‘added to the output edge of the node, an output edge of
one of its immediate predecessors must have become empty. If this timer has value x,
then the smallest timer on the corresponding output edge of this immediate predeces-
sor must have value x-1 at the end of the simulation'round which ends at t-1. By the

first corollary of lemma 3.2, this timer must be the last one added to the output edge
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of the immediate predecessor and hence by the induction hypothesis, x is the smallest
integer such that F([t-1-x,t-1]) has an execution of this immediate predecessor and its
predecessors. Hence, x is the smallest integer such that F([t-x,t]) contains an execu-
tion of the node and its predecessors.

If no new timer is created to be added to the output edge(s) of the nods, then
there are two cases. In the first case, there has never been an execution of the node
and its predecessors in [0,t] and so the start-time bf the latest execution of the nodé
and its predecessors must not have changed since the last round. In the second case,
F([0,t]) contains an execution of the node and it predecess;ors, but at ieast one of the
immediate predecessor(s) of the node must have an empty output edge at the end of
the round ending at time t-1. By lemma 3.3, at least one timer must have been added
to the this edge before t.he simulation round which ends at time t. Consider the last ti-
mer removed from the output edge of this immediate predecessor. Let this timer be re-
moved from the input edge of the node during the simulation round ending at time r
and let its ;)alue be x. By the induction hypothesis, the latest execution of this immedi-
ate predecessor and its predecessors must have started at time r-x. Hence, the latest
execution of the node and its predecessors must have started at time <r-x. Since a
timer with value x is added to the output edgé(s) of the node at time r, there is an ex-
ecution of the node and all its predecessors which starts at time r-x. Therefore, the
start-time of 'the latest execution of the node and its predecessors has not changed

since the last simulation round. QED

Corollary
At the end of the simulation round which ends at time t, (i) if F([Ot]) does not
contain an execution of the augmented graph Ci, then the alarm on Ci will have value

t; (ii) if F([O,t]) contains an execution of the augmented graph Ci' then the alarm on Ci
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will have as its value, say d, the time that has elapsed since the start-time of the latest
execution of Ci' i.e., d is the largest integer such that F([t-d,t]) contains an execution

of Ci'

Proof

If F{[0.t]) contains an execution of the timing constraint graph C, then by lemma
3.3, at least one timer will be added to each one of the input edges of the sihk.in [O,ﬁ.
Hence if F([0,t]) does not contaiﬁ an execution of the tiniing constraint graph C;, then
at least one of the input edge(s) of the sink will be empty in [0,t] so that step (7) of
the simulation procedure is never performed in [0,t] and the alarm which is initialized t¢;
0 is incremented after every simulation round and therefore has value~ t at time t.

If F([0,f]) contains an execution ofAthe timing constraint graph C;, there are two
cases. In the first case, every‘ input edge of the sink has at least one timer and step
(7) of the simulation procedure is performed. At the end of step (7), at least one of
the input gdges of the sink must be empty. Let d be the value of the 'ist timer re-
moved from one of these empty edges. Since timers with larger values are removed
first, all except for the Iast_t.imer removed from an output edge of an immediate prede-
cessor of the sink an edge which is empty after step (7) must have value >d. By the
above lemma, there must be an execution of every immediate predecessor of the sink
and its predecessors starting .at time >t-d. Hence there is an execution of the timing
constraint graph Ci in [t-dt]. Since timers are removed in the same order they are ad-
deq to an edge, the latest execution of the immediate predecessor of the sink whose
output edge has been emptied by step (7) must have started at time t-d. Hence the
latest execution of the timing constraint Ci cannot have started after t-d. Hence t-d is
the latest start-time of an execution of the timing constraint C;. Since the alarm is up-.

dated to d, the corollary holds. QED
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Theorem 3.5
An execution trace has latency d; with respect to the timing constraint C, if and
only if the value of its alarm never exceeds di at the end of every round of its simula-

tion.

Proof

Consider any interval | which ends at time t and has length d,, ie., | = [t-d.,t]. At
the end of the simulatic;n round which end at t, let the value of the alarm be equal t(;
X. éy the corollary of lemma 3.4, there must be an execution of the timing constraint Cl
in [t-x,t]. If x <d; then there must be an execution of the timing constraint C; in l
Hence if the alarm never exceeds di' the execution trace must have Iaténcy di with
respect to the timing constraint C..

If the execution trace has latency di with respect to the timing constraint Ci' then
there is an execution of Ci in any interval of length Zdi. Hence at any time t _>_di.
there must. be an execution of the timing constraint C; in [t—-di.t]. Let the start-time of
the latest execution of the 'timing constraint C; in this interval be at t-d where d <d;.
By the corollary of lemma 3.4, the alarm of the augmented graph C; must have value
equal to d at the end of the round which ends at time t. In the interval [O,di], the max-
imum value of the alarm is di' Hence the value of the alarm‘ at any time .cannot
exceed d,. QED

If a feasible execution trace exists, then by theorem 3.5, the value of the alarm in

the ith augmented graph Cj is bounded from above by di' By the second corollary of

lemma 3.2, the value of any timer on the augmented graph Ci must be smaller than

that of the alarm and hence the value of the timers on any edge in Ci cannot exceed

d-1. By the first corollary of lemma 3.2, all the timers on the same edge must have

unique values. Hence there are at most di-1 timers on any edge. Let us define the
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state of an edge in the ith

augmented graph Ci be the finite set of timers on it and
define the state of C, to be the value of its alarm together with the set of states of its
edges. The state of a simulation at the end of a simulation round is the set of states

of the augmented graphs.

Theorem 3.6
If an execution trace exists which meets the latency requirements of a' set of n
asynchronous tiiming constraints { o }, i= 1,..n, then there must be a (finite) feasible

static schedule for the set of asynchronous timing constraints.

Proof i
If an execution trace exists, then there are only a finite number of states which

h augmented graph C; can be in at the end of every simulation round. Hence the

the it
simulation of the execution trace can be in only a finite number of states. Thus after a
finite number of operation symbols in the execution trace have been scanned, the
simulation fﬁust reenter a previous state. Let § Xqy . X Y be the feasible execution
trace so that the state of the simulation program before the symbol X4 is scanned is
the same as that immediately after the simulation program scans the symbol X Let B
be the string Xy «. X The simulation of fhe execution trace § B‘ produces a se-
quence of states. By theorem 3.5, the alarm of the augmented graph Ci cannot exceed
di in any of tﬁese states, and Theorem 3.5 in turn implies that the execution trace SB°
is a feasible one and hence B' is a feasible execution trace. Thus 8 must be a feasible
static schedule. QED

We can now give an upper bound on the length of a feasible static schedule
which has latency di with respect to the ith timing constraint Ci' Let E; be the number

of edges in the augmented graph G, The maximum number of states that an edge

can be inis 2 ** di and the a!érm can have value from 0 to di' Hence the number of
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states the augmented graph Ci can be in is E(dj+1)(2 ** d). The maximum number
of states a simulation can be in is:
I Ej(d; + 102 ** d)).

If a communication grabh has V nodes and E edges and if each node and edge of
the communication graph appears only once in each augmented graph Ci' then e is
bounded by E+ V. If there are n timing constraints and dmax is the maximum of. the
deadlines, then the maximum number of states is: . ' ST B

Amax* D"E+W" 2 ** nd o) | : ST
which is an upper bound on the length of a feasible static schedule where every

operation need to be executed at host once in each timing constraint.

o



-121-

3.4.2 Computing Static Schedules for Asynchronous Timing Constraints

In the last section, we have obtained an upper bound on the length of a feasible
static schedule. Thus the existence of a feasible static schedule can always be decided
in finite time. When the computation load is heavy, however, the length of any feasible
static schedule can indeed get very long. For example, given any integer n, consider
the following latency scheduling problem:

The communication- graph consists of n+1 unconnected nodes each with unit
computation time, and there are n+1 asynchronous timing constraints. Except for the

th th node with

n+1th constraint, the i timing constraint consists of executing the i
deadline di= 2**i+1. The n-;-1th constraint consists of executing the n+1th node with
deadline d, , 1= 2**n+1.

It is easy to check that the only static feasible schedule must execute the ith node
exactly once every 2**i time units. The processor utilization factor is given by
1/2+1/4+ .. +1/(2**n)+1/(2**n) = 1. The length of this schedule is 2**n which
grows expdnentiaily with the size of the problem (where integers are given as binary
numbers).

In :general. if is impractical to find a feasible schedule by'generating ccndidate
schedules in increasing length and testing for feasibility until all schedules of length <
the upper bound have been exhausted, especially if the timing constraints require
heavy processor utilization. However, it may not be necessary to generate a complete
schedule in order to decide whether a feasible static schedule exists (witness the ex-
ample above). Unfortunately, the computation required for answering the decision 'prob-
lem alone is likely to be prohibitive in the worst case, as evidenced by the fact that -
two rather restricted versions of the latency scheduling decision problem are NP-hard.

We now state a known NP-complete problem by Galil and Megiddo which we shall

reduce to another restricted version of the latency scheduling problem. First, we need
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a definition.

Given a circular arrangement C of a set of symbols from some alphabet so that
each symbol on the circle appears only once, we say that an ordered triple (a2 b c) is
consistent with C iff these three symbols appear in that order when the circle is
traversed in the clockwise direction starting at the symbol a. A set of ordered triples is
consistent with a circular arrangement C iff every one of them is consistent with C.

The CYCLIC ORDERING problem is: Given a fin'ite set of ordered triples of symbols
from some alphabet, decide whether there exists a cyclic arrangement of symbols such
that every symbol which appears in the set of ordered triples appears one and only

once in the cyclic arrangement.

Theorem 3.7

The CYCLIC ORDERING problem is NP-complete (in the strong sense).

Proof
This prbblem is reducible from 3-satisfiability and can be found in [GAL & MEG

7). .-

Theorem 3.8
The cyclic ordering problem can be reduced to the latency scheduling problem
restricted to instances where all operations have unit computation time and all the tim-

ing constraint graphs are chains of length 1 or 3.

Proof

Given a set of ordered triples, we construct the corresponding latency scheduling
problem as follows. The communication g}aph has a node corresponding to each dis-
tinct symbol which appears in the set of ordered triples. Let the num! :r of nodes be n.

All nodes denote operations of uhit computation time. An edge is added from the node
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x to the node y and another edge from y to the node z in the communication graph iff
there is an ordered triple (x y z). Each ordered triple (x y z) specifies an asynchronous
timing constraint graph in the natural way, i.e., an instance of x precedes y which pre-
cedes z. Each of these asynchronous timing constraints has a deadline and minimum
period equal to 2n-1. Also, an asynchronous timing constraint consisting of a single
operation is created for each node in the communication graph. Each of these n
single-operation timing constraints has a deadline and minimum period equal to n.

If a consistent cyclic ordering exists, it is easy to check that it can be used as a
feasibie static schedule. Conversely, ass_unié that a feasible statié schedule exists. The
latency constraints imposed by thbe single-operétion precedence graphs require that
there must be exactly one instance of every operation in any interval of length n in the
execution trace. Thus the execution trace must be generated by the periodic execution
of some permutation of the n operations. Hence if a feasible static schedule exists,
there must be one which is a permutation of the n operations. We claim that the circu-
lar placement defined by this permutation is a consistent cyclic ordering. To see this,
take any ordered triple (x y z) and consider an interval of length 2n-1 starting immedi-
ately after an instance of x. The next instance of x starts exactly n-1 time units later.
So in order to meet the specified latency of 2n-1, the operations x, y and z must occur
in that order in the next n time units which is the length of the permutation. Thus they
must occur in the correct order in the circular placement. QED

The above result has very harsh implications. First, it is noted that the NP-
hardness of the above problem is independent of whether different operations are al-
lowed to preempt each other. Most processors allow interrupts to be processed only
after the current instruction cycle has been finished. In general, there is a smallest
quantum of computation time between successive preemptions that a processor or the

operating system is prepared to tolerate. This is taken as the unit computation time
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above. Second, the length of a feasible static schedule for the above problem is a
linear function of the problem size (since it is a permutation of the operation symbols).
Hence the complexity of the latency scheduling problem remains intractable even if the
problem is restricted to finding static schedules whose length is bounded by a linear
function of the problem size.

The difficulty of the problem above is rooted in the fact that the precedence order-
ings of the tiﬁing constraint graphs are inconsistent with one another. Thus there is
hope that the scheduling problem would be easier if the timing constraint graphs afé
consistent with one another. However, this is not the case if we do not allow different‘
operations to preempt one another. We shal! first describe the SET PARTITION problem
which is known to be NP-complete [GAR & JOH 79)].

The SET PARTITION problem is: Given a finite set of positive integers { w; } where
2 w, = 2q for some integer q, the decision question is whether the set lcan be parti-

tioned into two subsets such that the two sums of all the integers in each partition are

equal (to q)

Theorem 3.9

If different operations are not allowed to preempt one another, then the set parti-
tion problem can be reduced to the latency scheduling probtiem rgstricted to inétances
where every timing constraint'g'raph consists of a single operation and that all but one

of the specified deadlines are the same.

Proof

Given a set of integers { w; ), let g = 1/2 * X w; and construct a latency -
scheduling problem as follows. The communication graph consists of n+1 unconnect-
ed nodes. For i= 1 to n, let the i‘h ncde has computation time w;. The n+1th node

has a computation time of q. There are n+1 asynchronous timing constraints. For i=
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h th

1 to n, the it timing constraint consists of the i"' node alone and has a deadline and
minimum period of w;+4g-1. The n+1th constraint consists of the n+1th node alone:
and has a deadline and minimum period of 3g-1.

Suppose a partition { S1, 82 } exists such that | S1| = | 82| = . Then we can
list a feasible static schedule as shown in figure 3.8a. Notice that any two successive

executions of the ith

operation, i= 1 to n spans an interval of length wi+4q and that
for the n+1th operation, the interval between two complete executicns is 3q. Thus this
static schedule has the required latencies by the problem.

To prove the converse, we first claim that for any execution trace which meets all
the latency constraints, each instance of the n+1th operation must start exactly q ﬁmé
units after the completion of the previous instance. Any further delay causes the tw6
instances to span an int.ervai of length > 3q and a latency violation will result. If any

1th operation spans an interval < 3q, then there

two successive instances of the n+
must be three successive instances of the n+1th operation which spans an interval of
length d < 6q Let the first of these three instances starts at t;, i.e., the third instance
completes at t; +d. Let g = w

ax +4a-1 where Whhax IS the maximum of the set { Wi,

m ax

n 2i 21 }. We can assume that Wmax <4 for otherwise the partition problem is trivial.
This in turn implies g < 5q. Now there are tWo cases depending on whether d >g or
d<g. |

if d Zg,’ then in the interval [t,, t, +d], at least one instance of each of the ith
operation, (i= 1 to n) must occur in addition to to the three instances of the n+ 1"
operator. The total computation required in this interval is therefore at least 5q. Since d
< 5q, some latency violation must result. See figure 3.8b for an illustration.

If d < g, then we can apply the same argument to the interval [t1. ty +g] and con-

clude that some latency violation must occur in that interval. See figure 3.8¢c.
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Reduction of SEI‘ PARTITION to latency scheduling problem

Thus any teasible static schedule must generate an execution trace which has in-
stances of the n-|~1th operation spaced exactiy q time units apart. Now take any inter-

1th operation. This interval rnust have

val spanning three complete instances of the n+
length 5q, and so must contain at !east one instance of every operation and the pro-
cessor cannot idle in this interval. This is possible only if the set { w;, i= 1ton } can
be partitioned into two subsets of equal weight. Thus the existence of a feasible static
schedule implies a feasible partition. QED

- Other well known NP-coinplete problems, e.g., 3-PARTITION [GAR & JOH 79] can
also be transformed in a similar fashion to this restricted version of the latency
scheduling problem which is in general not amenable to attack even by pseudo-

polynomial time algorithms. However, it may have been noticed that in both theorem 3.8

and 3.9 above, the equivalent scheduling problems derived from the NP-complete prob-
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lems all require full processor utilization in order to meet the deadlines. Intuitively, one
may expect the decision problem to be easier if the processor utilization required to
meet the timing constraints is low. The following theorem gives sufficient conditions for
a feasible static schedule to exist for a set of asynchronous timing constraints when

the demand for processor time is sufficiently low. '

Theorem 3. 10
Let (G,T) be an instance of the graph-based model and suppose all the tlmmg

\

constramts in T are asynchronous Then a feasuble static schedule always exists if the

1

following three conditions hold.

1) = w/d < 1/2 where W, d are respectively the computatnon time and deadl‘me
specification of the ith timing constraint.

(2) For the ith timing constraint, [d;/2] >w; where [x] is the integer part of x.

(3) Every node in the communication graph can be pipelined into a chain of operations
each of which takes one unit of computation time. The function performed by the
node must be expressnble as a composition of a number of sub-functions with no

shared variables except for the mput/output variables at the interface between suc

cessive stages.

Proof

Translate each asynchronous timing constraint Ci into  "equivalent" periodic
process as‘follows. The body of the periodic process consists of a straight-line program
which is any topological sort of the operations in the timing constraint graph C| The
deadline and period attributes of the periodic process are both set to [di/2], the in- -
teger part of di/2' Condition (2) above guarantees that the computation time W, of the
process is smailer than or equal to the corresponding deadline, and condition (3) al-

lows the processes to preempt cne another at unit time intervals, i.e., the processes
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are independent. By the corollary of theorem 2.1, a sufficient condition for scheduling
these periodic processes is that Ewi/[di/2]) <1. Thus condition {1) guarantees that a
feasible execution trace must exist. Since the period attributes are chosen so that the
maximum interval spanned by two consecutive executions of a timing constraint never
exceeds di' the execution trace is a feasible one and by theorem 3.6, a feasible static
schedule must exist. QED
Remark

|n' practit;:e, it is nc;t neceésary to pipeliné a fuﬁétion e‘llement with cor;lblxtati‘o;
time ¢ into ¢ unit-time stages. The length of each stage can be chosen to be the t;ésit;

quantum q of processor time used by the operating system kernel as long as all dead-

lines are integral multiples of q.

The first two conditions of theorem 3.10 indicate that if preemption is allowed, the
latency scheduling problem is essentially trivial as long as maximum processor utiliza-
tion does ot exceed 50% and that all of the timing constraints have sufficient slack.
(Specifically, the slack should be at least as large as the computation time). On the
other hand, Theorem 3.8 and 3.9 indicate that this problem is likely to be computation-
ally intractable if the processor must be kept.very busy in order to meet all the timing
constraints. Between these two extremes, there is a wide system load gap where
efficient algo;'ithms may exist. A general strategy for attacking the problem is to re-
place every specified deadline by a (hopefully not too much) shorter one such that
there is a convenient relationship among all the modified deadlines that makes the de-
cision problem easier to solve. In particular, it may be possible to derive tighter upper
bounds on the system load below which there is an efficient algorithm for solving in-
stances of the decision problem which have the modified deadlines only. Then by con-

sidering the maximum deviation.between any set of deadlines with the corresponding




modified deadlines, we can hopefully further close the system load gap. However, a
tighter bound has eluded us so far.

in the following, we shall describe a family of heuristic algorithms which might
prove useful for further closfng this gap when all the timing constraint graphs are con-
sistent with one another and every node in the communication graph can be pipelined
into a chain of unit length operations. This family of heuristic algorithms is inspired by
the success pf theorem 3.10 and is parameterized by a set P= { x; } of compatible in-

I
tegers. (Two integers are compatible if either they are equal or one divides the other.)

g
h asynchroncus timing

Given a set of compatible integers P, the idea is to replace the it
constraint (Ci'pi’di) by an "equivaient" periodic'timing constraint (C’i,p’i.d'i) with th,e
same graphs, i.e, C';= C;. Let the computation time of the ith timing constraint (thé
sum of the computation times .of the operations in the graph Ci) be w;. P is a heuristi-

i

cally chosen set of compatible integers. The choice of the period p'; and the deadiine

h asynchronous timing constraint are deter-

d; of the periodic constraint replacing the it
mined heufi’stically subject to the conditions:
M d; 2d; 2w, -

(z)p'iep‘ LT L ; - : R
() p; <did'j+1.

These two conditions together guarantee that there is an execution of the timing
constraint Ci in every interval of length Zdi if the equivalent periodic timing constraints
can be successfully scheduled. Specifically, for each asynchronous constraint with
deadline di' we assign a periodic timing constraint with the same graph C'i=Ci. The
period p'i of the replacement periodic timing constraint is set to the largest member of
P such that 2p’l—1 Sdi. The deadline d'i is set to the largest integer such that
d+p1 Sdi. (This is a greedy algorithm.) The following algorithm attempts to con-

struct a feasible static schedule of length p. . = MAXIMUM { P } such that there is
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execution of the timing constraint C'; in the interval [kp'i. (k.+1)p'i] for k= O, ..,

Pmax/P'i: L&t Prin= MINIMUM { p'; }.

()

4

(3)

(4)

Sort the periodic timing constraints in increasing order of their deadlines and incor-
pdrate them one by one into a partial scheduie for the interval [o'pmax]' A feasible
static schedule is obtained when all the timing constraints have been successfully
incorporated.

Let the shortest deadline be d. At time t= kPpin for each kgpmax/pmin,let C be
-the union of all the timing constraint graphs which have deadline d and whose
periods divide t, i.e., an execution nf each of these timing constraints must occur in:
[t,t+d). Let wc be the computation time of C and execute C in the interval:
[t+d-wc. t+d] if wc <d. Declare failure if we > d

Suppose all the timing constraints with deadline <d have been scheduled. The tim-
ing constraints with the next larger deadline d' will be scheduled as foillows. At time

t= kpmin for each kspmax let C be the union of all the timing constraint

/Prin’
graphs ‘which have deadline d' and whose periods divide t, i.e., an execution of
each of these timing constraints must occur in the interval I= [tt+d']. Let we be
the computatibn time of C. If | is idle and has length ch, then execute C in
[t+d'-wC, t+d'). In general, | will consist of a sequence of busy intervals lj
separated by idle intervals. Let the first busy interval I1 start at time S and end at ‘
time f1. Sume of the operations in C may have been executed in I1 already. Hence
if the predecessors of these operations are executed before I1, then they do not
have to be executed again. This is possible if all these predecessors can be exe-
cuted in [t,s,]. If not, some of the operations already executed in I1 will have to be -
repeated after f,. The next step attempts to minimize the number of operations in I1

that have to be repeated after time=f.i

Let V1 = { Vir o Vi } be the set of operations in I1 which are also in C. For each
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Yi in V,, assign a weight wj which is the sum of the computation time of all its

predecessors in C which are not in V4. Assign to v @ value fi according to one of
two cases: (i) If all the predecessors of Yi in C already precede Yi in 14, then Y has
value =0; (ii) If at least one of the predecessors of vi in C does not precede v‘,.

then the value of Yi is equal to the sum of the computation time of Y; and. all its
successors in V1 which have the same predecessors in C. Thus, if all the prede-
cessors of Yi in C are executed before I1, then ;ove have a potential saving of e We;
can select a subset of V1 to maximize = rj by executing all their predecessors in G
in [t.s,] subject to the condition X W, <s,-t. This is a 0-1 KNAPSACK problem
which can be sclved by dynamic programming in time O(sft).

(5) Repeat step (4) to schedule the remainder of C in each of the idle intervals in |. If.
some operations of C with computation time w have to be executed in the last idle
interval in |, schedule them so that they finish at the end of |, i.e., in the interval
[t+d'-wt+d')

The sﬂ‘ccess of the above heuristic algorithm depends on the choice of the set P
of compatible integers. Intuitively, we want to perform an execution of an asynchronous
timing constraint as infrequently as possible. As an initiai guess, we can choose P to

be the set { p" : n>1} for some integer p such that MAXIMUM { d-2p" : n is the larg-

est integer for which d;-2p" >0 } is minimized.

3.5 Computing Static Schedules for the Graph-based Computation Model

In practice, both perigdic and asynchronous timing constraints may be specifiéd
for & hard real-time system. Since the problem of computing a static schedule for asyn-
chronous timing constraints alone is NP-hard, the scheduling problem is computational-
ly intractable in general. In fact, the problem of computing a static schedule for period-

ic timing constraints alone is also NP-hard as can be shown by reducing the well
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known KNAPSACK problem to a restricted version of our scheduling problem with
periodic timing constraints.T S

An instance of the KNAPSACK problem is given by two integers L, K and a finite
set S= { §; } of N elements each of which has an integer weight w; and an integer
value v;e The decision problem is to decide whether there is a subset S’ of S such that.

> v; 2K and w; <L where the sums are over the elements of S'.

Theorem 3.11

The KNAPSACK probl.effl can. be reducéd to the fo‘IIo;ving restricted scheduling
problem: The communication graph consists of a set of chains of two nodes each.
Every timing constraint is periodic with the same period, say p, and consists of either ai
single operation or a chain of two opérations. All timing constraints with a siﬁgle

operation have the same deadline d < p, while all the timing constraints with a chain of

two operations have the same deadline = p.

Proof - A . . |

Given an instance of the KNAPSACK problem (using the above symbols), the.
corresponding communication graph contains a chain of two nodes for each element 5
in S such that the first node has computation time W and the second node has com-
putation timé v;- let V be the sum of the v;s and W be the sum of the w;s. There are N
periodic timing constraints each of which consists of one of these chains and has
period and deadline = W+ 2V-K. The second nodes in the chains (i.e., the nodes with

computation time "i) also form the graphs of N periodic timing constraints each of

T The KNAPSACK problem can be solved in pseudo-polynomial time by dynamic pro-
gramming techniques, so we do not rule out acceptably fast solutions to the schedul-
ing problem for periodic timing constraints alone in practice.




which has deadline= L+V and period= W+ 2V-K.

If there is a subset S' ofi S with weight <L and value >K, then we can execute
the first nodes in the corresponding chains in [0,L]. Ail the nodes with computation
time ili can be executed in [LL+V]. The set of the first operations in the chains
corresponding to S-S’ has weight W-L and can be executed in [L+V,W+V]. The suc-
cessors of these operations have weight <V-K and can thus be executed in [W+V,
W+ 2V-K], and a feasible static schedule has been constructed covering the interval
[0,W+2V-K]. The form of the feasible schedule is shown in figure 3.9.

Conversely, a feasible schedule must contain an execution of each of the timing

constraints in the first period, i.e., in [O,W+2V-K]. Since the total computation time of

all the timing constraints is W+ 2V, there must be a saving of K time units which can

only be obtained by executing the first nodes of a subset of the chains in [0,L] such

that their successors have computation time >K. QED

Remaining ws and
their successors
aN
= time
0 hd el p= 2°sumofvs
L sum of v;s + sum of w;s- K
Figure 3.9

The form of any feasible schedule in theorem 3.11

The computational complexity of the scheduling problems for the graph-based -
model should not be interpreted as a deterrent for exploiting static schedules. On the
contrary, the NP-hardness results may be taken as evidence that as much of the

scheduling work as possible should be done off-line. In particular, much efficiency may




be gained by using the latency scheduling technique to reduce the redundant compu-

tation of the asynchronous timing constraints which is already required by the periodic

tining constraints.

Given a set of timing constraints in the graph-based model, we can in general

proceed as follows. (The heuristics described below are all greedy.)

(M

]

Convert heuristically all the asynchronous timing constraints into "equivalent"
periodic timing constraints with periods compatiSIe with those of the periodic timing
constraints. A greedy algorithm is to select the smallest period among the periodic
timing constraints which is closest to but smaller than the deadline of the asynchro-
nous timing constraint.

Merge all the periodic timing constraints with the same deadline and period into a
single periodic const.raint and eliminate all the redundant computation by taking the
union of their graphs. If two periodic timing constraints C; and 02 have the same
period but different deadlines with d1 < d2. then a greedy algorithm is to eliminate
the operations in 02 that are also in C1. Specifically, if the timing constraints C1
and 02 are consistent with each other and they both contain the operation v then
eliminate vi from 02 and make all the predecessors of v; in'C2 also the predeces-
sors of the corresponding instance of v; -in C1. Likewise, make all the successors
of the operation Vi in the timing constraint 02 to be the successors of the
correspor;ding instance of v; in the timing constraint C,. This technique may also
be applied to timing constraints with different periods and deadlines and is espe-
cially useful if the periods are compatible. Specifically, if the timing constraints C1
and 02 have compatible peridds with P4 5d2 5p2, then eliminate all the opera-
tions from C2 that are also in C1 and make the predecessors/successors of these
operations in 02 to be the predecessors/successors of the corresponding instances

of the operations in C1 that' must be executed in the period right before the dead-



line d2. (In the parlance of the process-based model, we are simply doing a
decomposition by minimizing interprocess intercommunication since the goal of our
greedy algorithm is to merge all the required computation into one single timing
constraint.)

(3) Apply the scheduling algorithm for the kernelized monitor model in the last chapter
to schedule the resulting timing constraints by identifying each operation as a chain
of scheduling blocks and the precedence constraints as being imposed by rendez-
vous commands executed at the end of of the operations.

The interested reader may want to verify that the above heuristics will yield the
efficient but delightfully simple schedule in section 3.17. Finally, it should be noted
that it is not necessary to store the complete static schedule in the database for the
run-timev scheduler. For example, the kernelized monitor scheduler of the previous
chapter may be used as the run-time scheduler in which case only the relevant dynam-
ic deadlines and forbidden regions for the interval spanned by the static schedule need
to be stored on-line, the penalty being that more scheduling overhead may be incurred
at run time by the more complicated run-time scheduler. In general, there is a tradeoff
between memory space and scheduling overhead that is available to the off-line

scheduler.
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Chanter 4

Design Issues of Distributed Systems

4.1 Resource Sharing in a Distributed System

In the previous chapters, we have motivated and developed a graph-based compu-
tation model for the hard real-time environment and investigated the related scheduling
problems on a general purpose computer. Many reél-timé applications, however, share
a family of signal processing algorithms which are best implemented by specialized
computing devices, e.g., systolic arrays. With the rapid advance in VLS! technology,
specialized hardware is becoming increasingly available and most future real-time sys-
tems are likely to be implemented by an interconnection of general purpose computers
and special devices. Bef.ore we can make any headway in automating the ’production
and maintenance of the software for these distributed systems, we must first resolve
two difficulties. First, the delay introduced by the communication subsystem must be
taken into account if stringent timing constraints are to be met. Second, the perfor-
mance characteristics of a wide variety of special computing devices must be
represented in such.a way that they can be exploited by software autofnatiop tools to
meet stringent timing constraints. Both difficulfies can be greatly eased if we can adopt
a uniform model! for different system resources that is precise enough for the require-
ments of the ﬁard real-time e.nvironment.

In general, we shall attempt to model a system resource as a (composite) node in
the communication graph together with a scheduling algorithm for determining whether
the resource is sufficient for meeting a given set of timing constraints. It should be not-
ed that our modelling approach will not necessarily result in the most efficient use of
resources. However, it meets the important objective of guaranteeing that stringent tim-

ing constraints are being met ahd may also improve éystem reliability by providing an
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error margin for synchronizing the cperation of physically distributed subsystems.

In the following, we shall first give an example to exaggerate the potential hazards
of a distributed system where processors communicate with one another by transmitting
information strictly in pre-computed time slots. In contrast, we shall give a formulation
of the processor allocation problem for the hard real-time environment that is condu-
cive to more robust implementation. A broadcast data bus will be used to illustrate ouni

modelling approach and an efficient hardware implementation of a communication

scheduler for the broadcast data bus will be described. The general processor alloca-

tion problem is, however, computationally intractable even if efficient algorithms aré

available for scheduling the compufation allocated to each processor.

4.2 The Processor Allocation Probletﬁ in the Hard Real-Time Environment’

Given a set of timing cohstraints expressed as an instance of our graph-based
computation model and an interconnection of computing devices, the processor alloca-
tion proble;p is to partition the required computation and allocate it to the computing
devices so that all the timing constraints can be met. Before this problem can be for-
mulated properly, the delay .int_roduced by the communication subsystem must first be
characterized with respect to the generated traffic so that the designer can verify that
no deadline is being missed because of communication delays. Traditionally, a queue-
ing model is usually used to énalyze the expected values of point-to-point delays. The
constraints resulting from these delays are expressed as algebraic inequalities which
mu'st be satisfied by a candidate partition of the required computation. However, this
type of stochastic analysis is inadequate for the hard real-time environment since the
traffic generated by a partition of the required computation may be very bursty.
Nevertheless, the majority of the published formulations of the processor allocation.

problem for real-time systems, e.Q.. [CHU et al 80}, [MA et al 82] have chosen to either



ignore communication delay altogether or replace the timing constraints by load-
balancing constraints. Their analysis is more pertinent to the time-average behavior of
the system and is applicable only to soft real-time systems.

On the other extreme, a designer may choose to do a detailed control flow
analysis of the programs running on every processor and identify all the time instants
at which the processor will send or receive data. A detailed communication schedule
can then be worked out according to which every processor will be scheduled to send
or receive data at certain prcdetermined time slots so that all the timing constraints can
be met with certainty.

In general, the communication subsystem can be used more effectively for meeting
timing constraints if it is possible to monitor and control the state of the communica-
tion network at every instant. Unlike a processor, however, the relative timing of the
events in a communication system is generally more susceptible to physical perturba-
tions and may not always be controllable. Hence, a real-time system which has little
tolerance for deviations in the timing behavior of a communication network is likely to
be less robust. As an illustration of the potential hazard of such systems, consider the

following scenerio.T

4.2.1 Another Time Bomb

An engine is controlled by a distributed system of processors which communicate
with one another via a broadcast data bus to which all the processors are connected.
Processor A has a direct in_terface to an auxiliary switch and processor B is interfaced
to an ignition unit which fires up the motor. There are certain safety rules that must be

observed at all times. (1) The auxiliary switch must be turned on before the motor can

T This example is meant to be reminiscent of the widely publicized synchronization er-
ror which preceded the first successful flight of the Space Shuttle.
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be fired up. (2) The motor must be fired up within 100 milliseconds after turning on
the auxiliary switch. Otherwise, the auxiliary switch must be turned off immediately. (3)
The auxiliary switch must remain on as long as the motor is firing. -

The interface of the motor ignition unit provides the function FIRE_UP() to fire up
the motor. From time to time, however, the motor may refuse to fire up immediately in
which case the FIRE_UP function will automatically abort after trying for 50 milliseconds
and return FALSE. The procedures TURN_ON-SWITCH and TURN_OFF_SWITCH turn on
and off the auxiliary switch respectively. Our Ada programmer has written the following

program to start the engine. - : : C

/* COMMENT
There are two tasks: Task AUXILIARY_SWITCH controls the auxiliary switch
and task MOTOR_IGNITION controls the fire-up unit. AUXILIARY_SWITCH will
turn off the switch if the motor has not been fired within 100 milliseconds
after the switch has been turned on. This is accomplished by a timed
entry call with the second alternative of the select statement
being executed if the first alternative has not made any progress atter
the specified delay expires.

*/

task body AUXILIARY_SWITCH is
RESULT: boolean;
begin
TURN_ON_SWITCHY();
select
MOTORL_IGNITION.START_FIRING(RESULT);
if RESULT =FALSE then
TURN_OFF_SWITCH();
end if;
or
delay 100;
TURN_OFF_SWITCH();
end select; ’
end AUXILIARY_SWITCH;

task MOTORLIGNITION is
entry START_FIRING(RESULT:out boolean);
end

task body MOTOR_IGNITION is
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bez:::ept START_FIRING(RESULT:out boolean) do
RESULT := FIRE_UP();
end START_FIRING;
end MOTOR_!GNITION;

There are two tasks: AUXILIARY_SWITCH and MOTOR_IGNITION which are to be
run on processors A and B respectively. The task AUXILIARY_SWITCH turns on the
auxiliary switch and rendezvo'us with the MOTORLIGNITION task which then starts
fiing up the motor. If the engine is sﬁcéessfully started, the MOTOR..IGNITION task will
return TRUE to confirm a successful firing. Otherwise, the FIRE_UP function will abort
after 50 milliseconds and the MOTOR.IGNITION task will return FALSE to the
AUXILIARY_SWITCH task which will then turn off the switch. Meanwhile, the
AUXILIARY_SWITCH task executes a timéd entry call and selects one of two alternative
courses of action. If the rendézvous with the MOTOR.IGNITION task is unsuccessful
after 100 millisecords, the AUXILIARY_SWITCH task will turn the switch off. Otherwise,
it will wait fpr the result of the firing from the MOTOR_IGNITION task.

This prt')gram will work if the MOTOR_IGNITION task can always confirm a success-
ful firing ty compieting a rg;tdezvous with the AUXILIARY.SWlTCH task within 100 mil-
liseconds after it has received the signal to start firing up. Now suppose that the
broadcast data bus is time multiplexed so that each processor can broadcast data to
other processors in fixed time .slots accordingly to a predetermined schedule. Ordinarily,
processor B will ke able to access the bus and transmit a message to processer A be-
forg the AUXILIARY_SWITCH task on processor A times out. Once in a long while,
however, the timing circuit in a processor may get out of synchronization with the arbi-
tration circuit of the busT and in particular, processor B may miss its turn to access

the bus at the time it is supposed to send a message to processor A to confirm that

the motor is being fired up.' If processor B does not get another turn to transmit until

T For example, this may be caused by an unusually long metastable state in a syn-
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the 100 milliseconds runs out, then the AUXILIARY_SWITCH task. will assume that the
motor has not been fired and turn off the switch, and a safety rule will be violated if
the motor has actually been started.

The above example brings to focus a dilemma. On the one hand, we have rejected
the use of time-average parameters for characterizing the communication delay con-
straints or the processor allocation problem because they are not precise enough for
meeting stringent timing constraints. On the other hand, a completely deterministic ap-
proach which requires physically distributed subsystems to operate in lockstep is likely
to be too inflexible for the system to be robust even if it is not too tedious to analyze.
From a practical point of view, the last approach may not even be feasible since the
state of a communication system may not always be predictable in the real world. In
the next section, we shall strike a compromise by giving a formulation of the processor
allocation problem which is precise enough for meeting stringent timing constraints and

yet allows some degree of freedom in implementation for improved robustness.

4.2.2 A Robust Formulatibn of the Processor Allocation Problem
We shall treat a communication network connecting a set of m processors { Py
wey Pm } as a node, H which has m input edges and m output edges. The node H may

be thought of as implementing a transmission operation, Hij (an identity mapping with a

h h

input édge to the it output edge if and only if there is a path

h

finite delay) from the it

from the ith

processor to the jt processor. Two or more transmission operations may
be executed concurrently, .subiect to the internal pipelining and other constraints on
the communication network denoted by the node H.

Given the computation requirements of a hard real-time application in terms of the

chronization circuit, an inherent hazard of any system which needs to synchronize two
or more asynchronous subsystems.
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graph-based model (G,T), partition the communication graph G into m disjoint sub-
graphs. Let e be an edge in the communication graph G which connects a node u in
one subgraph to a node v in ano;her subgraph in the partition. Replace every instance
of e in a timing constraint by an instance of the transmission operatoin Hij and the two
edges from u to Hij and frum Hij to v. The processor allocation problem is then to find
a partition of the communication graph G such that the set of timing constraints aug:
mented by the appropriate transmission operations éan be successfully scheduled. Fig-
ure 4.1 illustrates the augmented timing constraints resulting from a straightforward par:

tition of the communication graph of our favorite design example where each of the

five nodes is assigned to a separate processor.
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Timing constraints augmented by transmission operations

A completely deterministic solution to the processor allocation problem is given by

a feasible static schedule for each of the m processors together with a schedule for




executing the required transmission operations in appropriate time slots. As the exam-
ple in the previous section shows, the success of this approach may depend heavily on
the assumption that the processors and the communication network can be kept in
tight éynchronization. To alleviate the impact of this assumption, the processor alloca-
tion problem can be constrained to explicitly provide some slack for the execution of
each transmission operation. This can be done by specifying a release time and dead-
line for each instance of a transmission operation in all the timing constraints so that
the communication network can schedule the required transmission operations dynami.
cally as long as every instance of a transmission operation is executed after its
specified release time and before its deadline. Specifically, let the transmission opera-
tion H connect a node u to another node v in a timing constraint graph C. Assign a
release time, r and a deadline, d to H so that whenever C is activated at time t, then
the operation u and all its predecessors must be executed in the interval [tt+r], H
must be executed in the interval [t+rt+d], and v and its successors must be executed
in the inte}val [t+d,t+dk].. Given m processors, the processor allocation problem is
now to partition the communication graph into m subgraphs and to find an appropriate
set of release-tim;:' and deadline attributes for the tra_\nsmission operations such that the
set of timing constraints augmented by the transmission operations can be scheduled.
(This formu'lation imposes individual release times and deadlines on some of the opera-
tions in a timing constraint graph. However, the complexity of the single processor
scheduling problem is not affected by these additional parameters and in particular, the
kernelized monitor scheduler can again be used simply by initializing the request:times
of the scheduling blocks to the specified release-times instead of at the beginning of a -
period.)

An important benefit of the above approach is that the iraffic load generated by a

partition of the computation can also be expressed as a set of periodic and/or asyn-




chronous timing constraints in terms of our graph-based model. If an instance of a
transmission operation H with release time r and deadline d occurs in a timing con-
straint C which has period p, then the scheduler of the communication network must
satisfy the corresponding timing constraint. which consists of an instance of H and has
release time, deadline and period attributes equal to r, d and p respectively. To be pre:
cise, a distinction should be made between two instances of a transmission operation if
the two transmissions involve different variables. If 'the outputs of two or more opera-
tions need to be transmitted from processor i to processor j in the same time interval;
then as many instances of the transmission operation Hij must be scheduled in that in-
terval. Figure 4.2 illustrates the timing constraints imposed on the communication net-
work by the partition shown in figure 4.1 where each of the five nodes of the design
example is assigned to ;separate processor. The release times and deadlines on indi-
vidual transmission operations are chosen to allow at least 5 milliseconds for each

transmission operation to complete.
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Timing constraints on transmission operations
induced by a'locating a function to a processor

(Legend: r- release time; d - deadline)

" Instead of using simple parameters such as throughput and delay, we can now

characterize more precisely the capacity of a communication network for the hard real-

time environment by the range of timing constraints that it can accomodate. In the next:

section, we shall illustrate our modelling approach by investigating the use of a broad-

cast data bus as an interconnection mechanism for multiple processors.
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4.3 Scheduling Mechanism for The Broadcast Data Bus

Inasmuch as the broadcast data bus is a very common interconnection mechanism
in computer systems, it is important to investigate in some detail its use in the hard
real-time environment. Electrically, a bus may be viewed as an OR-gate which has an
input from each processor connected to the bus and the output is monitored by all the

h h

processors. A transmission operation from the it processor to the it processor is ac-

complished by designating the ith processor as the sole transmitter on the bus for an

h processor broadcasts data on the bus and names

interval of time during which the it
the jth processor as the recipient. Obviously, only one transmission operation can be
executed at any one time. Given a set of timing constraints, i.e., a set of transmission
operations with the associated release time, deadline and period attributes, our problem
is to come up with a scheduling mechanism and decide if all the timing constraints can
be met.

Until recently, data busses have been designed to support data transfer between a
single procé'ssor, the main memory, and various peripheral equipments. Access to the
bus is usually decided by a fixed set of priorities preassigned to the devices connected
to the bus. While. this arrangement has been adequa_\te when there is only one proces-
sor, it is not suitable for a mulfiprocessor system in the hard real-time environment
where bus access should be decidéd by the relative urgency of the computation being
performed by the processors at the moment. In particular, a mechanism is required to
enforce a bus access policy that is optimal with respect to the timing constraints result-

ing from a partition of thé real-time computation. Such a mechanism is described

below.

4.3.1 The Earliest Deadline Algorithm for Bus Scheduling

The basic idea is to permit the transmission operation with the nearest deadline to




be executed first. To achieve this, the current bus access priority of the ith processor
is set inversely proportional to the time remaining before the nearest transmission
operation, Hij is due. The processor with the highest priority will then be granted ac-
cess to the bus for the next time slot. This is of course the earliest deadline algorithm
for single processor scheduling which has been shown to be optimal. To verify-that a
set of timing constraints can be met, wé can simply run a siﬁulation of the bus re-
quests for a time interval at least as long as the LCM of the periods of the timing con-
straints. (All the asynchronous timiﬁg constraints are assumed to have been replaced
by "equivalent" periodic constraints when they :are scheduled on individual proces-
sors.)

The adoption of a dynamic scheduling algorithm such as the earliest deadline al-
gorithm renders a multir;rocessor system more robust. For example, if a processor is
slightly behind and misses a turn tp contend for the bus, a less urgent transmission
operation may be executed instead, but the processor with the highest priority will be
able to trar;'smit in the next time slot and thus the more urgent transmission operation
will not be delayed for an unduly long time.

To enforce the sharing policy, there must be a mechanism which permits only the
processor with the highest priority to gain acéess to the bus. This can be achieved by
a central arbiter which monitors the current priorities of all the contending processors.
Since the nur'nber of priorities needed to encode the values of deadlines at run time is
likely to be high, either the priorities must be transmitted to the arbiter seriaily or else
the number of bus control lines required may be unacceptably high. Fortunately, only a
reasonable amount of hardware is necessary to implement the earliest deadline algo-

rithm as shown below.
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4.3.2 The Distributed Arbitration Hardware
This bus arbitration mechanism seems to have been discovered and rediscovered
by a number of researchers (including the author) and a variation of it has been pro-
posed as a standard for the IEEE S-100 bus. However, none of the previous proposals
has suggested the use of dynamic priorities for the hard real-time environment. The ar-
bitration mechanism has the following nice properties:
(1) Control is distributed. Bus arbitration is achieved by concensus and does not
depend on a central arbiter. -
(2) The time required to resolve bus conflicts is bounded. Furthermore, the time bound
can be a logarithmic function of the maximum deadline.
(3) It is not necessary to have a global clock. Local clocks are sufficient provided that
they can maintan a certain degree of accuracy within a short time period; long

term drift is automatically corrected by the feedback mechanism in the scheme.

For ease of explanation, we shall assume that all the processors are OR-wired to a
number of control lines that are run parallel to the data bus. The number of control

lines needed is the smallest integer equal to or bigger than log, (G a,-1) Where dm‘ax

max
is the maximum value of the deadlines, although it will be seen that only one control
line is sufficient. For the moment, let us assume that there are n control lines which
are all accessible to some coﬁtrol logic on each processor board whose function will
become apparent. The control logic can assert a logical "1" on a control line. If none
of .the processors asserts a logical "1" , the control line is in logical state "0‘;. In

practice, this can be implemented by means of open collector gating or tri-state logic.

Each priority is represented by its binary representation PnPp.1--Py Where each p; is ei-

ther a 1 or a 0 and Pn is the most significant bit. (We can use the one's complement

of the nearest deadline as the priority.) In general, bus conflict resolution takes n
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“clock cycles". For ease of explanation, we shall assume that a global clock is avail-
able. This restriction will be removed by local synchronization mechanisms to be
described later. At the beginning of the first clock cycle, all the contending processors
must assert their own priorities on the n control lines. If a processor does not assert its
priority on the control lines in the first clock cycle, then it must not participate in the
rest of the conflict resolution process. At the end of each clock cycle, every contend-
ing processor makes its own decision to drop out of the contention process by com-
paring its own priority with the state of the control lines: €Cn.1-C1- A contending
processor withdraws if and only if it can be inferred that its priority is lower than that
of at least one of the contending processors. A processor signals its withdrawal by
ceasing to assert its priority on the control lines. Specifically, every contending proces-
sor execﬁtes the following piece of program in synchronization with all other contend-

ing processors.

/*COMMENT
Withdraw if the next sugnlflcant priority bit is 0 and the correspondlng
control line is 1; R

*/
for i:= n step -1 until 1 do
begin \ . - ;..
if ( p(i)=0 and c(i)=1 ) then withdraw
else wait for next "clock cycle"
end ;

As an example, consider the case of three control lines and five processors are
contending (The priorities are in ascending order: 001 010 011 100 101). After the first
clock cycle, 001 010 and 011 withdraw. After the second clock cycle, both 100 and
101 remain in contention. At the end of the third clock cycle, 100 withdraws and 101 |
emerges as the winner. The successive states of thé control lines are shown in Fig.

43
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Example of distributed contention on a broadcast bus

It is easy to see that this algorithm works by simple binary elimination and there-
fore requires time proportional to the number of control lines. In the case two or more
processors have the same priority, i.e., they have equally urgent transmission opera-
tions to exécute. the conflict can be resolved by another round of distributed arbitra-
tion in which each remaining processor can use a unique preassigned priority. (It is in
fact possible to break a tie by enforcing a fair sharing policy which does not rely on
preassigned priorities. See [MOK & WAR 79)].) Since the priorities are compared one bit
at a time, we can in fact ;Jse only one control line if the contending processors are
sufficiently synchronized to make the decision to withdraw from contention or noi at
about the same time.

In the implementation described above, the actions of the contending processors
are synchronized by means of clock cycles. In a network environment, the use of a sin-
gle global clock may not be desirable since the propagation delay of the bus may in-
troduce significant signal skew. However, propaéation delay is a transient phenomenon

which will not pose any problems if the clock cycles are long enough so that the con-
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trol lines achieve a steady state throughout the system. This minimum clock cycle is a
function of the propagation delay = (i.e., the time it takes a electrical signal to travel.
from one extreme to another extreme of the physical bus). In particular, if the bus has
been idle for some time, then the first clock cycle will be established by the first pro-
cessor to assert its priority on the control lines. However, the new state of the control
lines may not be observable by another processor at the other extreme of the bus until
7 time units later. The signals from the latter processor will take another 7 time units to

FIN L
reach .the ﬁl;St processor which must therefore wait for at least 2r time units before
making the first decision to withdraw or not. To allow for a margin for error, we may ré-
quire each processor to wait for 8427 time units before making a decision. For n lines,
the maximum time for bus conflict resolution is therefore n(8 +27) time units. It should
be noted that since the processors are synchronized at the first clock cycle of each
contention phase, drifting of the local clocks of individual processors will not accumu-
late with time. However, all local clocks must not be allowed to drift more than & time
units within the entire bus conflict resolution phase.

If extra reliability is required, we can simulate, by means of a pair of clock lines a
"global clock" which is jointly maintained by all the contending processors. Ordinarily,
the two clock lines are in opposite logic states (i.e., either 10 or 01). At the beginning
of a contention phase, the processor which establishes the first clock cycle by assert-
ing its priority on the control lines also attempts to complement the clock lines. The
clock lines will therefore momentarily stay in the 11 state. The transition to the 11
state is a signal for all bus contenders to change the state of the control lines. All pro-
cessors signal ready by attempting to complement the clock lines which will remain in
the 11 state as long as one processor is not yet ready. Synchronization is completed.

when all the contending processors have complemented the clock lines which will then



be in a different 10 or 01 state.

The decision to withdraw from contention can then be made when the clock lines:
have settled down to a new (either O1or 10) state. Since it takes 7 time units for the
11 state to propagate from one extreme of the bus to the other and another r time un-
its for the new state to settle, synchronization can be achieved in 27 time units. in a
noisy environment, spurious signals may cause the clock lines to be in the transiiory -
11 state for very brief moments. Noise immunity can be improved by requiring the con--
tending processors to maintain the stable (01 and 10) states for § time units where §ig
some reasonable system parameter. The maximum time for bus conflict resolution is the:
same as before. !f two contending processors attempt to set the clock lines to opposite
logic states, a deadlock in the transitory state "1 will occur. This situation is in theory
impossible because one of the processors must have failed to observe on the clock
lines a 11 state followed by one which is opposite to the state the processor is sup-
posedly maintaining on the same clock lines. I any case, permanent deadlocks can be-
avoided by a time-out restriction on the 11 state. More robust mechanisms using mul-

tiple clock lines and better encoding schemes are also possible.

4.4 Complexity of the Processar Allocation Problem

Since the processor scheduling problem is already NP-hard, it is unlikely that the .
processor allocation problem for the hard real-time environment will have an efficient
solution. In fact, the problem of finding a feasible partition is in itself a hard problem in-
the sanse that it is difficult 'even if the scteduling problem can be restricted to éimple
cases for which trivial solutions are available. As evidence, we shall show that the pro- -
cessor allocation problem is NP-complete even for the case where only two processors
are available and the processor scheduling problem resulting from any partition is easy.

We shall make use of a restricted version of the MINIMUM CUT INTO BOUNDED



SETS problem which is known to be NP-complete, e.g., see [GAR & JOH 79]. An in-
stance of this graph problem is given by a positive integer K, an undirected graph of N .
vertices with two special vertices s and t. The decision problem is to determine wheth-
er there is a partition of the vertices of the graph into two disjoint subsets V1. V2 of
equal size (i.e., each set has N/2 vertices) such that s€V1 and t€V2 and the number of
edges which have an endpoint in both ‘J1 and V2 is no larger than K.

This graph problem can be reduced to a restricied version of the processor alloca-:
tion problem as follows. The corresponding communication graph contains a node for .
each vertex in the graph problem plus a special node v'. All nodes have unit computa- -
tion time. Every node v in the communication graph is supposed to denote a function.
which computes n different output variables where n is the number of edges connected
to the vertex v in the gr.aph problem. The edge set of the processor allocation problem
contains n edges from node v to the special node v'.

The timing constraints are all periodic and have the same period equal to 1+N/2.
For each r;bde except v', we create a timing constraint which consists of a single in-
stance of the node. The deadlines of these timing constraints are set to N/2 except for
the nodes s and t for which the deadlines are set to 1. For each edge conqecting the
vertices T v]- in the graph problem, we create< a timing constraint whose deadline is set
to 1+N/2. Each of the tirﬁing constraint graphs has three nodes, Vir Yp v', and two
edges, one f;om each of v vi to v'. An edge from a node u to the node v' denotes
the transmission of a unique output variable from u to v'.

There are two processors which are connected by a bus. If two nodes Vi Vi ap-
pear in a timing constraint and they are allocated to separate processors, then a
transmission operation must be performed over the bus to send the appropriate output

variable of one of the two nodes to the other 'processor so that the operation v' can

be executed. Otherwise, the ouiput variable is transmitted via a shared variable on the




same processor and no additional communication overhead is incurred. Each proces-
sor is assumed to conduct a number of bus transactions in between processing data
and the maximum capacity of the bus is such that K or fewer transmission operations
from one processor to anéther can be completed in a time interval of length N/2-1.
The decision question of the processor allocation problem is whether there is a parti-

tion of the communication graph such that all timing constraints can be met.

Theorem 4.1
The restricted version of the MINIMUM CUT INTO BOUNDED SETS pioblem can be

reduced to the above processor allocation problem.

Proof

Notice that the timing constraints are set up such that both the operations s and t
must be executed simultaneously right at the beginning of each period. Hence, they
must be allocated to separate processors. Also, an instance of every operation must be
executed in the first N/2 time units of every period so that the nodes must be parti-
tioned into two sets of equal size and executed on separate processors. The operation
V' must be executed in the last time unit of every period on either one of the proces-
sors.

If the instance of the MINIMUM CUT INTO BOUNDED SETS problem has a solution,
then we can allocate the two subsets of the corresponding partition to separate pro-
cessors. By our construction, two nodes appear in the same timing constraint if and
only if they are connected by an edge in the graph problem. Hence, a solution parti-
tion can split up at most K pairs of nodes which appear in the same timing constraint
and thus at most K transmission operations need to be performed over the bus In a
period starting say, at time r, all the timing constraints can be met by executing the

operations s and t in the interval [r,r+1] on separate processors, the operation V' in




[r+N/2,r+N/2+1] on either processor and the rest of the N-2 aperations in the inter-
val [r+1,r+N/2]. Since the bus has the capacity for K transmission operations in the
interval [r+1,r+N/2], the communication requirements can also be met and the parti-
tion is a feasible solution to the processnr allocation problem.

Conversely, if the processor allocation problem has a solution, then no more than
K transmission operations are required during each period. Since each transmission
operation sends a different output variable of a node from one processor to the other,
at most K edges can connect two nodes which have been allocated to different pro-
cessors. Hence the two sets of nodes on the two processors correspond to a feasible
partition for the graph problem. QED

In practice, there are probably additional constraints on the processor allocation

problem (e.g., certain operations must be performed on specific processors) so that ac-

ceptable suboptimal partitions can be found by search algorithms which take advan-
tage of the additional constraints to narrow the search space. While a considerable
amount of" research has been done in developing heuristic graph partitioning algo-
rithms, e.g., [KER & LIN 70], these techniques are not immediately applicable to the
processor allocafion problem since we have shown_ that communication constraints in
the hard real-time environment are not exactly expressible in the form of algebraic ine-
qualities in\'/olving the edge weights of a graph. However, they may be used to guide a
search algorithm if every edge of the communication graph can be assigned one or
more parameters which reflect the multiple constraints on the traffic generated along an

edge, e.g., one parameter ‘for the volume and another for the urgency of the traffic.

Graph partitioning techniques may then be used to satisfy multiple'objectives imultane-

ously and eliminate candidate partitions which are unlikely to meet all the timing con-

straints.

M e
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4.5 Hierarchical Approach to Resource Allocation

For a large system consisting of a variety of special processors, it is unrealistic. to
distribute the required computation by performing a global optimization involving all
system resources. It should be noted that the graph-based model can be used to
model the global resource allocation problem hierarchically. Specifically, a nods in the
communication graph need not represent a simple function element but may be used
to denote the communication graph of a subsysterﬁ. Similarly, an edge in a communi-
cation graph may denote the data path for transmitting complex data structures. More
importantly, the formulation of the processor allocation problem discussed in this
chapter can be applied to every level of a hierarchy of resource allocation -problems.

The advantages of a uniform problem representation are obvious.




Chapter 5

Automation of Software Design

5.1 D'esign System for Hard Real-Time Software

The goal of our research is to provide a methodology and associated tools to au-
tomate the design and maintenance of hard real-time system software. In particular, our
work has been largely ‘motivated by the development of the experimental software
design system CONSORT (CONtrol Structure Optimized for Real Time) which has been
implementedT at MIT [WARD 78]. CONSORT has a graphics interface which allows a
user to compose the block diagram of a control system by connecting appropriate
input/output ports of function blocks that are instantiated from a library of software
modules. The user can specify latency (asynchronous) timing constraints on port-to-
port paths in the block diagram and the CONSORT compiler will attempt to generate
object code which meets all the specifications. If CONSORT is unable to guarantee that
all the timing constraints can be met, the user will be duly notified. As a "toy" experi-
ment, this design system has been successfully used to generate a software-
implemented cont;'oller which drives a pair of motors to balance an inverted pendulum.
The inverted pendulum is held by a gimballed holder on a cart which is free to move
within the boundary of a square frame; the software controlier is a microprocessor as-
sembly program which has been generated automatically from the block-diagram
representation of the control problem.

In this chapter, we shall review some implementation aspects of CONSORT and

rThe design team of CONSORT was under the leadership of Professor Stephen Ward
and included John Pershing, Tom Teixeira and the author, with able assistance from
Chris Cesar who helped baby the inverted pendulum balancer and from Jay Wahid who
contributed his expertise in control engineering. A video tape of the “toy" experiment
(balancing an inveried pendulum with CONSORT) has also been made.




discuss various software/hardware mechanisms which will facilitate the construction of

hard real-time systems.

5.2 The CONSORT Design System

There are three main components in'the CONSORT design system: the graphics'
frontend editor, the off-line scheduler and the code generator. The graphics f‘rc.)niend'
editor provides the graphics facilities for a user to enter a block diagram and specify
timing constraints. It also performs syntactic and semantic checks on the functional
specifications in the graphics input. The off-line scheduler attempts to find a feasible
static schedule which a round-robin run-time scheduler will repeat ad infinjitum to satis-
fy the timing constraints. The code generator embeds the static schedule in aﬁ assem-
bly language program for the target microprocessor.

The main database for the design system is a software library which contains a
number of parameterized functions together with their timing and other interface infor-
mation. New functions are manually programmed and entered into the library by run-
ning an adr;\inistrative program which maintains the software library. The organization

of the CONSORT design system is shown in figure 5.1.

5.3 Implementation Ideas

The CONSORT proiect'has largely fulfilled its objectives and has brought forth a
number of idéas for future implementations of software design systems. It has also led
to some ideas for improving the performance of hard real-time systems. We shall sketch

some of these ideas below.’
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Figure 5.1
The CONSORT Design System

£.3.1 The User Interface

Although a graphics interface seems to be an effective means for entering the
description of a control applicéation. it is not very compact for describing large systems.
Furthermore, the specification of timing constraints will not be as easy if there are cy-
cles in the communication graph. This is not a problem with CONSORT since it allows
only acyclic graphs so that the port-to-port timing constraints of CONSORT are unique-
ly specified by a pair of input/output ports. (All the function blocks on a path between
the two ports are automatically included in the timing constraint.) However, this restricts‘

the use of CONSORT for implementing distributed systems since the absence of cycles
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may require some state information to be stored in a shared memory. In a distributed
system, a shared memory may not be available.

In a practical system, a textugl representation seems to be a more realistic choice.
Instead of an Algol-like real-time language, however, the input should be in a higher
level specification language which is as close as possible to the relevant application
domain, e.g., avionics software may be specified in a language like the one developed:
for the flight program specification of the A-7 aircraft by Parnas and Heninger [HENI
80]: An application engineer may then specify system requirements in the language of
his application domain and the domain specific language can in turn be converted into
an instance of our graph-based model by an appropriate translation tool for resource

allocation purposes. )

5.3.2 Automatic Pipelining of Operations

The off-line scheduler of CONSORT generates static schedules which are lists of
operations (procedure calls) and effectively disallows preemption among different Cera-
tions. V\ﬁtho;n further inform'ation about shared variables, this conservative approach is
justifiable on the grounds that different operations may access the same shared vari-
ables and their execution must be kept mutually exclusive so that integrity constrai:ﬁts
will not be violated. (Since CONSORT block diagrams are acyclic,_it is not alwa;'s pos-
sible to make all shared variabies explicit by passing their values from port to pdrt. In
general, CONSORT makes no assump{ion about how information is shared by the
different operations at all.) \Nhen there are operations with long computation times, this
may impose a severe response time penalty.

A clean solution to this problem is to remove the acyclicity restriction on the input
graph so that every shared variable can be associated with a port. A long operation

can then be "pipelined” into a chain of shorter ones such that each stage of a chain
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receives as input the intermediate state of an execution (e.g., in the form of state vari-
ables) from the previous stage. Since there are now no hidden shared varaibles, in-
tegrity constraints will be maintained as long as only one execution of any stage is al-
lowed to be in progress at any time. Ideally, this pipelining of software should be done

automatically by the code generator in conjunction with the scheduler.

5.3.3 Detection and Queueing of Activation Conditions

One of the objectives of CONSORT is to demonstrate that external interruptsAar‘e,
not essential to a model of real-time computation and we have iaken care that the im-
plementation of CONSORT is faithful to its goal, e.g., keyboard 1/0 at the operator ter-
minal is treated just as another asynchronous timing constraint and scheduled' accord-
ingly. If an external signal (e.g., from a sensor) changes value, then the timing con-
straints that require sampling the signal will be automatically activated. CONSORT as-
sumes that every external signal is continuously changing and an activation of an asyn-
chronous ti_ming constraint can occur as soon as the deadline of the previous activa-
tion expires: Hence, for analog signal processing, timing constraints are activated at.
their specified maximum rate.

In general, a user may want to perform certain computation when some evenf oc-
curs. The occurrence of an event may be recorded by the hardware or it may
correspond to the output of some boolean operation being evaluated to true. In the
former case, the conventional approach for activating the relevant timing constraint is
to notify the processor by §etting a hardware interrupt flag. In our approach, the pro-
cessor need not respond to the interrupt immediately since the on-line scheduler will
schedule an execution of the computation activated by the event before the specified

deadline. The occurrence of an event, however, must still be detected and held by the



hardware until the processor is free to attend to it.

A useful architectural concept that may be incorporated into computers for real-
time applications is to augment the interrupt circuitry with an associative memory chip
so that an external device hay request an interrupt by writing its own address into an
empty location in the associative memory. The on-line scheduler can then determine
whether a particular event or group of events has occurred by simply querying the as-
sociative memory at an opportune moment Iater.'r From a scheduling point of view,
processor interrupts that demand immediate attention are undesirable since they
severely curtail the freedom of the on-line scheduler to allocate computation time
based on an analysis of the speéified stringenf timing constraints. They are also a
prime source of robustness problems in practice, e.g., if the hardware flag of a high
priority interrupt is stuck, then all lower priority interrupts may be permanently blocked.
This is especially disastrous for the hard real-time environment where it is essential not
to permit any one device to monopolize the use of a resource.

In the ‘graph-based model, a minimum period must be specified for every asynchro-
nous timing constraint so that two or move activations of the constraint cannot occur
arbitraily close to one another. In practice, it may not be pussible to specify the
minimum period for an asynchronous timing constraint accurately. For example, while it
seems reasonable to specify a minimum period of 100 milliseconds for reading an input
character from a human typist (10 key strokes per second), an agile operator may make
two or more key strokes in 100 milliseconds every now and then. A solution to this

problem is to provide a hardware buffer to queue up the input (as is done in most

T For soft real-time systems, a simple FIFO memory is adequate for storing pending in-
terrupts. From an architectural point of view, the use of an interrupt buffer is also con-
sistent with the pipeline structure of high performance processors since saving the in-.
stantaneous state of a complex piplined execution unit in response to an interrupt Is
likely to be an enginecring nightmare that is best postponed to more convenient mo-
ments at the choice of the computer architect.



UART chips). In general, a buffer of size n permits n activations of an asynchronous
constraint with period p to occur arbitrarily close together in an interval of length >np.

In the case where a user wants to perform certain computation whenever the out-
put of some boolean operation is evaluated to TRUE, either a periodic or asynchronous
timing constraint may be used. Specifically, a periodic timing constraint may be
specified to execute the relevant operations that affect the output of the boolean
operation and perform ‘the required computation if the boolean output evaluates to
TRUE. As far as the scheduling problem is concerned, the value of the boolean output
is irrelevant since in the worst case, the required computation must be performed in
every period. Alternatively, the user may specify an asynchronous timing constraint
which is activated if the execution of the boolean operation yields TRUE. There .is a se-
mantic émbiguity here since the boolean operation may never be executed at all if it
does not occur in any other timing constraint. The natural interpretation of such a tim-
ing constraint is that its graph must include all the operations that may affect the
boolean condition plus the required computation if the condition is TRUE, and this
asynchronous timing copstraint is automatically activated as soon as the specified
minimum period éxpires. To determine whether the “activation condition" has occuired
(i.e., whether it is necessary to perform the rest of the computation), a flag may be set
whenever the boolean operation evaluates to TRUE and reset after the required compu-

tation has been executed.

5.3.4 Dynamic Computati‘on Requirements

In the formulation of the graph-based model, the computation requirements of a
system have been assumed to be static, i.e., the same set of timing constrz” 5 are to |
be satisfied throughout the operation of the system. ’While this is a fair assumption for

control applications with a static structure, there are many systems whose computation



requirements often vary with time. For example, the inverted pendulum balancer men-
tioned earlier may start from a rest position with the pendulum leaning at an angle
against a mechanical support. To bring the pendulum to the vertical position, a jerk

must be applied to push the cart carrying the pendulum toward the mechanical sup-

port. Thus two different sets of control laws are needed to bring the pendulum. to the
vertical and to keep the pendulum in balance after it has attained the vertical position.
For this purpose, CONSORT allows different timing.constraints to be enacted by allow-
ing the user to define different phases for a real-time application.

A phase is a set of timing constraints which must be satisfied when the system is
operating in a certain region of its control space where a unique set of control laws
must be implemented. There is an initial phase in which a system is started. A phase
transition is triggered wl';en the output of some selected boolean operation evaluates to
TRUE. When this occurs, all remaining operations of activated timing constraints are
then completed and the on-line scheduler starts to satisfy a new set of timing con-
straints after executing an initialization procedure. During a phase transition, the inter-
nal states of all function blocks will normally carry over to the new phase unless they
are explicitly modified by the initialization procedure. Since the off-line scheduler can
compute a different static schedule for each'phase, no new scheduling problem is in-
troduced. The inverted peddulum was successfully balanced starting from a rest posi-
tion by using. CONSORT to implement two sets of control laws in two phases.

In a more general setting, there might be a need to enable and disable an indivi-
dual timing constraint at any time during the operation of a system, e.g., in an air
traffic control system, a timing conswaint may be enabled to monitor an airplane which
has just come under the jprisdiction of the system or a timing constraint may be dis-
abled after the corresponding airplane has left. In such cases, a limit must be .t on

the maximum number of timing 6onstraints that the sys;tem can be guaranteed to satisfy




at any time and the scheduling problem for the worst case can then be solved.
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Chapter 6

Conclusion

6.1 Summary of Thesis

This thesis can be roughly divided into two parts. The first part (chapters 1-3) con-
siders two mtlzdels for expressing the computational requirements of hard real-time sys-
tems: the process models and the graph-based model. The related real-time schedul-
ing- problems for a single processor have been examined in detail fo delineate the‘
boundary between the efficiently solvable and computationally intractable.problems. The
graph-based model which we have proposed has been shown to be more amenable to
the development and maintenance of hard real-time systems. The second part of the
thesis (chapter 4-6) deals with the more pragmatic aspects of implementing har.d real-
time systems. A robust formulation of the processor allocation problem for distributed
systems has been given and varioué aspects of CONSORT, a design system for hard
real-time software have been discussed. The following is a summary of the salient
results in each chapter.

Chapter one.emphasizes the advantages of ha.rd real-time systems over the con-
ventional soft real-time approach. The implications of stringent timing constraints on
system design and maintenance are discussed, and past research in real-time system
design methodologies is reviewed.

Chapter two formalizes the real-time scheduling problems for process-based
models. The unrestricted ue of semaphores for cocrdinating concurrent proc&cées is
shown to quickly lead to NP-hard scheduling problems. Schedl)ling algorithms are -
given for the construction of on-line schedulers which allow processes to synchronize
with one another (by using the deterministic rendezvous) and alse %o implement mutual

exclusion when the critical sections are of the same length (by using kernelized moni-
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tors). The implications of the scheduling results on the design of real-time programming
languages are also discussed.

Chapter three starts with an examination of the semantic gap between process-
based models and the computational requirements of the hard real-time environment. [t
is seen that the decomposition of the required computation into processes is likely to
cause substantial maintenance problems when design parameiers are modified unless
an inefficient decomposition can be tolerated. We tﬁen introduce a graph-based model
which is semantically closer to the hard real-time environment. The latency scheduling
technique for meeting asynchronous timing constraints is formalized within ihe graph-
based model. An upper bound on the length of feasible static schedule if one exists is
derived. The problem of computing a static schedule is, however, NP-hard even for
very restricted cases t;ut is efficiently solvable if the computational demand is
sufficiently light. A heuristic algorithm for scheduling both periodic and asynchronous
timing constraints is also given.

Chapter four demonstrates the practical hazards of implementing a distributed hard
real-time system with the assumption that the operations of ali subsystems can be com-
pletely synchronized. We then present a robust formulation of the processor allocation
problem which is to a certain degree resiliant.to the indeterministic internal behavior of
the communication subsystém. The related scheduling problem for a broadcast bus is
solved as an .example to iilustrate our approach. The general processor allocation prob-
lem is shown to NP-complete even if the related single processor scheduling problems
can be ftrivially solved. We note, however, that the subproblems resulting from a pro-
cessor allocation can all be expressed in terms of the graph-based model that we have
introduced. Moreover, the graph-based model can be used to give a hierarchical formu-
lation of resource allocation problems in the hard real-time environment.

Chapter five reviews the CONSORT design systen{ which allows a user to specify
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the computational requirements of a hard real-time application in terms of a block di-
agram which is a restricted version of our graph-based model. Various software and
hardware techniques that can improve the design of hard real-time systems are dis-
cussed.

Chapter six is the conclusion and explores avenues for further research. The po-

tentiai of the domaih specific model approach for software automation is stressed.

6.2 The Domain Specific Model Approach to Software Automation

While past research in software engineering has emphasized the disciplin'ed use of
vertical (hierarchical) decompositon. and horizontal (modular) decomposition techniques
to structure large software system, the resulting performance issues have been largely
ignored in the development process. Thfs is usually justified by the overiding need to
control the complexity of a désign. (It has also been argued that the apparent com-
plexity of software systems is dictated by the need to use resources efficiently, i.e., the
“"kludges" are there for performance reasons, and not only because of a lack of discip-
line.) Unfortunately, a lot of useful information which can be used to guide optimization
efforts may be irretrivably Iqs:t by the time a design has gone through layers of abstrac-
tions so that subsequent optimization car only be applied to Aremove bottlenecks when
they are located. This is usually accomplished by analyzing the frequency of primitive
operations which are at the 60ttom layer of a hierarchical design and hence little op-
timization is done at the higher levels of the design. The performance penalty for failing
to gxploit these opportunities may not be negligible for some systems, espeically hard
real-time applications.

The introduction of the graph-based model in this thesis illustrates a potentially
powerful approach to building software systems that also allows performance issues to.

be considered at every level of the development process. In general, we want to find a
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model that is proper for the application domain of interest. A model is proper with

respect to an application domain if it has the following properties:

(1) The model must be expressive in the sense that there is an algorithm for translating
every instance of a design problem in the application domain into an instance of
the model.

(2) The model must be natural in the sense that it does not introduce any artificialities
which would preven; an instance of the model from being implemented because of
.unnecessary constraints imposed by the mode! on resource allocation.

(3) The model must be implementable in the sense that every instance of the model in-
duces a set of well defined resource allocation problems the solution of which will
yield a feasible solution of the design problem.

For hard real-time applications, we have seen that process-based models do not
satisfy the second condition inasmuch as it is impossible for a process decomposition
algorithm tg translate a design problem into a feasible set of processes without know-
ing the pre;:ise performancé characteristics of available system resources. This is indi-
cative of a loss in information that is useful for optimization purposes when a design
problem is translated into a p?ocess model. in constrast, the graph-based model does
not suffer from the same problems. |

In a hierarchical design ﬁiethodology. substantial useful information which may be
exploited to guide optimization efforts can be retained if a proper model is constructed
at every level_ of a top-dowrg design so that demand on resources can be characterized
at evéw level in terms of the more primitive computational events at the next lower lev-
el. More importantly, it inay be easier to meet system specifications by designing ap-
propriate allocation strategies for (abstract) resources. at every design level so that per-

formance objectives imposed from a higher level can be met.
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6.3 Avenues for Further Research

There are two directions of research which need to be pursued to further the state
of the art in designing hard real-time systems. First, although a feasible run-time
scheduler exists if the demand on processor time is not too heavy (K 50%), better
heuristic algorithms are needed to solve the scheduling problems of the graph-based
model for both periodic and asynchronous timing constraints. While we have shown
that the processor allocation problem can be factﬁred into a number of subproblems
which are all expressible in terms of the graph-based model, specific communication
networks need to be characterized for their capacity to meet stringent timing con-
straints and this immediately spawns a large number of interesting problems.

The second direction of research is to experiment with various approaches for
supporting the iterative. design cycle which an application engineer usually goes
through to arrive at & final design. More specifically, we have formulated the scheduling
problems so that either a feasible on-line scheduler is found or the user is told that a
feasible implemenation cannot be found. It would be much nicer if we can give the
user more feedback }hfprmation about the tradeoffs that can be made to arrive at a
feasible solution. Obviously, there is a lot of work that needs to be done in this area.

Finally, we have not addressed the probiems of system failure and recovery which
must be dealt with in any real-time system, e.g., how should we design hard real-time
software so ihat a system can resynchronize in due time after the hardware has been
interrupted by a brief power failure. This is a complex issue for which a suitable formal
framework is especially lacking in the case of the hard real-time environment. It would
be interesting to see if system reliability problems can be approached from the top by
using a computation model similar to the graph-based mode! in this thesis. However,
we have only a few tentative ideas about how system reliability can be assessed by

considering interruptions to soft{raare functions and relate their significance to hardware
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Appendix

A Summary of Scheduling 'i'erminology and Results

For ease of reference, we provide a summary description of the two major real-
time computation models discussed in this thesis and their related scheduling problem;.
Although deterministic scheduling problems have been widely studied by work.ers: in‘
diverse fields such as computer science, operations research, industrial engineering'
(see [LAG et al 81] for a computerized classification and [BRU et al 75] for exten‘-'
sive survey of machine sequéncing complexity results), the usual formulation of
machine scheduling problems is not directly applicable to the real-time schedtzjli;g‘
problems that are of interest to us. The scheduling results are for the single p.rocesso;
case only. While multiprocessor scheduling problems are of considerable theoretical in;
terest, they are somewhat unrealistic unless communication costs and robustness con-

siderations can be conveniently ignored. In general, the processor allocation problem

for distributed systems is NP-hard (ref. Theorem 4.1).
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Process-based Model
A process model M = Mp UMS is a finite set of processes. A process T = (c,p.d)
has three non-negative integer parameters: ¢ (computation time), p (period), d (dead-
line) with c<d<d.If T € Mp, then it is automatically requested at time = kp for every
non-negative integer k (T is a periodic process). If T €T, then it can be requested (by
an external event) at any integral time instant t, but two successive requests must be
at least p time units apart (T is a sporadic process).
A process T = (c,p,d) is schedulable if at a request-time t, T is executed on a
processor for c time units in the interval [t, t+d). Process premmptions are allowable
only at integral time instants and hay be subjedt to additional scheduling restrictions
imposed by communication primitives as follows.
The basic communication primitive for interprocess coordination is the rendezvous
command which takes the name of a process or a monitor as its argument. When a.
process T executes a rendezvous with another process T' as argument, T is suspended
until T' also-executes a rendezvous with T as argument (This is a synchronization con-
straint). On the other hand, when a process T executes a rendezvous with a monitor
as argument, then the process is suspended until the critical section, i.e., the program-
of the monitor has been executed in response to the rendezvous (This is a mutual ex-
clusion conétraint). A critical section may be executed in response to a rendezvous
from a process at any time, but only one instance of the same monitor can be execut-
ed at any one time.
" The following are the key scheduling results:

(1) In the absence of any scheduling constraint imposed by communication primitives,
a process model can be scheduled optimally at run time by any combination of the.
least slack and earliest deadline algorithms. (ref. Theorem 2.1)

(2) When there are mutual exclusion constraints, a priori knowledge of the request-
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times of the sporadic processes is necessary for optimal scheduling. However, a
process model M = Mp UMs is schedulable without a priori knowledge of request-

times if M' = Mp UM'p is schedulable where M'_ is an appropriate set of periodic

p
processes derived Ms’ (ref. Lemma 2.3)

The following results apply to a process model M = M UM$ where Ms = {} (the.

p

null set) or v/here Ms has been replaced by an appropriate set of periodic processes. -

(3) When there are mutual exclusion constraints and the critical sections have different
-computation times, then the problem of finding a feasible schedule is NP-hard even -
for a very restricted version of the scheduling problem. (ref. Theorem 2.4)

(4) When there are synchronization constraints but no mutual exclusion constraints,
then the earliest deadiine algorithm can be modified to schedule the processes on- -
line by using a precomputed database. (ref. Theorem 2.6)

(5) When there are both synchronization and mutual exclusion constraints, and the
computation times of all the critical sections are the same, then the kernelized mon-
itor scﬁ'eduler may be used to schedule the processes on-line by using a precom-
puted database. (ref. Theorem 2.7)

There is a sémantic gap between process-based_ models and the computational re-

quirements of the hard real-time environment and this causes substantial efficiency and

maintainability problems. The graph-based model eliminates these problems.
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Graph-based Model

A graph-based model M is an ordered pair (G,T) where G is a communicatiosn
graph and T is a set of timing constraints. Specifically, G = (V,E,WV) is a digraph
(which may contain cycles) where V and E are respectively the node and edge sets
and Wy, is a function which assigns a non-negative weight to each node €V. T = Tp U
Ta is a finite set of timing constraints each of which is a tuple (C,p,d) where C is a
timing constraint graph, p and d are respectively tﬁe non-negative integer period and
deadline of the timing constraint.

A timing constraint graph C is an acyclic digraph which is compatible with the:
communication graph G. We say that the graph C is compatible with the graph G iff
there is a mapping h such that: (1) if v is a node in C, then h(v) € V; and (2 Ifeis
an edge from a node u -to another node v in C, then h(e) is an edge from h(u) to h(v)
in E. (A timing constraint graph is meant to define the precedence relation of the com-
putc. _.al events that must occur in order to satisfy a timing constraint. The nodes and
edges of .'a timing constraint graph denote respectively the execution of the

corresponding functional elements and transmission of data in the communication

- graph:)--The -computation time of a timing constraint (C,p,d) is the sum of ali the

weights of the nodes in C.

If a timing constraint (C,p,d) € Tp, then it is activated automatically every p time
units, startiné from time = O (The timing constraint is periodic). If (C,p,d) €Ta' then it
can be activated at any integral time instant t with the provision that two successive
activations of the same timing constraint must be at least p time units apart (The timing
constraint is asynchronous). If a timing constraint (C,p,d) is activated at time = t, then
the timing constraint graph C must be executed in the interval {t, t+d]. A timing con-
straint graph C is said to be executed in a time interval | if a subset S of the (multi)set

of functional elements that have been executed in | forms a partial order such that:
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(1) There is a bijective mapping between the functional elements in S and C; (2) Under
this mapping, the partial order S is consistent with the acyclic graph C; (3) In the case
where the functional elements are distributed, and if the graph C has an edge from a
node u to another node v, then an execution of C must include the transmission of the
latest output of the functional element u to the functional element v before the
corresponding instance of v is executed in the time interval I. Furthermore, we require
real-time computation to be pipeline-ordered in the sense that: (1) Two executions of
a functional element must have distinct start-times and that the execution which has an
earlier start-time must also finish earlier than the other. (2) Two data transmissions from
a functional element u to another funtional element v must be sent at distinct instants
at the site of u and the earlier transmission must also be received earlier at the site of
V.

A periodic/asynchronous timing constraint (C,p,d) may be mapped into a
periodic/sporadic process (" = (c,~.d) where the body of T' consists of a straight-line
program which is any topological sort of the operations in the timing constraint graph
C. The computation time c of the process T’ is then the computation time of C. In ord-
er to enforce pipeline ordering, we create a monitor for each functional element that
occurs in two or more timing constraints. To improve efficiency, we can reduce the size
of critical sections by software pipelining, i.e., decomposing a functional element into a
chain of sub-functions each of which has the same computation time. (One of the vir-
tues of the graph-based model is that all the data dependencies are made explicit and
hence software pipelining is easier.) The scheduling results for the process-based
model can now be applied to the graph-based model by mapping each timing con-
straint into an equivalent process. However, this approach is inefficient since it does
not take advantage of operations that are common to two or more timing constraints.

The latency scheduling technique for meeting asynchronous timing constraints takes
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advantage of common operations and is formulated in terms of the graph-based model

as follows.

Let M = (G,T) be a graph-based model. An execution trace of a processor is a
mapping F from the non-negative integers to V U{p} where V is the set of functional
elements in G and the symbol ¢ denotes an idle interval. F(i) = u if the functional ele-
ment u is being executed on the processor in the time interval [ii+1]; F(i) = g if the
processor idles in [ii+1). An execution trace F is said to have a latency of k time un-
its -with respect to a timing constraint (C,p,d) iff F contains an execution of C in any
time interval of length >k.

A static schedule is a finite string of symbols in V U{g)}. A static schedule L is
said to have a latency of k time units with respect to the timing constraint (C,p,d) iff
the execution trace which a round-robin scheduler generates by repeating L ad
infinitum has a latency of k time units with respect to (C,p,d). A static schedule L is
said to be feasible with respect to a set of asynchronous timing constraints Ta iff L has
a latency (;'f d time units with respect to every timing constraint (C,p,d) €Ta.

The foliowing are the key results for computing a feasible static schedule for a
graph-based model (G,T) where Tp = {} ie., all the timing constraints are asynchro-
nous. The same results hold if Tp #{}.

(1) Suppose there is an execution‘ trace F which has latency d ‘with respect to every
asynchronous timing constraint (C,p,d) in a graph-based model (G,T), then there
must be a feasible static schedule (finite by definition) with respect to T. (ref.
Theorem 3.6) This result shows that feasible static schedules can always be com-
puted in finite time.

(2) The problem of determining whether a feasible static schedule exists for a graph-
based model (G,T) is NP-hard in the strong sense even for the following two res-

tricted cases:
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(i) All the functional elements in G have unit computation time and all the timing
constraint graphs in T are chains of length 1 or 3. (ref Theorem 3.8)

(i) Every timing constraint graph in T consists of a single operation; all but one of
the deadlines are the same and the functional elements cannot be pipelined into
chains of sub-functions each of which has the same computation time. (ref.
Theorem 3.9)

In general, we propose a heuristic algorithm wﬁich first computes a static schedule
to satisfy the periodic timing constraints and then incorporates additional operations to
satisfy the asynchronous timing constraints. We can also provide a lower bound on
the performance of heuristic algorithms.

(3) If (i) Ewi/di <1/2 where w;, di are the comutation time and deadline of the ith tim-
ing constraint; (ii) [d;/2] 2w;; (iii) all the functional elements can be pipelined, then
a feasible static schedule always exists. (ref. Theorem 3.10)

Unfortunately, static schedules are hard to compute even for periodic timing con-
straints alSrie since we can prove:

(4) The problem of computing a feasible static schedule for a graph-based model (G,T)
where T, = {1} (e, al timing constraints are periodic) is NP-hard. (ref. Theorem
3.11).

The negative results are disappointing in the sense that it ic unlikely that we can

find polynomial-time off-line schedulers. Once we have a feasible static schedule, how-

ever, the run-time scheduler can use it efficiently on-line.
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