iscrete iviat Ja_r_uz_rjj:ﬁ-

for Gomputer <

Gary Haggard John Schlipf Sue Whitesides

Terms Meaning
Sets, Proof Templates, and Induction
xeA x is an element of A
xXeEA x 1s not an element of A
{x :x € Aand P(x)} Set notation
N Natural numbers
Z Integers
Q Rationals
R Real numbers
AR Sets A and B are equal
ACBH A is a subset of B
AZB A is not a subset of B
ACB A is a proper subset of B
AZ B A is not a proper subset of B
b=a & implies a
a< b a if and only if b
AUB A union B
ANB A intersect B
Ly Generalized union of family of sets x
Ny Generalized intersection of family of sets x
Ui, Xi X o WX
M, Xi Xop Al 1
A—B Elements of A notin B
A Elements not in A
A@B (AUB)— (AN B)
P(X) Power set of X
XxY Product of X and ¥
XAy Meet of x and y
XV y Join of x and y
—x Complement of x
T Top
e Bottom
| Al Cardinality of A
zglzm di Gm + -+ an

_Tbnns

4

PANg

pvVg

P—>4q
Pegq

SEX

P #£NP
(Vx)P(x)
3x)P(x)

(Vx € V)P(x)
Ax € V)P(x)
Afi.. j}

|

v

v

(x,y) € RorxRy

R—l
RoS
R+

R*

n = m(modp)
Idy
Leyx
Gty
Gey
[x]
m|n
Rpa S

Formal Logic

Neot p
pandg
porg
p implies g
p is equivalent to g
S logically implies x
Conjecture about complexity
For all x, P(x)
There exists an x such that P(x)
Forallx e V, P(x)
There exists an x € V such that P(x)
Array with elements A[il, ..., Alj]
Sheffer stroke
Exclusive or
Pierce arrow
x is R-related to y
The inverse of the relation R
Composition of relations R and §
u® R
UII;’I° R
i=0
n—m=kpforsomek € N
Identity relation
Less than or equal relation
Greater than relation
Greater than or equal relation
Equivalence class of x
m divides n
Equijoin of relations R and §

Section

2.1
21
2.1
2.1
2.1
233
256
272
272
273
273
273
24
24
29
3.1
321
322
344
344
36
3.1
31
3.1
3.1
3.6
38.1
3.10.2

www.brookscole.com

www.brookscole.com is the World Wide Web site for
Brooks/Cole and is your direct source to dozens of
online resources.

At www.brookscole.com you can find out about
supplements, demonstration software, and student
resources. You can also send email to many of our
authors and preview new publications

and exciting new technologies.

www.brookscole.com
Changing the way the world learns®

Discrete Mathematics
for Computer Science

Discrete Mathematics
for Computer Science

Gary Haggard

Bucknell University

John Schlipt

University of Cincinnati

Sue Whitesides
McGill University

THOMSON
BROOKS/COLE Australia - Canada - Mexico - Singapore - Spain
United Kingdom - United States

THOMSON

——

™

BROOKS/COLE

Publisher: Bob Pirtle

Assistant Editor: Stacy Green

Editorial Assistant: Katherine Cook

Technology Project Manager: Earl Perry

Marketing Manager: Tom Ziolkowski

Marketing Assistant: Erin Mitchell

Advertising Project Manager: Bryan Vann

Signing Representative: Stephanie Shedlock

Project Manager, Editorial Production:
Cheryll Linthicum

Art Director: Vernon Boes

Print/Media Buyer: Doreen Suruki

Permissions Editor: Chelsea Junget

COPYRIGHT © 2006 Thomson Brooks/Cole, a part of
The Thomson Corporation. Thomson, the Star logo, and
Brooks/Cole are trademarks used herein under license.

ALL RIGHTS RESERVED. No part of this work covered
by the copyright hereon may be reproduced or used in any
form or by any means—graphic, electronic, or mechanical,
including photocopying, recording, taping, Web distribution,
information storage and retrieval systems, or in any other
manner—without the written permission of the publisher.

Printed in the United States of America
1234567 09 08 07 06 05

For more information about our products,
contact us at:
Thomson Learning Academic Resource Center
1-800-423-0563

For permission to use material from this text or
product, submit a request online at
http://www.thomsonrights.com.

Any additional questions about permissions can be
submitted by email to thomsonrights @ thomson.com.

Library of Congress Control Number: 2004113828

ISBN 0-534-49501-X

OK PRI
) ’V,}o

RSeAARL7
Ry Q
BTSN

Ry

Production Service: Hearthside Publishing Service;
Anne Seitz

Text Designer: Roy Neuhaus

Copy Editor: Hearthside Publishing Service;
Wesley Morrison

[llustrator: Hearthside Publishing Service;
Jade Myers

Cover Designer: Roy R. Neuhaus

Cover Image: DigitalVision

Cover Printer: Phoenix Color Corp

Compositor: ATLIS

Printer: Phoenix Color Corp

Thomson Higher Education
10 Davis Drive

Belmont, CA 94002-3098
USA

Asia

Thomson Learning

5 Shenton Way #01-01
UIC Building
Singapore 068808

Australia/New Zealand
Thomson Learning

102 Dodds Street
Southbank, Victoria 3006
Australia

Canada

Nelson

1120 Birchmount Road
Toronto, Ontario M1K 5G4
Canada

Europe/Middle East/Africa
Thomson Learning

High Holborn House

50/51 Bedford Row

London, WCIR 4LR

United Kingdom

Latin America
Thomson Learning
Seneca, 53
Colonia Polanco
11560 Mexico D.E.
Mexico
Spain/Portugal
Paraninfo

Calle Magallanes, 25
28015 Madnid
Spain

Contents

CHAPTER 1

Sets, Proof Templates, and Induction 1

1.1 Basic Definitions 1

1.2
13

14
15

1.6

1.1.1
1.1.2
1.1.3
1.1.4
1.1.5
1.1.6
1.1.7

Describing Sets Mathematically 2
Set Membership 4

Equality of Sets 4

Finite and infinite Sets &
Relations Between Sets 5

Venn Diagrams 7

Templates 8

Exercises 13

Operations on Sets 15

1.3.1
1.3.2
1.3.3
1.3.4
1.3.5

Union and Intersection 15

Set Difference, Complements, and DeMorgan's Laws 20
New Proof Templates 26

Power Sets and Products 28

Lattices and Boolean Algebras 28

Exercises 31

The Principle of Inclusion-Exclusion 34

15.1
16.2
1.6.3
1.5.4

Finite Cardinality 34

Principle of Inclusion-Exclusion for Two Sets 36
Principle of Inclusion-Exclusion for Three Sets 37
Principle of Inclusion-Exclusion for Finitely Many Sets 41

Exercises 42

vii

viii Contents

1.7 Mathematical Induction 45
1.71 A First Form of induction 45
1.72 A Template for Constructing Proofs by Induction 49
1.73 Application: Fibonacci Numbers 51
1.74 Application: Size of a Power Set 53
1.75 Application: Geometric Series 54

18 Program Correctness 56
1.8.1 Pseudocode Conventions 56
1.8.2 An Algorithm to Generate Perfect Squares 58
1.8.3 Two Algorithms for Computing Square Roots 58

1.9 Exercises 62

1.10 Strong Form of Mathematical Induction 66
1.10.1 Using the Strong Form of Mathematical Induction 69
1.10.2 Application: Algorithm to Compute Powers 72
1.10.3 Application: Finding Factorizations 75
1.10.4 Application: Binary Search 77

1.1 Exercises 79

1.12 Chapter Review 81
1.12.1 Summary 82
1.12.2 Starting to Review 84
1.12.3 Review Questions 85
1.12.4 Using Discrete Mathematics in Computer Science 87

CHAPTER 2

Formal Logic

2.1 Introduction to Propositional Logic 89
211 Formulas 92
2.1.2 Expression Trees for Formulas 94
2.1.3 Abbreviated Notation for Formulas 97
2.1.4 Using Gates to Represent Formulas 98

2.2 Exercises 99

23 Truth and Logical Truth 102
2.3.1 Tautologies 106

Contents ix

2.3.2 Substitutions into Tautologies 109

2.3.3 Logically Valid Inferences 109

2.3.4 Combinatorial Networks 112

2.3.5 Substituting Equivalent Subformulas 114
2.3.6 Simplifying Negations 115

24 Exercises 116

25 Normal Forms 121
2.5.1 Disjunctive Normal Form 122
2.5.2 Application: DNF and Combinatorial Networks 124
2.6.3 Conjunctive Normal Form 125
2.5.4 Application: CNF and Combinatorial Networks 127
2.6.5 Testing Satisfiability and Validity 127
2.5.6 The Famous P # NP Conjecture 129
2.5.7 Resolution Proofs: Automating Logic 129

26 Exercises 131

2.1 Predicates and Quantification 134
2.71 Predicates 135
2.72 Quantification 135
2.73 Restricted Quantification 136
2.74 Nested Quantifiers 137
2.75 Negation and Quantification 138
2.76 Quantification with Conjunction and Disjunction 139
2.77 Application: Loop Invariant Assertions 141

2.8 Exercises 143

29 Chapter Review 147
2.91 Summary 148
2.9.2 Starting to Review 149
2.9.3 Review Questions 150
2.9.4 Using Discrete Mathematics in Computer Science 151

CHAPTER 3

Relations 157

3.1 Binary Relations 157
3.1.1 nary Relations 162

Contents

3.2 Operations on Binary Relations 163
3.2.1 Inverses 163
3.2.2 Composition 165

33 Exercises 166
34 Special Types of Relations 167

3.4.1 Reflexive and Irreflexive Relations 168

3.4.2 Symmetric and Antisymmetric Relations 169

3.4.3 Transitive Relations 172

3.4.4 Reflexive, Symmetric, and Transitive Closures 173

3.4.5 Application: Transitive Closures in Medicine and Engineering 176

35 Exercises 178

36 Equivalence Relations 181
3.6.1 Partitions 183
3.6.2 Comparing Equivalence Relations 186

3.7 Exercises 188

38 Ordering Relations 191
3.8.1 Partial Orderings 191
3.8.2 Linear Orderings 194
3.8.3 Comparable Elements 196
3.8.4 Optimal Elements in Orderings 196
3.8.6 Application: Finding a Minimal Element 198
3.8.6 Application: Embedding a Partial Order 200

39 Exercises 201

3.10 Relational Databases: An Introduction 202
3.10.1 Storing Information in Relations 203
3.10.2 Relational Algebra 204

3.11 Exercises 211

3.12 Chapter Review 212
3.12.1 Summary 213
3.12.2 Starting to Review 2156
3.12.3 Review Questions 216
3.12.4 Using Discrete Mathematics in Computer Science 217

Contents

CHAPTER 4§
Functions
41 Basic Definitions 219

4.2
43

4.4
45
4.6

4.7
4.8

4.9

4.1.1 Functions as Rules 221

4.1.2 Functions as Sets 222

4.1.3 Recursively Defined Functions 224

4.1.4 Graphs of Functions 225

4.15 Equality of Functions 226

4.1.6 Restrictions of Functions 228

4.1.7 Partial Functions 229

4.1.8 1-1and Onto Functions 231

4.1.9 Increasing and Decreasing Functions 237

Exercises 239

Operations on Functions 243
4.3.1 Composition of Functions 243
4.3.2 Inverses of Functions 245

4.3.3 Other Operations on Functions 248

Sequences and Subsequences 248
Exercises 251

The Pigeon-Hole Principle 253

4.6.1 kto 1 Functions 254

4.6.2 Proofs of the Pigeon-Hole Principle 255

4.6.3 Application: Decimal Expansion of Rational Numbers 257
4.6.4 Application: Problems with Divisors and Schedules 259
4.6.5 Application: Two Combinatorial Results 260

Exercises 262

Countable and Uncountable Sets 264

4.8.1 Countably Infinite Sets 266

4.8.2 Cantor's First Diagonal Argument 268

4.8.3 Uncountable Sets and Cantor’s Second Diagonal Argument 270
4.8.4 Cardinalities of Power Sets 273

Exercises 273

Xi

219

xii Contents

4.10 Chapter Review 275

4.10.1 Summary 275

4.10.2 Starting to Review 277

4.10.3 Review Questions 279

4.10.4 Using Discrete Mathematics in Computer Science 280

CHAPTER B

Analysis of Algorithms

5.1

5.2
53

54
55

5.6

Comparing Growth Rates of Functions 284
5.1.1 A Measure for Comparing Growth Rates 284

5.1.2 Properties of Asymptotic Domination 289

5.1.3 Polynomial Functions 291

5.1.4 Exponential and Logarithmic Functions 293

Exercises 296

Complexity of Programs 298

5.3.1 Counting Statements 300

5.3.2 Two Algorithms lllustrating Selection 302

5.3.3 An Algorithm lllustrating Repetition 304

5.3.4 An Algorithm illustrating Nested Repetition 307
5.3.56 Time Complexity of an Algorithm 308

5.3.6 Variants on the Definition of Complexity 311

Exercises 313

Uncomputability 316
5.5.1 The Halting Problem 318

Chapter Review 321

5.6.1 Summary 321

5.6.2 Starting to Review 322

5.6.3 Review Questions 322

5.6.4 Using Discrete Mathematics in Computer Science 323

283

Contents

CHAPTER b

Graph Theory

6.1

6.2

6.3

6.4

6.5

6.6
6.7

6.9

Introduction to Graph Theory 331
6.1.1 Definitions 334
6.1.2 Subgraphs 336

The Handshaking Problem 338

Paths and Cycles 340
6.3.1 Hamiltonian Cycles 341

Graph Isomorphism 345

Representation of Graphs 346
6.5.1 Adjacency Matrix 346
6.5.2 Adjacency Lists 347

Exercises 348

Connected Graphs 352

6.71 The Relation CONN 352

6.72 Depth First Search 354

6.73 Complexity of Dfs 357

6.74 Breadth First Search 357

6.76 Finding Connected Components 359

The Konigsberg Bridge Problem 361
6.8.1 Graph Tracing 365

Exercises 367

6.10 Trees 370

6.1

6.10.1 Definition of Trees 371
6.10.2 Characterization of Trees 372

Spanning Trees 374

6.11.1 Kruskal's Algorithm 374

6.11.2 Correctness of Kruskal's Algorithm 375

6.11.3 Kruskal's Algorithm for Weighted Graphs 376

6.11.4 Correctness of Kruskal's Weighted Graph Algorithm 378

xiii

331

xiv Contents
6.12 Rooted Trees 378
6.12.1 Binary Trees 380
6.12.2 Binary Search Trees 382
6.12.3 Tree Traversals 385
6.12.4 Application: Decision Trees 387
6.13 Exercises 389
6.14 Directed Graphs 392
6.14.1 Basic Definitions 393
6.14.2 Directed Trails, Paths, Circuits, and Cycles 394
6.14.3 Directed Graph Isomorphism 394
6.15 Application: Scheduling a Meeting Facility 394
6.15.1 WAITFOR Graphs 396
6.16 Finding a Cycle in a Directed Graph 397
6.16.1 Directed Cycle Detection Algorithm 397
6.16.2 Correctness of Directed Cycle Detection 398
6.17 Priority in Scheduling 399
6.17.1 Algorithm for Topological Sort 400
6.172 Correctness of Topological Sort Algorithm 401
6.18 Connectivity in Directed Graphs 402
6.18.1 Strongly Connected Directed Graphs 402
6.18.2 Application: Designing One-Way Street Grids 404
6.19 Eulerian Circuits in Directed Graphs 405
6.20 Exercises 406
6.21 Chapter Review 409
6.21.1 Summary 409
6.21.2 Starting to Review 411
6.21.3 Review Questions 413
6.21.4 Using Discrete Mathematics in Computer Science 416
CHAPTER 1

Counting and Combinatorics

7.1 Traveling Salesperson’s Problem 421

421

1.2

13

14
15

1.6
1.7
18

19

Contents

Counting Principles 423
72.1 The Multiplication Principle 424
72.2 Addition Principle 426

Set Decomposition Principle 428
73.1 Counting the Complement 429

73.2 Using the Pigeon-Hole Principle 430
7.3.3 Application: UNIX Logon Passwords 432

Exercises 433

Permutations and Combinations 436
75.1 Permutations 436

75.2 Linear Arrangements 437

75.3 Circular Permutations 439

75.4 Combinations 440

75.5 Poker Hands 441

75.6 Counting the Complement 443

75.7 Decomposition into Subproblems 444

Constructing the kth Permutation 446
Exercises 448

Counting with Repeated Objects 451
78.1 Permutations with Repetitions 452
78.2 Combinations with Repetitions 455

Combinatorial Identities 457
79.1 Binomial Coefficients 469
79.2 Multinomials 462

1.10 Pascal’s Triangle 463
71.11 Exercises 465
1.12 Chapter Review 469

712.1 Summary 470

712.2 Starting to Review 471

7.12.3 Review Questions 471

7.12.4 Using Discrete Mathematics in Computer Science 472

Xv

xvi Contents

CHAPTER 8

Discrete Probability

8.1

8.2
83

84
85

8.6
8.7

Ideas of Chance in Computer Science 475
8.1.1 Introductory Examples 476

8.1.2 Basic Definitions 478

8.1.3 Frequency Interpretation of Probability 480

8.1.4 Introductory Example Reconsidered 480

8.1.6 The Combinatorics of Uniform Probability Density 482
8.1.6 Set Theory and the Probability of Events 484

Exercises 488

Cross Product Sample Spaces 491
8.3.1 A Muitiplication Principle 492

8.3.2 The Cross Product of Sample Spaces 495
8.3.3 Bernoulli Trial Processes 498

8.3.4 Events of Cross Product Form 500

8.3.6 Two Ways of Viewing Events 502

Exercises 505

Independent Events and Conditional Probability 507
8.5.1 Independent Events 507

8.5.2 Introduction to Conditional Probability 509

8.6.3 Exploring Conditional Probability 512

8.5.4 Using Bayes’ Rule with the Theorem of Total Probability 514

Exercises 517

Discrete Random Variables 520
8.71 Distributions of a Random Variable 520
8.72 The Binomial Distribution 522

8.73 The Hypergeometric Distribution 522
8.74 Expectation of a Random Variable 524
8.75 The Sum of Random Variables 526

Exercises 529

Variance, Standard Deviation, and the Law of Averages
8.9.1 Variance and Standard Deviation 531
8.9.2 Independent Random Variables 533

475

530

Contents

8.10 Exercises 539

8.11

Chapter Review 540

8.11.1 Summary 541

8.11.2 Starting to Review 542

8.11.3 Review Questions 543

8.11.4 Using Discrete Mathematics in Computer Science 545

CHAPTER 9

Recurrence Relations

91

9.2

9.3
9.4

95
9.6
9.7

9.8

9.9
92.10

The Tower of Hanoi Problem 549
9.1.1 Recurrence Relation for the Tower of Hanoi Problem 552
9.1.2 Solving the Tower of Hanoi Recurrence 552

Solving First-Order Recurrence Relations 554
9.2.1 Solving First-Order Recurrences Using Back Substitution 555

Exercises 558

Fibonacci Recurrence Relation 561

9.4.1 Second OrderRecurrence Relations 562

9.4.2 Solving the Fibonacci Recurrence 564

9.4.3 Rules for Solving Second-Order Recurrence Relations 566

Exercises 567
Divide and Conquer Paradigm 568

Binary Search 568
9.71 Correctness 569
9.72 Complexity 570

Merge Sort 571
9.8.1 Correctness 571
9.8.2 Example 572
9.8.3 Complexity 572

Multiplication of n-Bit Numbers 573

Divide-and-Conquer Recurrence Relations 576
9.10.1 Complexity of Divide-and-Conquer Recurrence Relations 579

xvii

549

xviii Contents

9.11 Exercises 579

9.12 Chapter Review 580
9.12.1 Summary 581
9.12.2 Starting to Review 582
9.12.3 Review Questions 582
9.12.4 Using Discrete Mathematics in Computer Science 583

APPENDIX

Appendix A 587
Appendix B 591

Index 595

Preface

As the discipline of computer science has matured, it has become clear that a study of dis-
crete mathematical topics is an essential part of the computer science major. The course in
discrete structures has two primary aims. The first is to introduce students to the rich math-
ematical structures that naturally describe much of the content of the computer science
discipline, including many structures that are frequently used in modeling and implement-
ing solutions to problems. The second is to help students develop the skills of mathematical
reasoning to learn new concepts and material in computer science. This learning takes place
not only while they are students but also after graduation and throughout their professional
life.

During the past few years, researchers in areas of computer science as diverse as
the analysis of algorithms, database systems, and artificial intelligence have made ever-
increasing use of discrete mathematical structures to clarify and explain key concepts and
problems. As a reflection of this emphasis, careful discussions of applications such as a
relational database system, the complexity of a computation, and normal forms of propo-
sitions are included in this text. The discussions of these topics build on a strong, focused
development of fundamental ideas about sets, logic, relations, and functions as well as
graph theory and combinatorics.

The diagram that follows gives an indication of the order in which the material can
be covered. The six chapters referred to in the box contain the fundamental topics. These
chapters are used to guide students in learning how to express mathematically precise ideas
in the language of mathematics.

The two chapters dealing with graph theory and combinatorics are also core material
for a discrete structures course, but this material always seems more intuitive to students
than the formalism of the first four chapters. Topics from the first four chapters are freely
used in these later chapters. The chapter on discrete probability builds on the chapter on
combinatorics. The chapter on the analysis of algorithms uses notions from the core chap-
ters but can be presented at an informal level to motivate the topic without spending a lot of
time with the details of the chapter. Finally, the chapter on recurrence relations primarily
uses the early material on induction and an intuitive understanding of the chapter on the
analysis of algorithms.

Xix

XX

Preface

PREFACE

Chapter 1: Sets,
Proof Templates
and Induction

Chapter 2: Formal Logic
Chapter 3: Relations

" Chapter 4: Functions

‘/\ Chapter 6: Graph Theory ~ Chapter 7: Counting and —r\
Chapter 5: Analysis of Combinatorics
Algorithms

Chapter 8: Discrete
Probability

Chapter 9: Recurrence
Relations

The material in Chapters 1 through 4 deals with sets, logic, relations, and functions.
This material should be mastered by all students. A course can cover this material at differ-
ent levels and paces depending on the program and the background of the students when
they take the course. Chapter 6 introduces graph theory, with an emphasis on examples
that are encountered in computer science. Undirected graphs, trees, and directed graphs
are studied. Chapter 7 deals with counting and combinatorics, with topics ranging from the
addition and multiplication principles to permutations and combinations of distinguishable
or indistinguishable sets of elements to combinatorial identities.

Enrichment topics such as relational databases, languages and regular sets, uncom-
putability, finite probability, and recurrence relations all provide insights regarding how
discrete structures describe the important notions studied and used in computer science.
Obviously, these additional topics cannot be dealt with along with the all the core material
in a one-semester course, but the topics provide attractive alternatives for a variety of pro-
grams. This text can also be used as a reference in courses. The many problems provide
ample opportunity for students to deal with the material presented.

To the Student

A major aim of this book is to help you develop mathematical maturity—elusive as this
objective may be. We interpret this as preparing you to understand how to do proofs of
results about discrete structures that represent concepts you deal with in computer science.
A correct proof can be viewed as a set of reasoned steps that persuade another student,
the course grader, or the instructor about the truth of the assertion. Writing proofs is hard
work even for the most experienced person, but it is a skill that needs to be developed
through practice. We can only encourage you to be patient with the process. Keep trying
out your proofs on other students, graders, and instructors to gain the confidence that will
help you in using proofs as a natural part of your ability to solve problems and understand
new material.

Solutions for the odd numbered Exercises are included on the CD that comes with the
text. These solutions provide models for solving problems.

Preface xxi

Outline for One-Semester Course

This text contains much more material than can be covered in a typical one-semester
course. This diversity of material, however, allows a much broader range of courses to
use the text. For a program that requires a one semester (13-14 weeks) study of discrete
topics, the following outline provides coverage of the fundamental material:
Chapter 1: Sets, Proof Templates, and Induction (8 lectures)

Basic Definitions

Operations on Sets

The Principle of Inclusion-Exclusion

Mathematical Induction

A Second Form of Induction

Chapter 2: Formal Logic (4 lectures)
Introduction to Propositional Logic
Truth and Logical Truth
Predicates and Quantification

Chapter 3: Relations (5 lectures)
Definitions and Operations
Special Types of Relations
Equivalence Relations
Ordering Relations

Chapter 4: Functions (4 lectures)
Basic Definitions
Operations on Functions
The Pigeon-Hole Principle

Chapter 5: Analysis of Algorithms (2 lectures)
Comparing Growth Rates of Functions
Complexity of Programs

Chapter 6: Graph Theory (4 lectures)
Definitions
Connected Graphs
The Ko6nigsberg Bridge Problem
Trees
Spanning Trees
Directed Graphs (Optional)

Chapter 7: Counting and Combinatorics (4-5 lectures)

Counting Principles

Permutations and Combinations

Permutations and Combinations with Repetitions

Combinatorial Identities (Optional)

Pascal’s Triangle (Optional)

With a semester comprising about 40 lectures, this schedule provides time for exams
and additional time to modify the course to respond to particular curricular and/or student
needs. The one chapter that is quite often left to other courses is Chapter 5. If time permits,

xxii

Preface

however, this material gives a good overview of the relationship between programs and
their complexity.

Many variations can be made based on what other courses are included in the
program. In some programs, topics in Chapters 1 through 4, particularly basic properties
of sets and functions, will be covered in prerequisite courses and may be reviewed quickly
in a discrete mathematics course. The sections on Induction, the Principle of Inclusion-
Exclusion, and the Pigeon-Hole Principle, however, should normally be covered. In other
programs, if material on the analysis of algorithms has already been discussed in computer
science courses, then Chapter 4 might be a review, to a certain extent, and take less time.
Optionally, material on directed graphs might be eliminated. Depending on the needs of
the program, the lectures saved above may be spent on other material on the book.

Outline for a One-Quarter Course

With only 30 lectures in a one-quarter course, the syllabus presented earlier needs to be cut
to about 27 lectures.

Provided the material of Chapter 5 is covered in other computer science courses, this
chapter can be omitted without difficulty. If other mathematics courses explain the idea of
a function, the only necessary material in Chapter 4 is the Pigeon-Hole Principle, which
can save at least one lecture. Finally, eliminating the material on directed graphs should
allow the basic ideas of graph theory to be covered in four lectures. In addition, the nine
lectures scheduled for Chapters 1 and 2 may be shortened one or two lectures.

Incorporating these suggestions, the following is a possible syllabus for a one-quarter
course (10 weeks):

Chapter 1: Sets (7 lectures)

Basic Definitions

Operations on Sets

The Principle of Inclusion-Exclusion

Mathematical Induction

A Second Form of Induction

Chapter 2: Formal Logic (3 lectures)
Introduction to Propositional Logic
Truth and Logical Truth
Predicates and Quantification

Chapter 3: Relations (4 lectures)
Definitions and Operations
Special Types of Relations
Equivalence Relations
Ordering Relations

Chapter 4: Functions (3 lectures)
Basic Definitions
Operations on Functions
The Pigeon-Hole Principle

Chapter 6: Graph Theory (4 lectures)
Definitions

Preface XXiii

Connected Graphs

The Konigsberg Bridge Problem
Trees

Spanning Trees

Chapter 7: Counting and Combinatorics (4 lectures)
Counting Principles
Permutations and Combinations
Permutations and Combinations with Repetitions

In both sample syllabi the number of lectures committed to material should leave time
for two or three exams and for review days. In addition, instructors should find time to
spend a full day on problems of special interest without being forced to give up material
from the outline.

Help Requested

The authors have tried their best to make the text as error-free as possible. Needless to say,
we are not perfect and likely have missed some problems that really need to be corrected
to improve the text. We would appreciate it very much if any errors would be brought
to our attention. (We intend to provide a small reward for the first notice of any problem
brought to our attention.) Send comments to haggard @bucknell.edu along with your snail-
mail address. We will acknowledge any help we receive and let you know if anyone else
has already noticed the problem you uncovered. We will be very grateful for any help we
receive as we intend to make this text the best learning tool we can. A collection of the
changes we make will be posted at http://www.eg.bucknell.edu/~discrete/errorfile.pdf.

Gary Haggard
John Schlipf
Sue Whitesides

CHAPTER 1

Sets, Proof Templates,
and Induction

The concept of a set underlies most of modern mathematics and much of computer sci-
ence. To use sets as a foundation for all the other structures in this text, we first need to
understand both the language used to describe sets and the operations normally associ-
ated with sets. The language of sets is very precise. When we use this language carefully,
we gain precision in expressing problems and describing solutions to problems. Under-
standing basic operations on sets and the properties of these operations is a model for the
approach that is used to introduce most other discrete structures in this text. In extending
our understanding of operations on sets, we will learn proof techniques to explore other
discrete mathematical topics, such as relations, functions, and graphs. We will use these
proof techniques, for example, to prove that algorithms are correct and to determine how
well we have chosen an algorithm for a given task.

This chapter has five main sections. The first introduces the notion of a set and the
language for describing collections of elements. In addition, this section introduces several
proof templates that are guides to both understanding and constructing proofs. The second
deals with the common operations on sets: unions, intersections, complements, products,
and the power set of a set. Some additional proof templates are introduced that are drawn
from proofs in this section. The third provides a way to count the number of elements in
a collection of sets in which some of the sets may contain some of the same elements that
the other sets contain. The fourth and fifth deal with important proof techniques called the
Principle of Mathematical Induction and the Strong Form of Mathematical Induction. We
use induction to find the set of elements for which a statement about the integers is true.

An important application of the Principle of Mathematical Induction, in both its forms,
is to show how algorithms can be proven to be correct without any execution by a computer.

BEN sasic Definitions

The idea of a set is simple: A set is a collection of elements. The set {white, red,
green} contains the names of the colors white, red, and green and nothing else. The set
{0,1,2,3,4,5, 100345679231} contains seven integers. The set {red, yellow, blue} con-
tains the names of primary colors. A set of stamps stored in loose-leaf notebooks on a shelf

1

CHAPTER 1 Sets, Proof Templates, and Induction

is usually called a stamp collection. The set of past presidents of the United States consists
of

{George Washington, John Adams, Thomas Jefferson, . . .}

The “...” is called an ellipsis and indicates that the list contains other elements.

What is the basic characteristic of a set? For any set A and any element b, either b is
in A or b is not in A. If you ask whether an element is in a set, the answer is either yes or
no.

Is 0in {1, 2}? No.

Is0in {0, 1,2, 3,4,5,100345679231}? Yes.

Is New York in {Liverpool, London, Los Angeles }? No.
Is green in {red, yellow, blue}? No.

Is New York in {England, France, United States}? No.

In mathematical terminology, 0 is an element of {0, 1,2, 3,4, 5, 100345679231}, and
green is not an element of {red, yellow, blue}.

The expression “is an element of” is denoted by the symbol €, a form of the Greek
letter epsilon. For example, we write

0e€{0,1,2,3,4,5, 100345679231}
and
green ¢ {red, blue, yellow}

The slash through the € symbol means rot, just as it does in #. Is a member of, is con-
tained in, or simply is in means the same as “is an element of” Mathematics, like ordinary
language, is full of synonyms. :

Despite its frequent use, the term set is not defined in terms of other concepts. Like
the terms point and line in plane geometry, set is a primitive concept. Just assume there are
elements, there are sets, and that for a set A and an element b, the assertion b € A is either
true or false.

An important distinction needs to be made between 1 and {1}. They are not the same.
By itself, 1 is a number but not a set, and {1} is the set containing the element 1. Similarly,
{1} and {{1}} are not the same thing: 1 € {1}, but {1} & {1}. So, also, {1} € {{1}},but | ¢
{{1}}. Similarly, the set {1, 2} has two elements, 1 and 2, but {{1, 2}} has only one element,
{1, 2}.

The number of times an element is listed and the order in which elements are listed
are both unimportant. For example, the elements of {2, 3} are 2 and 3. The elements of
{3, 2, 2} are also 2 and 3. Consequently, these two sets contain the same elements. That is,
these two sets are equal, as we shall see later.

1.1.1 Describing Sets Mathematically

We present three different methods to describe a set. The first is by a list of all the elements.
The second is by a description of some property the elements have. The third is by a
description based on some other sets. In all these methods, we use the symbols { and }
to indicate that a set is being defined. The “language” used to describe sets is called set-
theoretic notation.

Basic Definitions 3

Set-Theoretic Notation

Three methods to describe the set with elements 0, 1,2, 3, 4, 5, 6, 7, 8, and 9 are:

1. List the elements in braces: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. We can also abbreviate this
listas {0, 1,2,...,9).
2. Describe the elements in terms of some property they satisfy:

{x : x is an integer and x > —1/2 and x < 19/2}

This notation is read as “the set of (all) x such that x is an integer and x is greater
than minus one-half and x is less than nineteen halves.” The colon is read as “such
that.” The description following the colon tells what property these x’s have.

3. Describe the elements as the set of all elements in some other set that satisfy some
property. Here, if Z denotes the set of integers, then the set can be defined as

{x €Z:x >—1/2and x < 19/2}

Methods 2 and 3 are almost the same. Method 3 is preferred, however, because in
some really peculiar circumstances, method 2 can cause trouble. !
There is a particular disadvantage to using ellipses with method 1. If someone writes

A=1{0,1,2,...,7}

it is assumed everyone will understand what is intended—that is, the set A contains the
elements 0, 1, 2, 3, 4, 5, 6, and 7. Frequently, however, the intended pattern is not as
obvious as the person using the ellipsis thinks. Suppose

A={2,4,...,65536)

What are the other elements? Guessing what was meant requires understanding the pattern
that gives rise to the elements listed. Since 65536 = 2!6, one conjecture might be

A ={2!,2223 24 25 26 27 28 29 210 7l 212 513 5l4 IS 516y
It could just as well be conjectured that

2
A={2,22,22 22y = (2, 4, 16, 65536)

There are endless other possibilities, with no real way to choose among them. (Nobody
said the pattern had to be simple.) This notation should only be used when it is obvious
from the context exactly what is meant.

1 After Cantor defined set theory, researchers found some paradoxes. The most famous is Russell’s paradox,
which is similar to the so-called “liar’s paradox™: “This sentence is a lie.” Work through it: If it is false, then it is
true, and if it is true, then it is false.

Russell’s paradox is this. Let x be the set of all sets that are not elements of themselves. Now, is x an element
of itself?

Work through it: If it is, then it is not, and if it is not, then it is. What’s wrong? Most modern set theorists assert
that using definition method 2 is at fault—note that Bertrand Russell (English mathematician and philosopher,
1872-1970) used that form in defining x. The set of all sets which are not elements of themselves is deemed “too
big” to be a set. By using definition method 3, we avoid constructing sets which are “too big.”

Because we are not going into axiomatic set theory, however, we will be unable to avoid method 2 entirely in
this book.

CHAPTER 1 Sets, Proof Templates, and Induction

We often list the elements of a set in a way that shows an obvious association between
the natural numbers and the elements of the set. For example, 1, 2, 22, 23 2% ... Wecall
such a set a sequence. We can refer to a sequence by ag, a1, az, In the above example,
we have ap=1,a; =2, ap=22%,..., a, =2",.... The notion of a sequence will be
examined more carefully in Section 4.4. At this time, we just need to have a way to refer
to sets of this form.

Special Sets

There are special names for certain common sets of numbers. Some of them are listed here.

Special Sets

N: the set of natural numbers, or the set of non-negative integers {0, 1, 2,3, 4, .. .}.

Z: the set of integers,or {..., —3,-2,-1,0,1,2,3,...}.

Q: the set of rational numbers, or the set of fractions of integers with nonzero de-
2357

. 1
nominator, such as 3 Of G737 -

R: the set of real numbers, or the set of numbers written with a decimal point, such
as = 3.14159..., —2.715, or 2.35353535. ...

@: the empty set, or the set { } with no elements.

In some circumstances, it is convenient to write the set of squares of natural numbers
as {x2 : x € N} rather than as {x : x € N and for some k € N, x = k2}.

11.2 Set Membership

To prove an element is a member of a set, you must prove that the element shares the
property that defines membership. For example, we can define the notion of a number
being a prime without knowing that any particular number is a prime. We must then show
that any number we think is a prime has the defining property. First, we need to know what
a divisor is before we can define a prime. For integers m and n, we say m is a divisor of n,
denoted as m|n, if there is a natural number k& such that n = m - k. A natural number p is
prime if p # 1 and its only divisors are 1 and p. Let P = {n : n € N and n is a prime}. In
Example 1, we will show that P is nonempty.

Example 1. Prove that 3 is a prime—that is, that 3 € P.

Solution. 'We must show 3 has the property that its only divisors are 1 and 3. Since the
only other possibility is 2 and 2 does not divide 3, 3 is therefore a prime. a2

A divisor of an integer is also called a factor.

113 Equality of Sets

In mathematics, precise language is important if we are all to understand the same meaning
for a statement. For example, what does it mean for two sets to be equal?

Basic Definitions 5

Definition 1. Let A and B be sets. Then, A = B or A is equal to B if both A and B have
the same elements.

The word if has a special meaning when used in definitions. Definition 1 states that
A = B if A and B have the same elements. Since the word if is inside a definition, it is
implied that A # B whenever the condition is not satisfied. Thus, “A = B” is just a short
way to say “A and B have the same elements.”

Example 2.

@{neZ:n’—n-2=0=neZ:n—-2)(n+1)=0}={2, -1}
() {(neN:n?—n—2=0}={2) because —1 € N.
(© {xeN:(x+1)2—(x—1)2—4x:O}:Nbecause

4+ —x—1D2—dx=x2+2x+1—x242x -1 —4x
=0

is an algebraic identity (true for all x).
The empty set ¥ can be described in several ways; for example,

{xeN:x <x}.
The set of continents south of Antarctica.
The set of round squares.

Why is {x € N : x < x} equal to the set of round squares? We know that if two sets
are equal, then they must have the same elements. So, if

{x e N:x < x} # the set of round squares

then there is an element in one of these sets that is not in the other set. This cannot be true,
however, since neither set has any elements at all.

1.1.4 Finite and Infinite Sets

Some sets, like {0, 1, 2, 3}, have the property that a person could list their elements
and finish listing them. We can describe this condition a little more formally: Ei-
ther the set has no elements, or its elements can be matched with the elements of
some subset {1, 2, ..., n} of the natural numbers. Such sets are called a finite set. So,
{Liverpool, London, Los Angeles} is a finite set—that is, elements could be matched as

1 (Liverpool), 2 (London), and 3 (Los Angeles)

The empty set @ has zero elements, so it is also finite.
Some sets are infinite sets, or not finite sets, like Z, R, and N. There is no way to
match all the elements of Z with a set {1, 2, ..., n} for any fixed n.

1.1.5 Relations Between Sets

Besides equality, another important relation between sets occurs when all the elements of
one set are also elements of a second set.

CHAPTER 1 Sets, Proof Templates, and Induction

Definition 2. Let A and B be sets. A is a subset of B, written as A C B, if every element
of A is also an element of B. A is a proper subset of B, written A C B, if A € B but
A# B.

“Is not a subset” is denoted with &, whereas “is not a proper subset” is denoted
with ¢. For example, {1,2,3} & {1, 3, 4}, since 2 € {1,2,3} and 2 ¢ {1, 3, 4}. Similarly,
{1,4} ¢ {1, 2,3}, since 4 € {1,4} and 4 & {1, 2, 3}. Also, {1, 2,3,2,1} € {1, 2,3}, but
{1,2,3,2,1} ¢ {1,2,3}.

We now state formally two facts that follow immediately from the definitions.

Theorem 1. Let A be a set.

(a) ACA.
(b) p C A.

Proof.

(a) To say that A € A, according to Definition 2, means that each element of A is an
element of A, which is clearly true.

(b) Since ¥ has no elements, the statement “for every element x, if x €), then x € A”
cannot be false, because ¥ has no elements. In this case we say the statement is vacuously
true. |

We use the filled box that appears at the end of a Proof for a theorem or the end of
Solution for an example as a separator. In some instances, when an example includes a
discussion, we also use this to separate the example from the following text.

The idea behind proving that one set is a subset of a second set involves proving that
every element of the first set is an element of the second set. It would not be very convenient
if each element of the first set had to have its own proof of membership in the second set.
Example 3 uses a proof that each element of the first set is an element of the second set by
simply proving the result for a completely arbitrary element of the first set. A completely
arbitrary element is one that has no property to use in the proof except that it is a member of
the first set. An “arbitrary element of a set” is a (hypothetical) element whose only property
is that it belongs to that set. In mathematics, the phrase “let x € A” means “x is my name
for an arbitrary element of A.” Assuming that we are dealing with a completely arbitrary
element allows us to prove the membership of every element with a single proof.

Example 3. Prove that the sets A = {21, 22 93 24 . .Jand B =1{2,4,6,8, ...} satisfy
A C B.

Solution. An arbitrary element of A is of the form 2/ for some i € {1, 2,3, .«.}. An
arbitrary element of B is of the form 2. j for some j € {1,2,3,...}. Clearly, 2’ =2
for the integer j = 2/~!. Since an arbitrary element of A is an element of B, we conclude
ACB.]

If and Only If

Mathematical statements about how facts are related, including many mathematical the-
orems, are implications. For example, “if you eat your carrots, you will grow big and
strong,” or “if Sally is in the science lab, then she is doing her chemistry experiment,” or
“if x > 1, then x? > x” are all implications. An implication starts with a hypothesis that
is assumed to be true and then uses various means to prove a conclusion. We denote an
implication as a = b, where a is the hypothesis and b is the conclusion. Two implications

Basic Definitions 7

are used in the standard mathematical expression if and only if. The statement
a if and only if b

means that if a is true then b is true (@ = b) and that if b is true then a is true (b = a).
Equivalently, it means that a and b are either both true or both false.

In a proof of an if and only if statement, a proof of “if a, then b” is usually labeled
(=), whereas a proof of “if b, then a” is usually labeled (<). The if and only if statement
is often denoted by <>. The arrow notation is used in Theorem 2.

Theorem 2. Let A and B be sets. Then, A = B ifand onlyif A € B and B € A.

(What the Proof entails:) We must prove two things. The first that A = B implies that A C
Band B C A. The second is thatif A € Band B C A, then A = B.

Proof.

(=) Prove that if A= B, then A € B and B C A. Suppose A = B. Then, A C B and
B < A by Theorem 1.

(<) Prove that if A C B and B C A, then A = B. To prove this, begin by supposing
that A € B and B € A. Then, for any x, if x € A, x € B, since A C B. Furthermore, if
x € B, thenx € A, since B C A. Therefore, the sets A and B have the same elements. By
Definition 1, A = B. [|

1.1.6 Venn Diagrams

In most discussions, attention is limited to elements and subsets of a fixed set. For example,
elementary arithmetic is usually limited to elements and subsets of Z (the integers) or of
Q (the rationals). In a study of some period of history, attention may be limited to the set
of all persons living at that time. In computer science, it may be the set of all file names on
a hard disk. Such sets are called universal sets, or universes. They are the “universes of
discourse” for a time.

There is a very convenient type of diagram, called a Venn diagram, for illustrating set-
theoretic relationships. Start with a rectangle, and let the points in the rectangle represent
the elements of a universal set, as shown in Figure 1.1.

Figure 1.1 Venn diagram of a universal set U.

Subsets of the universal set are represented by circles or ovals in the rectangle, as
shown in Figure 1.2. For example, suppose that A, B, and C are subsets of the universal
set U. The region within the circle for A represent the elements of A, and similarly for B
and C. Figure 1.2 shows A, B, and C where A C B, A and C have no elements in common,
and B and C have elements in common but neither is a subset of the other.

CHAPTER 1 Sets, Proof Templates, and Induction

ol

Figure 1.2 Sample Venn diagram.

Venn diagrams are frequently used to build intuition for proofs. The diagrams are
designed to present fairly general pictures of what is known, and these pictures can often
help a person to see set-theoretic relationships. A good Venn diagram can be very useful,
but a Venn diagram itself is not a proof. In particular, if a mistake is made in drawing the
Venn diagram, it is often possible to think that a property is true when it really is not. In
especially complicated cases, it may be very difficult to see whether the picture is correct.
The picture may be vague on certain points as well. For example, Figure 1.2 suggests
that there are elements of B that are in neither A nor C. This may or may not be true.
Nevertheless, a good Venn diagram is valuable both in suggesting whether a statement
could be true and in motivating and illustrating the proof.

Theorem 3. Let A, B,and Cbesets.If A C Band B C C,then A C C.

Figure1.3 AC BandBc C

(The Venn diagram in Figure 1.3 is drawn so that A # B and B # C, but this is not nec-
essarily true. The Venn diagram suggests that if you start with an element of A, then that
element is in B. Then, if the element is in B, it suggests that it is also in C. The proof will
proceed using these two steps.)

Proof. We must prove thatif A € Band B C C,then A C C. Let x € A, and prove that
x € C. (Think of this as starting the proof by picking x arbitrarily from A.) Then, since
A C B, x € B. We now have x € B, and we are given that B C C. So, it follows that
x € C. Since every element of A is an element of C, it follows that A € C. n

1.1.7 Templates

The proofs in this section use very typical techniques that you will see throughout the book.
When you try to construct a proof, getting started is always a bit daunting. The templates
shown here will give you ideas about what you need to do in a proof. The templates will
describe what is needed to prove that an element is in a set, that one set is or is not a subset

Basic Definitions 9

of another set, and that two sets are or are not equal. First, we state a template for proving
that an element is a member of a set.

Template 1.1 Element Membership in a Set

Let A be a given set. To prove x € A, show that x has the property that defines mem-
bership in A.

Exampled4. LetA ={n:n e Nandn =3k + 5 forsome k € N}. Is 23 € A?
Solution. To show that 23 € A, we must find a natural number kg such that
23 =3kg+5

since every element of A has the form 3k + 5 for some k € N. To find out if there is such
a k, we simply solve the equation for ko and see if the solution is an integer.

3kg+5=23
3kg=23-5
ko =18/3=6
Since 6 is a natural number, we know 3.6+ 5 = 23 € A. []

We use the template for element membership in a set to develop a template for proving
that one set is a subset of another set.

Template 1.2 Set Inclusion

To prove that one set is a subset of another (A & B), show that every element x of A
is also in B.

Example 5. Let
A ={n:n=2k+ 5 forsome k € N}

and
B={n:n=2j+ 1 forsome j € N}
IsA € B?

Solution. By writing out a few of the elements in each of these sets, we can at least get
an idea about whether we think A C B. The first six elements of A are 5,7, 9, 11, 13, and
15. The first six elements of B are 1, 3, 5, 7,9, and 11. The difference between the two sets
seems to be the initial values. To show that A € B, we must take an arbitrary element of
A, say, n = 2kg + 5 for some kg € N, and show that this can be written as 2j + 1 for some

CHAPTER 1 Sets, Proof Templates, and Induction

j € N, which would prove that 2kg + 5 = 2j + 1 € B. The algebra needed to see if this is
possible involves solving for j in terms of kp. This computation
2j+1=2kg+5
2j =2ko+5—-1=2kp+4
Jj=ko+2
shows that for any kg, the needed j is kg + 2, which is clearly an element of N. This says

that we can write an element of A as 2kg + 5 = 2(kg + 2) + 1 for kg + 2 € N. Therefore,
since an arbitrary element of A is an element of B, we have A C B. |

If the condition in Template 1.2 is not satisfied—that is, for two sets A and B, we
have A € B—this means that there is an element in A that is not an element of B. We
summarize this observation in Template 1.3.

Template 1.3 Set Non-Inclusion

To prove that one set is not a subset of another (A Z B), show that some element x of
Aisnotin B.

Example 6. Let
A={neN:n=2k2—3forsomekeN}

and

B={n:neNandn=j2+3forsomejeN}
Prove that A € B.

Solution. We must find some element of A that is not an element of B. If we list
the first few elements of A and B, perhaps a candidate element will appear. A =
{-3,-1,5,15,47,...},and B = {3,4,7,12, 19, .. .}. An obvious candidate is —3, since
—3 € Aand —3 ¢ B. We need to show that there is some fixed integer of the form 2ky — 3,
for kg € N, that can be written as j2 4 3 for some choice of j € N. If such a j existed, we
would have 2kg — 3 = j% + 3. In the case ko = 0, the element j would have to satisfy
—3 = j2 +3or j2 +6 =0 for —3 to be in B. Since no such j exists, —3 ¢ B. |

One last possibility for set inclusion: One set can be a subset of a second subset, but
not every element of the first set need be an element of the second set. This proper inclusion
is formalized in the next template.

Template 1.4 Proper Set Inclusion

To prove that one set is a proper subset of another (A C B), first prove that A C B,
and then show that some element x of B is notin A.

Basic Definitions 1"

Example 7. Let
A={neN:n>2andn =4j — 5 for some j € N}
and
B={neN:n>0andn =2k + 1 for some k € N}
Prove that A C B.

Solution. To show that A C B, we must show that every element of A is an element
of B. Let n = 4jo — 5 be an arbitrary element of A for some fixed jo € N. To show that
n € B, we must show that n = 2k + 1 for some k € N. We see if this is possible by solving
fork:

2k+1=4j5—5
2%k = 4jo— 6
k=2jp—3

Now, 2jo — 3 > 0, since jo > 2. Since 2(2jo — 3) + 1 = 4y — 5, every element of A is
an element of B, and A C B.

For0e N,2:0+1=1€ B.If1 € A,thenl =4 — 5 for some j € N. By solving
for j, we find that j must be equal to 3/2, which is not a natural number. Therefore, no j
exists. Therefore, 1 € B,and 1 ¢ A. It follows that A C B.]

The next step is to deal with set equality and set inequality.

In the case that we have two set descriptions and want to know that the sets are
equal, there are actually two things to prove. The proof that two sets are equal follows
Template 1.5.

Template 1.5 Set Equality

To prove that A = B for sets A and B, prove that A € B and B C A.

Example 8. Let
A ={n:n=2j forsome j € N}
and
B={n:n=2k+2forsomek € Zand k > —1}
Prove that A = B.

Solution. To show that an arbitrary element of A, say, 2 jo for some jp € N, is an element
of B, we must find a k € Z such that k > —1 and 2 jo = 2k + 2. Solving for k gives k =
jo—1.Since jo > 0,k = jo— 1 > —1,and 2k + 2 € B. To show that an arbitrary element

12

CHAPTER 1 Sets, Proof Templates, and Induction

of B, say, 2kg + 2 for some kp € Z and kg > —1, is an element of A, we must find a
j € Nsuch that 2j = 2ky + 2. This implies that j must satisfy j = ko + 1 if 2kp + 2 is an
element of A. Since ko > —1, we have kp + 1 > 0, and ko + 1 defines an element of A.
Because A € B and B C A, it follows that A = B. []

There are often many different descriptions for a single set. One problem is to make
sure that the set description that is given in fact describes the set intended. The idea of a
proof to show that two sets are not equal is given in the next template.

Template 1.6 Set Inequality

To prove that A # B for sets A and B, provethat A Z Bor B € A.

The way to show that A C B is false is to find an element x such that x € A and x ¢ B.
Showing that B C A is false is done analogously, but only one of these implications needs
to be shown to prove that A # B.

Example 9. Let
A={n:n GNandn=4j2—3forsomej € N}
and
B={neN:n=2k>-3 for some k € N}
Prove that A # B.

Solution. To show that A # B, it suffices to find an element in A that is not an element
of B. We will show that 1 is such an element.

We can write | = 4(1)2 — 3. Therefore, 1 € A. If | € B, then 1 = 2k? — 3 for some
k € N.If this were so, then the element k would satisfy the equation k> = 2. Since no such
kexistsinN, 1 ¢ B. []

Other Proofs

In Theorem 2 (Section 1.1.5) we needed to prove two things to conclude the result. This
kind of a proof is typical when you are trying to prove that two statements are simply
different ways of saying the same thing. In Theorem 2 we found that set equality could be
stated either in terms of element membership or in terms of the subset relation. The proof
is formalized in Template 1.7.

Exercises 13

Template 1.7 Implications and If and Only If

To prove “if a, then b” and “a if and only if ™ results, use one of the two forms:

Form 1: To prove “if a, then b,” assume a and derive b.
Form 2: To prove “g if and only if b, prove “if a, then b,” and then prove “if b,
then a.”

In a proof of an if and only if statement, a proof of “if a, then b” is usually labeled
(=), whereas a proof of “if b, then a” is usually labeled («<). The if and only if
statement is often written using <.

m Exercises

1. Let X be the set of all students at a university. Let A be the set of students who are first-
year students, B the set of students who are second-year students, C the set of students
who are in a discrete mathematics course, D the set of students who are international
relations majors, E the set of students who went to a concert on Monday night, and F
the set of students who studied until 2 AM on Tuesday. Express in set theoretic notation
the following sets of students:

(a) All second-year students in the discrete mathematics course.
Sample Solution. {r € X : x € Band x € C}.

(b) All first-year students who studied until 2 AM on Tuesday.

(c) All students who are international relations majors and went to the concert on
Monday night.

(d) All students who studied until 2 AM on Tuesday, are second-year students, and are
not international relations majors.

(e) All first- and second-year students who did not go to the concert on Monday night
but are international relations majors.

(f) All students who are first-year international relations majors or who studied until
2 AM on Tuesday.

(g) All students who are first- or second-year students who went to a concert on Mon-
day night.

(h) All first-year students who are international relations majors or went to a concert
on Monday night.

2. Find at least two different ways to fill in the ellipses in the set descriptions given.
For example, {2, 4, ..., 12} could be written either {22 :1 <n < 6and n € N} or
{n+1:ne{l,3,5,7, 11}}.

(@ {1,3,...,31}
(b) {1,2,...,26}
(© {2,5,...,32)

14 CHAPTER 1 Sets, Proof Templates, and Induction

3. Write three descriptions of the elements of the set {2, 5, 8, 11, 14}.
4. How many elements does each of the following sets have?

@ A=10

(b) B = {0}

(©) C={{0,1},{1,2})

(d D=1{0,1,2,{0,1},{1,2},{0, 1,2}, A}

(e) E={0,{{1,{3,5},{4,5,7}, 8}}}

5. Which of the following pairs of sets are equal? For each pair that is unequal, find an
element that is in one but is not in the other.

(a) {0,1,2}and {0,0,1,2,2,1}

(b) {0,1,3,{1,2}}and {0, 1, 2, {2, 3}}

(©) {{1,3,5},{2,4,6},{5,5,1,3}}and {{3, 5,1}, {6,4,4,4,2},{2,4,4,2,6}}
@ {{5,3,5,1,5},{2,4,6},{5,1,3,3}} and {{1, 3, 5, 1}, {6, 4, 2}, {6, 6, 4, 4, 6}}
(e) #and {x e N:x > 1and x% = x}

(f) 0 and |}

6. This problem concerns the following six sets:

A=1{0,2,4,6} B={1,375 C={0,1,2,3,4,506,7)
D=0 E=N F={{0,2,4,6}}

(a) What sets are subsets of A?
(b) What sets are subsets of B?
(c) What sets are subsets of C?
(d) What sets are subsets of D?
(e) What sets are subsets of E?
(f) What sets are subsets of F?

7. Let A={n:n€eN and n =2k+1 for some keN},B={n:neN and n =
4k + 1 forsomek e N}, andC = {m e N:m =2k — 1 and k € Nand k > 1}. Prove
the following:

(a) 35€ A
(b) 35€C
(¢) 35¢ B
(d A=C
) BC A
(Hh BCC
(g BCA
(h) BCC
8 Let A={n:neN and n =3k +2 for some keN},B={r:neN and n=
5k — 1 for some k e Nsuchthat k> 5}, andC={meN:m=6k—4andk e N
and k > 1}. Prove the following:
(@ CCA
(b) A#B
() B#C
(d A#£C
e CCA

Operations on Sets 15

9. Describe in words the difference between @ and {@}.
10. Let A, B, and C be sets.

(a) Provethatif A C Band B C C,then A C C.
(b) Prove thatif A C Band B C C,then A C C.
(c) Provethatif A C Band A € C,then B £ C.

Operations on Sets

In many areas of computer science and mathematics, from formal logic to object-oriented
programming, the operations to be performed must be considered in the context of a spe-
cific set. For example, familiar operations, such as addition, subtraction, multiplication,
and division, are performed within a specific set of numbers, such as the integers, ratio-
nals, or reals. This section discusses operations on sets and introduces the most common
operations: union, intersection, difference, complement, product, and power set of a set. We
study the laws these operations satisfy as well as how they interact with one another. We
then extend our discussion to lattices and boolean algebras. Lattices and boolean algebras
have two operations defined on their elements such that a set of special axioms for these
operations holds. An example of a lattice is a family of sets with the operations defined as
set union and set intersection.

1.3.1 Union and Intersection

The two simplest operations on sets involve combining two sets into one (union) and find-
ing common elements in two sets (intersection). These operations obey many of the gen-
eral rules that addition and multiplication with real numbers also satisfy. The first operation
consists of combining two sets into a set containing the elements of both sets.

Definition 1. Let A and B be sets. The union of A and B, denoted A U B, is

{x:xe Aorx € B}

Figure14 AU B

The Venn diagram for set union (shown in Figure 1.4) illustrates what was stated in
the definition. We do, however, need to clarify the meaning of the word or in the definition.
When mathematicians say x € A or x € B, they generally mean x € A or x € B or both.
This interpretation is called the inclusive or because it includes the possibility that both
may be true.

16

CHAPTER 1 Sets, Proof Templates, and Induction

Example 1.

(a) {1,2,3}U{3,4,5} =1{1,2,3,3,4,5} ={1,2,3,4,5}.

() {1,2,{1,2,3}}U{1,2,3,{1,2}} ={1,2,3,{1,2}, {1,2, 3}}.
(c) NUZ =Z.

(d) Foranyset A, AU® = A.

Why was the definition of the union of three or more sets not given? The more
general union operation, for any finite number of sets, is handled by the assumption that
AU B U C means (AU B) UC. Therefore, it is only necessary to find unions of two sets
at a time, and that has already been defined. The shaded region in Figure 1.5 shows the
union of three sets.

A

Q@

Figure15 AU BUC
The next theorem proves some fundamental results about set union.
Theorem 1. Let A, B, and C be sets. Then:

(a) AUA = A.

(b)) ACAUBand BC AUB.

(c) AUB=BUA. (Commutative Law for Union)

d AUMBUC)=(AUB)UC. (Associative Law for Union)

(What the proof entails.) Parts (a) and (b) follow directly from the definition of union.
The proof of (c) will be given. Since the proof of (d) uses an argument similar to the one
used in (), it will be left as an exercise for the reader. Part (c) says that the order in which
the union of two sets is formed does not matter. Part (d) states that A U B U C makes sense
even without parentheses.

Proof. (c) Follow the template for set equality to prove that (i) AU B € B U A and (ii)
B U A € AU B.For (i), use the template for set inclusion to prove that forany x € AU B,
it follows that x € BU A.

Suppose that x € AU B. Then (ia) x € A or (ib) x € B. In case (ia), since x € A,
by Definition 1 we have x € B U A. In case (ib), since x € B, by Definition 1 we have
X € BU A. This completes the proof of (i).

The proof of (ii) is analogous.]

What do we mean when we say that one proof is analoegous to another? In this context,
it means that the two proofs have essentially the same logic. Here, for example, one can
form the proof of part (ii) from the proof of part (i) by interchanging A and B.

The second important set operation, intersection, forms a set from the elements
common to two sets.

Operations on Sets 17

Definition 2. Let A and B be sets. The intersection of A and B, denoted by A N B, is
{x:x € Aand x € B}

The intersection of A and B is shaded in Figure 1.6.

$

Figure16 AnB.

Example 2.
(a {1,2,3}n{3,4,5} = {3}.
(b) {1,2,3}N{4,5,6} =0.

(¢) NNnZ=N.

(d) Foranyset A, AN@ =@.

(e) {1,2,3) N {{1, 2, 3}} = . (The first set has three elements, 1, 2, and 3, whereas the
second set has only one element, {1, 2, 3}.)

Theorem 2 proves some fundamental results about set intersection. Like set union, set
intersection satisfies the commutative and associative laws.

Theorem 2. Let A, B, and C be sets.

(a) ANA=A.

(b) ANBC Aand ANB C B.

(¢) ANB=BNA. (Commutative Law for Intersection)

d AN(BNC)=(ANB)NC. (Associative Law for Intersection)

(What the proof entails.) Parts (a) and (b) follow directly from the definition of inter-
section. Part (c) says that the order in which the intersection of two sets is formed does not
matter. Part (d) states that A N B N C makes sense even without parentheses.

Proof. (c) Again, follow Template 1.5 (Set Equality). Prove that) AN B € BN A
and (ii) BN A € A N B. For (i), follow the template for proving one set is a subset of
another. That is, assume x € AN B, and showx € BN A,

Suppose x € AN B. Then, x € A and x € B. Equivalently, x € B and x € A, since
no order is implied by the word and. Therefore, x € B N A. The proof of (ii) is analogous.
(d) This part is left as an exercise for the reader.]

The distributive laws for addition and multiplication for real numbers have analogues
with the operations of union and intersection with sets, as Theorem 3 shows.

Theorem 3. (Set Distributivity) Let A, B, and C be sets. Then:

(a) AUBNC)=(AUB)N(AUC). (Distributive Law for Union)
(b) AN(BUC)=(ANBYU(ANC). (Distributive Law for Intersection)

18

CHAPTER 1 Sets, Proof Templates, and Induction

Proof. The proofs are left as an exercise for the reader.]

The intersection of two sets may not contain any elements. If there are no elements in
a set intersection, we call the sets disjoint.

Definition 3. Let A and B be sets. Then, A and B are disjoint sets if AN B = @.
Example 3.

(a) Verify that {1, 2, 3} and {4, 5, 6} are disjoint.
(b) Verify that {1, 2, 3} and {{1, 2, 3}} are disjoint.
(c) For any set A, verify that A and @ are disjoint.

The reader may be asking whether there is any reason or need to prove additional
theorems about the union and intersection operations on sets. There are two reasons to
prove additional theorems. First (and most obviously), the results will be needed later.
Second, proofs of these results are fairly easy examples of proofs, and they provide good
models for constructing other proofs. Additional opportunities to write proofs will be given
in the exercises.

Theorem 4 shows how set inclusion and the operations of union and intersection are
related.

Theorem 4. Let A, B, and C be sets. Then:

(@ IfACBorAcSC,thenA < BUC.
b)) IfBCAand C C A, then BUC C A.
) fACBandACC,thenA C BNC.
dIfBCAorCC A thenBNCC A.

(Motivation for the proof.) For part (a), there are two cases: (i) A € B,and (il) A C C.
The Venn diagrams (see Figure 1.7) illustrate both parts of (a) and will help in understand-
ing the proof.

) (O

Figure17 A ACB=AcCcBUC BAcCC=AcCBUC

For part (b), one Venn diagram suffices (see Figure 1.8).

U
A

G O O

Figure 18 BcC Aand CCA=BUCCA.

Operations on Sets 19

Proof. (a)Supposethat A C BorA € C.

Case 1: A C B. Follow Template 1.2 (Set Inclusion) for proving that one set is a subset
of another. Show that every element of A is also an element of B U C.

Let x € A. The goal is to show that x € BUC. Since x € A and A C B, we have
x € B. But,

BUC={x:xe Borx eC}
Therefore, x € BUC.

Case 2: A C C. The proof is analogous to that in part (a).
(b) Suppose x € B U C. Then, either x € Borx € C.

Casel: x € B.Since B C A, it follows that x € A.

Case2: x € C.Since C C A, it follows that x € A. Therefore, BUC C A.
(c)—(d) Exercises for the reader. |

The proof of Theorem 4 shows how a template can be used. It also demonstrates
another proof technique: proof by cases. The assumption was that A € B or A C C. The
proof breaks down into the two ways that this could happen: (1) A € B,or (2) A € C.
Each case was handled separately. This is a general approach: If there are relatively few
ways that some assumption can be met, then one can handle them separately.

Let’s review what Theorem 4 asserts. Contrast the following two statements:

(a) “If A is a subset of both B and C, then A is a subset of their union.”
IfACBorACC, thenAC BUC
(b) “If A is a subset of the union of B and C, then A is a subset of either B or C.”

IfACBUC,thenA C BorACC

Theorem 4 asserts that statement (a) is true. Theorem 4 does not assert statement (b). In
fact, statement (b) is false in general. How would it be shown that statement (b) is false?
Statement (b) asserts that some relationship is true for all sets A, B, and C. To prove it to
be false, then, we must find just one example where it is false. That is, we must find three
sets A, B, and C suchthat A C B U Cbut (i) A € B and (ii)) A € C (see Exercise 9 in
Section 1.4).

The theorems proved so far can easily be used to show something that is not entirely
obvious.

Theorem 5. (An Absorption Law) Let A and B be sets. Then,
AUANB =A

Proof. As usual, prove that AU(ANB)C Aand A € AU (AN B). For the first part,
we have A € A by Theorem 1 in Section 1.1.5 and A N B € A by Theorem 2(b) in Secton
1.3.1. These two conditions imply that A U (A N B) € A by Theorem 4(b) in Section 1.3.1.
For the second part, start with A C A, which gives A € A U (A N B) by Theorem 4(a) in
Section 1.3.1. |

This result is one that is needed later. When we discuss boolean algebras and their
relation to electrical circuits, this Absorption Law is particularly useful.

20

CHAPTER 1 Sets, Proof Templates, and induction

Generalized Unions and Intersections

The definitions of union and intersection make good sense for any finite number of sets,
because the operations are associative. There are occasions, however, when one would
like to express the idea of the union of an infinite collection of sets. This leads to the
generalization of the notion of set union and intersection given in the next definition.

Definition 4. Let X be a set of sets. Then,

UX = {x : x is contained in some set in X'}
and

NX = {x : x is contained in every set in X'}
If

X =1{Xo, X1,.... X»,.. .}

That is, the elements of X" are indexed with the natural numbers, the union of sets UX is
usually written as

UZpXi =XoUX1UXoU---UX, U---
and the intersection of sets NX is usually written as

NZCuXi =XoNX1NX2N---NX,Ne-e

Example 4.

(@) U; = (=1/i,1/i) C R where i € N — {0}. Then, U, U; = (=1, 1), %, Ui = {0}.
(b) Vi =(i,i+2) SR, wherei € N—{0}. Then, U2, V; = (1,00),N2__V; = 0.

1=—00

1.3.2 Set Difference, Complements, and DeMorgan’s Laws

In Venn diagrams, pairs of sets are often drawn so that it appears as if there are elements
in each of the sets that are not in the other set. Often, it is important to find these elements.
This operation on sets is called set difference. In other instances, we are interested in the
elements that are not in a set. The operation of finding these elements is called comple-
mentation. Finally, we would like to understand how union and intersection interact with
the operation of set difference and complementation. The relationships are described by
DeMeorgan’s Laws. We start this section by defining set difference.

Definition 5. Let A and B be sets. The set difference of A and B, denoted A — B, is
{x:x€Aand x ¢ B}

(

Figure19 A- B

Operations on Sets 2

Example 5.

(a) LetA={l,2,...,10}and B={3,5,7,9}. Then, A — B={1,2,4,6, 8, 10}.
(b) Let A=Nand B=1{2i:i € N}. Then, A— B={2i+1:ieN}.

The difference A — B is also sometimes call the relative difference. The Venn dia-
gram (shown in Figure 1.9) gives an intuitive understanding of this notion. Remember that
Venn diagrams suggest relations between or among sets but are not actually proofs of rela-
tionships between or among sets. Theorem 6 proves some key relationships involving the
difference of two sets, A — B and B — A.

Theorem 6. Let A and B be sets. Then:

(@) A— B and B — A are disjoint, A — B and A N B are disjoint, and AN B and B — A
are disjoint.

(b) A=(A—- B)U (AN B).

(c) AUB=(A-B)UANBYU(B - A).

(d) AC Bifandonlyif A — B =40.

Proof. 1f you look at a Venn diagram for two sets and identify A — B, B — A,and A N B,
it looks like the sets are disjoint. This theorem says that your intuition from the diagram is
correct. The proofs of (a)—(d) are left as exercises for the reader. [|

Complement of a Set
Recall that a universal set is a set that contains as a subset every set currently being dis-

cussed. In a context in which there is a universal set, another set theoretic operation can be
defined.

Definition 6. Let U be a universal set and A be a subset of U. The complement of A,
denoted A, is

{x : x €U and x ¢ A}
Sometimes, to emphasize that U is a universal set, A is also called the absolute difference.

With this definition, we can restate Definition 5 as A — B = A N B. Some important
identities concern complements, especially how they interact with other set-theoretic oper-
ations.

Theorem 7. Let U be a universal set and A and B be subsets of U. Then:

(a) i = A. (i is the complement of A)
(b) A C B if and only ifE - é
(c) A= Bifandonlyif A= B.

(What the proof entails.) Part (a) tells us that the complement only produces something
new the first time it is applied. Part (b) says that if A is a subset of B, then set inclusion
goes the other way for the complements; that is, the complement of B is contained in the
complement of A. In part (c), we prove that if two sets are equal, then their complements
are equal.

CHAPTER 1 Sets, Proof Templates, and Induction

Proof. (a) Show that (i) A C A and (i) A C A. To prove (i), suppose x € A. Then, x € U
and x ¢ A. But, then x € A. To prove (ii), suppose x € A. Then, x € U, but x ¢ A. So,
x € A.

(b) (=) Show that if A C B, then B C A. Prove the result by contradiction (see Template
1.3). Assume that for some subsets A and B of U, A € B and B € A, and derive a con-
tradiction. Since B & A, there is some x € B — A. Pick such an x. Since x ¢ A, it follows
that x € A. Since A C B, we have x € B. But, it was assumed that x € B; hence, x has the
property that x ¢ B. Since both x € B and x ¢ B were proved, this gives a contradiction.
(=) The proof is analogous to the proof of (=) using (a).

(c) Exercise 11 in Section 1.4. [|

A Computer Representation for Sets

LetU ={1,2,3,4,5,6} beaset,and let X € U. A bit representation for X is a six-digit
binary number x| x2x3x4x5x¢ With bit x; for 1 < i < 6 defined as

1 fieX
X = .
0 foridX

For example, if B = {2, 3, 6}, then B = 011001. The operations of union, intersection,
and complement can be carried out using operators UNION, INTER, DIFF, and COMP
that operate on binary numbers bit-by-bit. Let B, C € U with B = b byb3sbsbsbg and C =
c1cac3c4¢5C6. Define the union as UNION(B, C) = x1x2x3x4x5x¢ Where for1 < i <6,

1 ifb;=1o0r¢ =1
M= 0 otherwise

Define the intersection as INTER(B, C) = x| x2Xx3x4X5X¢, Where for 1 <i <6,
1 ifp;=1andc; =1
M= 0 otherwise

Define the complement as COMP(B) = x| x3x3Xx4X5x¢, Where for 1 <i <6,

1 if; =0

Xi = .

0 otherwise

Define the relative difference as DIFF(B, C) = x1x2x3x4X5X¢, where for1 <i < 6,

1 ifb,' =1 andci =0
M= 0 otherwise

Example 6. Let B={1,2,3,4,5}and C = {3, 4, 5, 6, 7, 8} be subsets of the universal
set U ={1,2,...,9}. Find UNION(B, C), INTER(B, C), COMP(C), and DIFF(B, C).

Solution. BUC ={1,2,3,4,5,6,7,8}. BNC={3,4,5}. C={1,2,9}. B—C =
{1, 2}. Therefore,

UNION(B, C) = 111111110

INTER(B, C) = 001110000

COMP(C) = 110000001

DIFF(B, C) = 110000000 |

Operations on Sets 23

DeMorgan’s Laws

DeMorgan’s Laws are among the most important and useful results about sets. These laws
describe how union, intersection, and complement are related. Figure 1.10 indicates what

the laws tell us.

AUB=ANB ANnB=AUB

Figure 1.10 DeMorgan's Laws.

Theorem 8. (DeMorgan’s Laws) Let U be a universal set, and let A and B be subsets
of U. Then:

(a) (AUB)=ANB. (DeMorgan’s Law for Union)
(b) (AN B) =AUB. (DeMorgan’s Law for Intersection)

Proof.
(a) Show that (i) (AUB) € ANB and (i) ANB S (AU B).

(1) Pick an arbitrary x € (AU B). Sincex € U — (AU B), itfollows thatx ¢ AU B.
For x not to be in this union means it may not be in either of the sets. So, x € A
and x ¢ B. Hence, sincex € U — A = Aand x € U — B = B, it follows that x €
ANB.

(i) Pick an arbitrary x € AN B. Then, x € A, so x ¢ A. Also, x € B, so x ¢ B.
Therefore, x & (A U B), and consequently, x € (AU B).

(b) The proof is left for the reader. n

Theorem 8 resembles the ways that and and or interact with not (which are also called

DeMorgan’s Laws in logic). For example, “not (x is greater than 3 or x is odd)” is equiva-
lent to “x is not greater than 3, and x is not odd.” A more thorough study of logic is given
in Chapter 2.

Example 7. Verify DeMorgan’s Laws for the sets A = {1, 2, 3,4} and B = {3, 5, 6, 8}
when the universal setis U = {1, 2, 3,4,5,6, 7, 8}.

Solution. AUB =11,2,3,4,5,6,8) = (7). A={56,7,8. B={1,2,47).

AN B = {7}. It now follows that AU B = A N B.]

DeMorgan’s Laws are important tools for proving results about how union, intersec-
tion, and complementation interact. The notion of the symmetric difference is a particular
instance of this. Symmetric difference identifies the elements of two sets that are not in
their intersection. This set (A U B) — (A N B) is shown in Figure 1.11.

A B

Figure 1.11 Elements in two sets that are not in the intersection: AU B — AN B.

24

CHAPTER 1 Sets, Proof Templates, and Induction

We can define the elements of two sets that are not in their intersection in terms of
unions, intersections, and complements of the sets. After the definition of this set, we
will show that the operation of forming this set satisfies both the commutative and the
associative law.

Definition 7. Let A and B be sets. The set
ABB=(A-B)U(B —-A)
is the symmetric difference of A and B.
Example8. LetA={1,2,3,4}and B={3,4,5,6}. Then, A® B ={1,2,5, 6}.
Some obvious facts about the symmetric difference are collected in Theorem 9.
Theorem 9.

(a) Forany set A, wehave A® ¥ = A.
(b) Forany set A, wehave A® A = 0.
(c) For any two sets A and B it follows that A@ B = B & A.

Proof. (a) and (b) follow directly from the definition.
(¢c) Since A B=(A—-B)UB—-A=B—-—AUA-B)=BdA
the result follows. n

In Theorem 9(c), it is shown that & is a commutative operation. The next theorem
shows how you prove that symmetric difference is also an associative operation.

Theorem 10. AP BHC)=(AD B)SC.
Proof.
APB)BC=(ABdB)—C)U(C—(A® B))
=((A-BUB-A4)-COUC—-(A-B)U(B-A))

To simplify the proof, we will reduce the two terms on the right side separately. When we
have reduced these two terms, we can combine the reductions to complete a reduction of
(A®B)@®C. B
The first step will be to replace various expressions of the form X — ¥ with X NY
where X and Y represent any pair of the sets A, B, and C:
(A—BUB-A))—C=(ANBUBNA)NC
=(ANBNC)UANBNC) (Distributive Law)

The second term involves a few more steps than the first term:

C—(A=BUB-A)=CN{(ANB)U(BNA)

=CNANB)N(BNA) (DeMorgan’s Law)
=CN({AUB)N(BUA)) (DeMorgan’s Law andi = A)
=CNW((AUBYNB)U ((AUB)NA)) (Distributive Law)
=CNWANBUMBNB)U(ANAU(BNA))) (Distributive Law)

Operations on Sets 25

=CN((ANBYUBNA) (ANA=BNB=0)
=(CNANB)U(CNANB) (Distributive Law)

Putting the reduced form of these two terms together gives a new description of
(A@B)®C.

(A®B)dCy=(ANBNC)UMANBNOUMANBNC)U(ANBNCO)

By similar steps, the term A @ (B @& C) can be reduced to these same expression. We
leave this reduction to the reader. After this second reduction, we can conclude

AeBaoC)=AdB)C n

The Logic of Statements

Theorem 8(b) is closely tied to an issue in the logic of sentences. The issue is the relation-
ship between an if-then statement and its converse, its inverse, and its contrapositive. A
statement such as “if a, then b” can be rewritten as “if b, then a,” and you might wonder
if the first statement is true whether or not you can deduce anything about the truth of the
second. We start with a statement such as “if a, then b.”” The obvious variants of this state-
ment are “if b, then a,” “if not a, then not b,” and “if not b, then not a.” What we would
like to understand is whether any one of these statements being true (or false) implies that
any other of these statements is true (or false). Consider the statement

“If George is a horse, then George is an animal.”
The inverse of this statement is
“If George is not a horse, then George is not an animal.”
The converse of this statement is
“If George is an animal, then George is a horse.”
And, finally, the contrapositive of the statement is
“If George is not an animal, then George is not a horse.”

The statement and its contrapositive are both true, whereas the inverse and converse are
probably false (depending on who George is).
As another example, consider the following:

Statement: “If my cat is a horse, then my cat is an animal.”
Inverse: “If my cat is not a horse, then my cat is not an animal.”
Converse: “If my cat is an animal, then my cat is a horse.”
Contrapositive: “If my cat is not an animal, then my cat is not a horse.”

As the two examples illustrate, the if-then statements are equivalent statements to their
contrapositives. It can be shown that in general, based on logic alone, a statement is true
if and only if its contrapositive is true. In writing a proof, it may be easier to use the
contrapositive of a statement than to use the statement itself. A proof of the contrapositive
of your objective is called an indirect proof. In the cat/horse example, the statement and
its contrapositive are vacuously true, but the inverse and converse are false. An if-then

CHAPTER 1 Sets, Proof Templates, and Induction

statement is normally not equivalent to its inverse or to its converse, but the converse and
inverse are always equivalent to each other.

133 New Proof Templates

The first new proof idea was used in Theorem 4 (Section 1.3.1). In Theorem 4(a) there were
two possibilities in the hypothesis. We needed to prove that regardless of which possibility
was true, the conclusion followed. The proof was actually two proofs! In general, there can
be any number of cases. The proof technique is outlined in Template 1.8.

Template 1.8 Proof by Cases

To prove a theorem by cases:

1. List all possible cases that will cover every circumstance in which the hypothesis
might hold.
2. For each possible case, prove the conclusion separately.

The proof of Theorem 4 is a simple proof by cases; we will present more complicated
examples later. As you proceed, be aware of the following recommendations in using a
proof by cases:

1. Make sure you need to use a proof by cases. If you break a proof into cases, you must
normally treat each case separately, which tends to make your proof long. If you don’t
need to break the proof into cases, your proof will often be shorter. If only one step
of your proof needs to be broken into cases, then break only that step into cases. Even
more risky is breaking cases into subcases. Suppose you write a proof breaking into four
cases, and each case breaks into four subcases, and each subcase breaks into four sub-
subcases. That gives you 4 -4 - 4 = 64 cases in all to prove, and that almost inevitably
makes your proof longer than it otherwise might be.

2. Make sure you list all possible cases. The proof of Theorem 4(a) in Section 1.3.1, con-

sisted of only two possible cases, and they were obvious from the problem. However,

problems sometimes break down into more than two cases, and when they do, it is easy
to miss some cases.

You need to prove that your list of cases covers all possible cases.

4. When claiming that two cases are analogous, make sure that one case is truly analogous
to another. There may well be logical subtleties that arise in one case that didn’t arise
in an earlier case. (Indeed, that is often why we break a problem into cases in the first
place!) Before saying that two cases are analogous, think carefully through the details
to make sure they are!

w

The discussion following Theorem 4 pointed out another proof technique. In dis-
cussing the statement of Theorem 4(a), it was pointed out that it is useful to understand
what a theorem does not say. Quite often, it is not true that what seems intuitively to be

Operations on Sets 27

quite reasonable is, in fact, true. In the case discussed following Theorem 4, a counterex-
ample would give a concrete instance of sets that satisfy the hypothesis of the alternate
statement, whereas the same sets do not satisfy the conclusion. This proof idea is shown in
Template 1.9.

Template 1.9 Disproof by Counterexample

To disprove results starting “for every x € A,” find an x that can be proven to be in A
and for which the result fails.

Theorem 7 in Section 1.3.2 proved that if A C B, then B C A by assuming that A C
B and B Z A. We then showed this led to a contradiction. The format for this proof is
summarized in Template 1.10.

Template 1.10 Proof by Contradiction

To prove an assertion a by contradiction, use one of the following two forms:

Form 1: Assume assertion a is false, and prove that some other assertion b is false
where assertion b is known to be true.

Form 2: Assume assertion a is false. For some assertion b, prove that both assertion
b is true and assertion b is false.

The statement of Theorem 7(b) can be construed as saying that a statement and its con-
trapositive have the same truth value. For example, think of “A C B” as being translated
“if x € A, then x € B.” Similarly, think of “B C A” as “if x ¢ B, then x ¢ A.” How
would an if-then statement be proved to be true or false just when its contrapositive is?
The answer is almost exactly the way that Theorem 7(b) was proved. The idea of this proof
technique is summarized in Template 1.11.

Template 1.11 Indirect Proof

To prove a theorem using an indirect proof, prove “if p, then ¢”’ by proving “if not g,
then not p.”

CHAPTER 1 Sets, Proof Templates, and Induction

1.3.4 Power Sets and Products

We started by introducing you to thinking about sets of objects and not just individual
objects. After introducing sets, we made precise what it means for one set to be a subset
of another. We can also take one more step, however, and think of the set consisting of all
subsets of a set.

Definition 8. Let A be a set. The power set of A, denoted P(A), is
PA) ={X:XCA)
Example 9.

(a) P(@) = {@}. Even though @ has no elements, () has the one element @.

(b) P(P@)) =P{BH = {9, {4}}.

(© PAL2) =14, {1}, {2}, {1, 2}}.

(d) P{1,2,3h) = {0, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}}.

(e) P{1,2,{3}h = {@, {1}, {2}, {{3}}), {1, 2}, {2, {(3}}, {1, {3}}, {1, 2, {(3}}}.

® P{1,2,3}) =1{8, {1, 2,3}}. This is true, because the set {{1, 2, 3}} has only one ele-
ment, {1, 2, 3}. So, there are only two subsets of {{1, 2, 3}}, one that contains {1, 2, 3}
and one that does not.

Products of Sets

The next operation on sets is familiar, because it is the formalism behind the way we are
used to seeing points in two-dimensional space represented as ordered pairs.

Definition 9. For any sets X and Y, the product X x Y is the set of all ordered pairs
(a, b) such that g €¢ X and b € Y. When X =Y, this set is also denoted X2, Similarly,
the product of n sets X1, ..., X, is the set of all ordered n-tuples (x, ..., x,) of elements
such that x; € Xy, ..., and x, € X,,. When n copies of the same set X are used, the re-
sulting Cartesian product X x ... x X is the set of all ordered n-tuples of elements in X,
denoted X",

Example 10. Let X = {0, 1} and C = {a, b}. Then, X x C = {(0, a), (0, b), (1, a),
(1, b}, and C x C = {(a, a), (a, b), (b, a), (b, b)}. The product of two sets is sometimes
referred to as the Cartesian product.

1.3.5 Lattices and Boolean Algebras

The design of computer chips involves very complex interactions of very small components
or building blocks called gates. The complete design that is of a computer chip is called
a combinatorial circuit. The mathematical structure we will introduce here can be used to
design, represent, and optimize combinatorial circuits. We will look more closely at gates
and combinatorial circuits in Chapter 2, but we first need to understand the underlying
mathematical structure.

Definition 10. A lattice is a set X with two operations, called meet, denoted as A, and
Jjoin, denoted as V, that satisfy the following properties forall x, y,z € X :

Operations on Sets 29

XAY=YAX Commutative Law for Meet
XVYy=yVx Commutative Law for Join
XAAD =& AY)IAZ Associative Law for Meet
xvViVv=@xVvyIvz Associative Law for Join
xA(xVy) =x Absorption Law for Meet
XVExAY)=x Absorption Law for Join

To say that something is a lattice, we must explicitly say (i) what the set of objects
is and (ii) what the meet and join operations are. After specifying these, we must show
that meet and join so interpreted satisfy all the required axioms. Meet and join can be any
operations on the set so long as the axioms are satisfied. The operations of meet and join can
be as simple as union and intersection defined on a set of sets, Whatever the operations are
defined to be, however, the first task is to show that the operations satisfy the Commutative
and Associative Laws.

Example 11. Let X be a set, and let L = P(X). Let join be defined as the union of two
subsets of X and meet as the intersection of two subsets of X. Then, L together with union
and intersection is a lattice.

Solution. By Theorems 1 and 2 in Section 1.3.1, the Commutative and Associative Laws
hold. To prove that the Absorption Law holds, we use the result of Theorem 5 in Section
1.3.1. m

The next example shows that the interpretation of meet and join can be rather different
from unions and intersections.

Example 12. Let X C R. Let meet be defined as the minimum of two elements of X and
join as the maximum of two elements of X. Then, X together with the minimum and the
maximum operations is a lattice.

Solution. The Commutative Law for Meet in this context says that the minimum of two
real numbers is the same regardless of the order in which you consider the elements. The
remainder of the Commutative and Associative Laws for Meet and Join are straightforward
to verify. The Absorption Law for Meet says that the minimum of an element x together
with the maximum of the two elements x and y where y is any other element is just x.
This just says that either x is the minimum of {x, x} or the minimum of {x, y} where
y > x. In either case, the result follows. The remaining details are left as Exercise 21 in
Section 1.4.]

There are two additional properties that are used to distinguish different kinds of lat-
tices. The first of these laws, the Distributive Law, is familiar in the context of union and
intersection.

Definition 11. Let X with the operations meet (A) and join (V) be a lattice. X is a dis-
tributive lattice if the following two properties are satisfied for all x, y, z € X:

XAV =EAY)VXAZ Distributive Law for Meet
xXVYAD=GxVvyY)AGKVYD Distributive Law for Join

30

CHAPTER 1 Sets, Proof Templates, and Induction

The Distributive Laws for Meet and Join are proved for the interpretation of meet as
intersection and join as union in Theorem 3 (Section 1.3.1).

The final property we need is stated abstractly in terms of two special elements that
must be identified in the set of elements forming a lattice. The usual way to prove this
result is to assume that the lattice has this property and then determine what these special
elements must be.

Definition 12. Let X together with the operations meet (A) and join (V) be a lattice. X is
a complemented lattice if

1. There are two (unequal) elements, one called the minimum element, denoted | (read
bottom), and the other called the maximum element, denoted T (read top), such that
forevery x € X,

xAT=x, xAnl=1l, xvT=T,andxv L=x
2. Foreach x € X, there is an element ~x € X suchthat x A-x =l andxv-x=T.

Example 13. Let A be a set, and let X = P(A). The lattice on X with meet defined as
intersection and join defined as union is a complemented lattice.

Solution. Let T =A and L =@. Since forany B € X wehave BN T =BNA = B,
BN1l=BN@P=@,BUT=BUA=A,and BUL =B U@ = B, X isacomple-
mented lattice. u

The definition does not tell you what elements of a lattice should be | and T or what
the relationship between —x and x is. For the lattice of subsets of a set A, we canuse ¥ =1
and A itself as T. We also define —~x as the complement of x. With these definitions of T,
1, and —x for this lattice, you can show that the lattice is complemented. The details are
left as Exercise 23 in Section 1.4.

The mathematical structure that is of importance in computer science can now be
defined.

Definition 13. A boolean algebra is a complemented, distributive lattice.

The boolean algebra used by computer scientists to model combinatorial circuits is
based on the set of elements {0, 1} and the operations shown in Table 1.1 where V is the
meet and A is the join.

Table 1.1 Operations for a
Boolean Algebra

vio 1 AO 1
0{0 1 00 O
11 1 10 1

Example 14. Let B be a set of elements assigned values from the set {0, 1}, and let the
operations V and A be defined on B as described in Table 1.1. B together with v as meet
and A as join forms a boolean algebra.

Exercises i

Here, it turns out that there is only one possible choice for each of T, L, and —:
T=1, L=0, =0=1, and—=1=0
Indeed, there is always only one possible choice (see Exercise 24 in Section 1.4). Thus, in
any boolean algebra, we may refer to T, L, and each —x without ambiguity.

Solution. The proof requires showing that no matter what value x, y € B have, the ax-
ioms of a boolean algebra hold. As an example, we will show that the operation meet is
commutative. Let x, y € B. Then,

vio 1 vIio 1
x||0}0 y 0 1
11 1 111 1

We can simply check that for all possible pairs, x v y = y v x for the meet operation.
Similar proofs are needed for the other axioms and will be left for the reader. n

In Section 2.1.4, we will consider this boolean algebra by another name. In place of 1
and 0, we will call the values of the elements TRUE and FALSE. The operations will be or
and and. Then, for example, we can interpret a variable x to be TRUE if there is a current
flowing in a wire X—and similarly, y to be TRUE if there is a current flowing in wire Y.
This turns out to be a very natural way to look at computer circuits.

Exercises

1. Let A=1{1,2,3,...,10}, B=1{2,3,6,8}, and C = {3, 5, 4, 8, 2}. Find the follow-
ing:
@ BUC
(b) BNC
() B—C
d A—B
e) A—C
2. Let U=1{0,1,2,3,4,5,6,7,8,9}), A={0,1,2,3}, B={0,2,4}, and C =
{0,3,6,9}.
(a) Find AUB, ANB, A, (ANB),and (BUC) — A.
(b) Find P(A), P(B), P(AN B), P(A) NP(B).
(c) Is P(A U B) = P(A) U P(B)? Prove your answer.
(d) Why doesn’t P(A) make sense?
3. Let A={0,3} and B = {x, ¥, z}. Find the following:
(a) AXB
(b) AxXAXxB
(c) BxA
(d Bx Ax B

CHAPTER 1 Sets, Proof Templates, and Induction

4.

N

11.
12.

13.

14.

Let X ={2,4},Y ={1,4},and Z = {0, 4, 8}. Construct the following sets:
(@) X xY

b) XxYxZ

) YxZ

d ZxYxX

e) ZxXxY

. Prove Theorem 1(d).
. Prove Theorem 2(d).
. (a) Draw Venn diagrams to illustrate Theorems 3(a) and 3(b).

(b) Prove Theorem 3(a).
(¢) Prove Theorem 3(b).

. (a) Draw Venn diagrams to illustrate Theorems 4(c) and 4(d).

(b) Prove Theorem 4(c).
(¢) Prove Theorem 4(d).

. Find three sets A, B, and C where A C BUCbutAZ Band A £ C.
. (a) Draw Venn diagrams illustrating the four parts of Theorem 6.

(b) Prove Theorem 6(a).

(¢) Prove Theorem 6(b).

(d) Prove Theorem 6(c).

(e) Prove Theorem 6(d).

Prove Theorem 7(c).

(a) Prove Theorem 9(b) using as a model the proof of Theorem 9(a).
(b) Prove Theorem 9(b) using Theorem 7(c).

Let A ={1,2, {{1,2}}}.

(a) How many elements does A have? How many elements does P(A) have? How
many elements does P(P(A)) have?
In parts (b)~(m) determine, whether each of the following is true, and if not,
explain why not.

(b) 1eA

() {1,2}e A

@ {{1,2}}eA

(e) e A

® 1ePA)

® {1,2} e P(4)

() {{1,2}} € P(A)

(i) BePA)

G 1ePPA)

k) {1,2} e P(P(A))

M {{1,2}} € P(P(A))

(m) @ € P(P(A))

For each of the following statements, find the corresponding inverse, converse, and
contrapositive.

(a) If the stars are shining, then it is the middle of the night.
(b) If the Wizards won, then they scored at least 100 points.
(c) If the exam is hard, then the highest grade is less than 90.

15.

16.

17.

18.
19.
20.
21.
22.

23.

24.

Exercises 3

Which of the following statements are correct? Prove each correct statement. Disprove
each incorrect statement by finding a counterexample.

(a) A and B are disjoint if and only if B and A are disjoint. (Read the statement
carefully—the order in which the sets are listed might matter!)

(b) A U B and C are disjoint if and only if both the following are true: (i) A and C are
disjoint and (ii) B and C are disjoint.

(c) AN Band C are disjoint if and only if both the following are true: (i) A and C are
disjoint and (ii) B and C are disjoint.

(d) AU B and C are disjoint if and only if one of the following is true: (i) A and C
are disjoint or (ii) B and C are disjoint.

(&) AN B and C are disjoint if and only if one of the following is true: (i) A and C
are disjoint or (ii) B and C are disjoint.

(f) Let U be a universal set with A, B C U. A and B are disjoint if and only if A and
B are disjoint.

For (a) and (b), prove the stated result. For (c) and (d), find a counterexample to show

that these conjectures are false.

(@) A®B=(AUB)—(ANB)

b)) ANBEC)=(ANB)BGANO

©) (ANB)d(CND)Cc(AdC)N(B® D)

d (AUB)®(CUD)C(AUC)®(BUD)

Given any four integers x;, x2, x3, and x4, none of which is even and none of which is

a multiple of 5, prove that some consecutive product of these integers ends in the digit

1. A consecutive product is one term, two terms in a row, three terms in a row, or all

four terms in a row using the order in which the integers appear in the list xy, x2, x3, x4.

(Hinz: Use a proof by cases.)

Prove by contradiction that 7 is a prime number.

Prove by contradiction that +/2 is not a rational number.

Prove by contradiction that Z has no smallest element.

Complete the proof of Example 12.

For parts (a) and (b), let U be any set, and let X = P(U).

(a) Prove that X with the operations N for meet and U for join is a distributive lattice.

(b) Prove that X with the operations U for meet and N for join is a distributive lattice.

Let U be any set, and let X = P(U). Prove that X with the operations U for meet and
N for join is a complemented lattice.

Recall that in the definition of a boolean algebra, we did not require that T, 1, and
each —x be specified; we merely said they must exist. So, it is natural to ask whether
there might be several elements that could equally well be chosen as T or L or, for
some element x of the boolean algebra, several different possible choices for —x. Show
that in a complemented lattice:

(a) There is only one possible choice of elements T and L satisfying the definition
of a complemented lattice. (Hint: Suppose there were two possible choices for T,
say, T1 and T3. Evaluate T1 A T3 in two different ways.)

(b) Foreach element x of a complemented, distributive lattice, there is only one possi-
ble choice for —x that satisfies the definition of —x. (Hint: Suppose there were two
choices, say, —x; and —x3, for —x. Find two ways to evaluate —x; A x V —x3.)

CHAPTER 1 Sets, Proof Templates, and Induction

25. Prove that in a boolean algebra
avibre)=(@Vvb)Ac

if and only if
avibAaave)=@vb)yAn(aveo)

and
anbvianc))=@Ab)v(@anc)

This property of a boolean algebra is called modularity.
26. Prove that in a boolean algebra, DeMorgan’s Laws hold; that is,

—~(xVy)=-xA-y
“(xAy)=-xV-oy

27. Let U =1{1,2,3,4,5,6,7,8,9, 10} be a universal set. Let A, B, C C U such that
A={1,3,4,8),B=1{2,3,4,5,9,10},and C = {3, 5, 7, 9, 10}. Use bit representa-
tions for A, B, and C together with UNION, INTER, DIFF, and COMP to find the bit
representation for the following:

(a) AUB

(b) ANBNC

) (AUC)NB

d (A-B)UC

() AN(B - (CNB))
fH A-(B-C)

(g (AUB)U(C - B)

The Principle of Inclusion-Exclusion

A great deal can often be learned just by counting the elements in a set. Unfortunately, it
turns out that even though counting is sometimes very easy, it is sometimes very difficult,
especially if the set whose elements are being counted has a very complicated description.
As we show later, the Principle of Inclusion-Exclusion is a widely used method for count-
ing the number of elements in the union or the intersection of sets.

15.1 Finite Cardinality

Before we focus on counting elements in unions of sets that are not disjoint, we need to
make clear some fundamental ideas about how we compute the number of elements in a set.

Definition 1. (Informal) For a finite set, the cardinality of A is the number of elements
in A. If A is infinite, then the cardinality of A is infinite. The cardinality of A is denoted
by |A|.

Example 1. |[{1,2,3}|=3.]0|=0.|P@)]|=1.[{{1,2,3}}] =1. |Z] is infinite.

This definition should be viewed as a temporary one. The topic of cardinality will be
dealt with in Chapter 4, in which this informal definition will be replaced with a more
formal one. In Chapter 4, the idea of two sets having the same cardinality (| X | = 1Y |)
will be extended to include sets with infinitely many elements. The informal definition of
cardinality suffices for finite sets; and in this section, only finite sets are considered.

The Principle of Inclusion-Exclusion 35

Theorem 1. (Basic Counting Theorem) Let A and B be subsets of a finite universal
set U.

(a) Let B € A. Then:

i. |B| <Al

ii. |[A—-B|=1]A|—|B].

iii. | B| =]A|if and only if B = A.
(b) Let A and B be disjoint finite sets. Then, | AN B| =0,and | AUB| =|A|+|B|.
© lAl=|U|-]Al

Proof. The proof is left to the reader. |

Example 2. The population of Atlanteas is 830, of which 250 are adult females and 380
are children.

(a) How many adults live in Atlanteas?
(b) How many adult males live in Atlanteas?
(c) How many “females and children” live in Atlanteas?

Solution. The universal set is U = {residents of Atlanteas}. The subsets of interest are

A = {adults}, F = {adult females}, M = {adult males}, and C = {children}

(a) |A| = |U| —|C| = 830 — 380 = 450 (part (c))

(b) |M| = |A| — |F| = 450 — 250 = 200 (since M < A use part (a))

(©) |[FUC|=|F|+I|C|—-|FNC|=250+ 380 — 0 =630 (since FNC = @, use part
(b)) L

The results in parts (a) and (b) of Theorem 1 are very special, because they make
strong assumptions about A and B. If these assumptions fail, the conclusions are generally
incorrect.

Example3. Let U = {0,1,2}, A = {0, 1}, and B = {1, 2}.

(a) Since A is not a subset of B, the hypothesis of part (a) does not hold. Neither does the
conclusion. |[A| = |B|,but A # B,and|A—B|=1#0=]|A|—|B]|.

(b) The sets A and B are not disjoint sets, so the hypothesis of part (b) does not hold. We
have |ANB|=[{1}|=15%0and |[AUB|=1{0,1,2}|=3#4=|A|+]|B],
so neither conclusion holds.

A more interesting question is the cardinalities of | A N B | and | A U B | when neither
A nor B is a subset of the other and the sets are not disjoint. There are, of course, some
trivial truths, such as 0 < |[AN B|and |AN B| < | A|. What is interesting, however, is
the relationship between |A N B| and |A U B|. The reader should study the two examples
below and then, before reading any further, try to identify a pattern.

Example 4. Let A={0,1,2,3,4,5,6,7} and B = {4,5,6,7,8,9, 10, 11, 12, 13}. So,
|A|=8,|B|=10,|ANB|=4,and|AUB| = 14.

Example 5. The population of Atlantis is 834, of which 500 are females. There are 175
people who are at least two meters tall, and only 10 of the females are at least two meters
tall. How many males are less than two meters tall?

CHAPTER 1 Sets, Proof Templates, and Induction

Solution. Of the 834 people, 500 are females, so 334 are males. Of the 175 people at
least two meters tall, 10 are females. This says that there are at 175 — 10 = 165 males who
are at least two meters tall.

Since there are 334 males in total and 165 of them are at least two meters tall, there
are 169 = 334 — 165 males who are less than two meters tall. The situation is shown in
Figure 1.12. u

Males Females

165 10 At least two
meters tall

169 490 Less than two
meters tall

Figure 1.12 Population characteristics.

In Example 5 we first counted how many males were at most two meters tall by di-
viding the set of all Atlanteans up into two sets, one consisting of all the females and the
other consisting of all the males. We did this correctly, because we knew the number of
Atlanteans and the number of females. We then made another such count to find the num-
ber of males who were at least two meters tall. We knew the total number of Atlanteans
who were at least two meters tall and the number of females who were at least two meters
tall. A simple subtraction gave the number of males at least two meters tall. We see that in
computing the size of both sets, we knew the size of two of the sets, and the two subsets
were disjoint. This result is an application of Theorem 1(b) in Section 1.5.1. We next deal
with the case in which A and B are not disjoint.

1.5.2 Principle of Inclusion-Exclusion for Two Sets

Example 6. A deck of cards has four suits: Clubs, Diamonds, Hearts, and Spades. Dia-
monds and Hearts are called red suits; Clubs and Spades are called black suits. Each suit
contains 13 cards with values Ace(1),2, 3,4, 5,6, 7, 8,9, 10, Jack, Queen, and King. How
many cards are black or have the value of 3?

Solution. Let A be the set of black cards and B the set of 3’s. The example asks for the
size of | AU B|. Clearly, | A| = 26, and | B | = 4. The problem is that two of the 3’s are
also black. In this case, | AN B | # @. The count | A | + | B| overcounts by | A N B |. The
answer is

|AUB|=|A|+|B|—|ANB|=26+4—2=28 n
The card problem in Example 6 is a special example of the Principle of Inclusion-

Exclusion that we prove in more generality next.

Theorem 2. (Principle of Inclusion-Exclusion for Two Sets) Let A and B be finite
sets. Then,

|[AUB|=|A|+|B|—-|ANB|

The Principle of Inclusion-Exclusion 37

The number of elements in the union of two finite sets is the sum of the number of elements
in each of the sets minus the number of elements in their intersection. A Venn diagram for
these sets is shown in Figure 1.13.

A N B

Figure 113 AU B]|.

(What the proof entails.) What procedure could be used to count the elements in A U B?
First, count all the elements of A. Then, count all the elements of B. In the process,
all the elements of AN B have been counted twice, so subtract | AN B| to compen-
sate.

Proof. The set AUB=(A—B)U(ANB)U (B — A), and any pair of (A — B),
(AN B), and (B — A) are disjoint (Theorem 6 in Section 1.3.2). It follows immediately
that (A — B) and (A N B) U (B — A) are also disjoint. Hence, by using Theorem 1(b) of
this section, we get

|[AUB|=]A~B|+](ANB)U (B — A)|
=|A—B|+|ANB|+|B—A]
By Theorem 6(b)
|Al=1A—-B|+|ANB|
|B|=]ANB|+|B—A|
Putting the last two equations together gives
|Al+|Bl=|A-B|+2-|]ANB|+|B—-A]|
|Al+|B|—-|ANB|=]A-B|+|ANB|+|B—A]|
Now, substituting this into the equation for |A U B, we get the required result:

|AUB|=|A|+|B|—|ANB| u

1.5.3 Principle of Inclusion-Exclusion for Three Sets

Figure 114 AU BUC|.

CHAPTER 1 Sets, Proof Templates, and Induction

The decomposition of two sets into disjoint subsets is fairly obvious. For three or more
sets, however, this is not as obvious a step. Figure 1.14 will help you to understand the next
theorem if you identify each of the regions of AU B U C.

The sets of interest are identified as A, B, C,ANB,ANC,BNC,and ANBNC.

Theorem 3. (Principle of Inclusion-Exclusion for Three Sets) Let A, B, and C be
finite sets. Then,

|[AUBUC|=|A|+|B|+|C|-|ANB|—|ANC|—|BNC|+|ANBNC]|

Proof. The same style of proof as used in Theorem 2 could be used, but in this case, there
would be seven pieces to keep track of instead of three. A clearer way to proceed is to use
Theorem 2 in Section 1.5.2.

|AUBUC|=|(AUB)UC| (by the definition of the union of three sets)

=|AUB|+|C|—](AUB)NC| (by Theorem 2 in Section 1.5.2)
=|AUB|+|C|—=|(ANC)U(BNC)| (by Distributive Law for Intersection)
=|AUB|+|C|-—(JANC|+|BNC|—=|(ANC)N(BNC)]) (by Theorem 2

in Section 1.5.2on (AN C)U (BN C))
=|AUB|+|C|—|ANC|—|BNC|+|(ANC)NBNC)|

(removing parentheses)
=|AUB|+|C|—-|ANC|—=|BNC|+|ANBNC|

(simplifying |[(ANC)N (BN C)))
=|A|+|B|—]|ANB|+|C|—|ANC|—=|BNC|+|ANBNC|

(by Theorem 2 in Section 1.5.2 again)

=|A|+|B|+|C|—|ANB|—|ANC|—|BNC|+|ANBNC| -

When the Principle of Inclusion-Exclusion is applied in the next example, the solution
becomes straightforward.

Example 7. A particular political campaign mailing is expected to appeal to three groups
of people: liberals, people earning more than $45,000 a year, and people with children un-
der five years of age. The mailing list includes 30,000 people, including 15,000 conserva-
tives and 15,000 liberals. Of the 30,000 on the mailing list, 17,500 earn more than $45,000
a year, including 10,001 of the liberals. In the set of people, 3500 have children under five
years of age, including 1000 conservatives, 2500 liberals, and 900 of those who earn more
than $45,000 a year. Only one of the liberals earns more than $45,000 a year and also has
children under the age of five. How many people on the mailing list are liberals, or earn
more than $45,000 a year, or have children under five years of age? (As usual, by or we
mean the inclusive or.)

Solution. Among people on the mailing list, let L be the set of liberals, E the set of
people who earn more than $45,000 a year, and C the set of people who have children
under five years of age (see Figure 1.15).

The Principle of Inclusion-Exclusion 39

L E U

Figure 1.15 Counting liberals and children.

The Principle of Inclusion-Exclusion for Three Sets says that

ILUEUC|=|LI+|E|+I|C|I=-ILNE|-|LNC|=|ENC|+ |LNENC|
= 15,000 + 17,500 + 3500 — 10,001 — 2500 — 900 + 1
= 22,600 n

Here, as often happens, there is a different way to count this collection of elements.
First, note that of the 900 people who have children under five years of age and who
earn more than $45,000 a year, only one is a liberal; the other 899 are conservatives. So,
among the 1000 conservatives with children under five years of age, 1000 — 899 = 101
do not earn more than $45,000. There are 15,000 liberals, plus 17,500 — 10,001 = 7499
conservatives making more than $45,000 a year, plus 101 conservatives with children under
five years of age. Therefore, the answer is

15,000 + 7,499 + 101 = 22,600

The Principle of Inclusion-Exclusion is also used to solve problems in number theory.
Before we explain that example, we need to remind ourselves of one fact from number
theory: For 2, 5, and 30, it is clear that 2{30 and 5}30. Morecover, it is clear that 2+5 =
1030. It is not always true, however, that the product of two divisors of a number is again
a divisor of the number. For example, 5, 10, and 30 have the property that 5|30 and 10|30,
but 510 = 50|30 is false. What is true is that if m is an integer and both p and g are
primes such that p|m and g|m, then p - g|m.

Example 8. How many natural numbers between 1 and 30,000,000 (including 1 and
30,000,000) are divisible by 2, 3, or 5?

Solution. Let
D; ={neN:1<n<30000,000 and r is divisible by i}

What is | D, U D3 U Ds |? The number is difficult to count directly, so we use the Principle
of Inclusion-Exclusion. | D; | = 15,000,000, | D3 | = 10,000,000, and | Ds | = 6,000,000.
How about | D; N D3 |? Since 2 and 3 are both prime, an integer n is divisible by both 2
and 3 if and only if n is divisible by 2 -3 = 6. So Dy N D3 = Ds, and | Dg | = 5,000,000.
Similarly,

| D N\ Ds| = | Dig| = 3,000,000
| D3N Ds| = | D15 | = 2,000,000

CHAPTER 1 Sets, Proof Templates, and Induction

and
| D; N D3N Ds| = | D3y | = 1,000,000
Now, by the Principle of Inclusion-Exclusion for Three Sets,

|D2UD3UDs| =Dyl +|D3|+|Ds|—|D2N D3| —|DyN Ds|
—| D3N Ds|+|[DyN D3N Ds|
= 22,000,000]

Often, a problem is posed in terms of finding how many objects do not have one or
more of a set of properties. For example, suppose we were asked to find the number of
integers between 1 and 30,000,000 that are not divisible by any of the integers 2, 3, or 5.
The solution is | D, U D3 U Ds | where D>, D3, and Ds are defined as in Example 8. The
answer is

| D, U D3 U Ds | = 30,000,000 — | D, U D3 U Ds |
In Example 8 we have shown that
| D U D3 U Ds | = 22,000,000
SO
| D2 U D3 U Ds| = 8,000,000

Next, we study an example that looks quite different from counting the number of
values having some set of properties.

Example 9. (The Hat Check Problem) Three Victorian gentlemen, called G, G2,
and G3, arrive at a restaurant and check their top hats. The cloakroom attendant loses the
numbers on the three hats and doesn’t know which hat is whose. Rather than admitting
the error, the attendant gives the three hats back to the three gentlemen at random. Let
h; represent the hat that belongs to gentleman G; where 1 < i < 3. The notation h;A jh;
represents hat /; being given to G by the attendant, / ; being given to G2 by the attendant,
and A being given to G by the attendant.

How many random assignments of hats result in at least one gentleman receiving his
own hat?

Solution. There are six ways the three hats can be handed back. The first gentleman to
request his hat back may be given any of the three hats. The second gentleman may be
given either of the two remaining hats. The third gentleman must get the last hat. Multiply
3 x 2 x 1 = 6 to get the number of possible ways.

Of those six ways to hand back the hats, obviously only one gets each hat back to
its owner. How many ways get at least one hat back to its owner? This question can be
answered using the Principle of Inclusion-Exclusion.

Let U be the set of all six ways the attendant can give the three top hats back. Let H;,
for 1 <i < 3, be the set of all the ways where G; gets his own hat back. Now, | H; | = 2,
for if G gets his own hat back, then there are two hats to return to G2 and G3. These
two hats can be returned to these two gentlemen in two different ways. By symmetry,
|Hi| = |H2| = |H3| = 2. If Gy and G, get their own hats returned, then there is one hat

The Principle of Inclusion-Exclusion |

left to be given to G3. There is one way to return this hat to G3. Therefore, |H; N Hy| = 1.
By symmetry, |H| N Hy| = |Hi N H3| = |Hy N H3| = 1. Finally, |Hy N H, N H3| = 1.
By the Principle of Inclusion-Exclusion, we compute |H; U Hy U Hj| as

|HWUH, UH3 | = |Hy |+ | Ha |+ | H3 | - |HINHy | — | Hi N H; |
—|HNH3 |+ | HHNHy N H3 |
=24242-1-1—-1+1=4

That is, of the six possible ways to hand back the hats, in four of them at least one gentle-
man gets his own hat back. u

1.5.4 Principle of Inclusion-Exclusion for Finitely Many Sets

Notice the alternating plus and minus signs in the Principle of Inclusion-Exclusion. For the
union of three sets, add the sizes of all the individual sets (intersections of one set), subtract
the sizes of the intersections of two sets, and add the size of the intersection of all three
sets. This alternation continues for computing the size of the union of more than three sets.
To state the next theorem neatly, we define two terms. Neither term is commonly used,
but each is quite understandable in the context of the Principle of Inclusion-Exclusion.

Definition 2. Let Ay, Ay, ..., A, be sets. An odd intersection from
A, Az, .. Ay

is an intersection of an odd number of the A;’s. An even intersection is an intersection of
an even, positive number of A;’s.

Example 10. Let A, Aj, A3, A4, and As be sets. Odd intersections are:

n=1:A], Ay, A3, A4, As
n=3:AINANA3, AiNA; N A4, A1N AN As, A] N A3 N Ay,
A1 NA3N As, A1 N AgN As, Ao N A3 N Ag, Ao N A3 N As,
Ay N A4 N As, A3N Ag N As
n=5:A1NANA3N A4 N A5

Even intersections are:

n=0:0
n=2:A1NA, Ay N A3, A3 N Ay, AgN As,
A1 N Az, Ay N A4, A3 N As,
A1 N A4, A2 N As,
A1 N As
n=4:A1NANA3N A4, A; N A3 N A3 N As,
Al NA3N A4 N As, AN A3 N AsN As]

Theorem 4. (Principle of Inclusion-Exclusion For Finitely Many Sets) Let A;, A,
..., A, be finite sets (n > 1). Then, | A} UAU..-UA,| equals the sum of the
cardinalities of all odd intersections from A1, Ay, ..., A, (including single sets) minus
the sum of the cardinalities of all even intersections from A, Aj, ..., A,.

42 CHAPTER 1 Sets, Proof Templates, and Induction

m Exercises

1. In a class of 35 students who are either biology majors or have blonde hair, there are
27 biology majors and 21 blondes. How many biology majors must be blonde?

2. A film class had 33 students who liked Hitchcock movies, 21 students who liked Spiel-
berg movies, and 17 students who liked both kinds of films. How many students were
in the class if every student is represented in the survey?

3. A tennis camp has 39 players. There are 25 left-handed players and 22 players who
have a two-handed back stroke. How many left-handed players have a two-handed
back stroke if every player is represented in these two counts?

4. A car manufacturer determines that automatic transmission, power steering, and a
CD player are the three most important features in generating sales. The production
schedule for the next day has these features incorporated in cars as shown in the fol-
lowing table:

Car || Automatic Transmission | Power Steering | CD Player

A X X

B X X X
C X

D X X
E X
F X X
G X X
H X X

(a) How many cars have at least one of these features? Even though you can see the
answer, use the Principle of Inclusion-Exclusion to derive it.

(b) How many cars have two or more of these features? Again, use the Principle of
Inclusion-Exclusion to derive the answer.

5. A marketing class did a survey of the number of fast-food outlets near campus. The
results of the survey showed the following:

Type of Food Sold No. of Outlets
Hamburgers 15
Tacos 25
Pizza 21
Hamburgers and tacos 11
Hamburgers and pizza 10
Tacos and pizza 14
Hamburgers and tacos and pizza 9
Served none of these items

Exercises 43

How many fast food outlets are there near campus?

6. At the beginning of the semester, an instructor of a music appreciation class wants to
find out how many of the 250 students had heard recordings of the music of Mozart,
Beethoven, Haydn, or Bach. The survey showed the following:

Composer Listened to by Students No. of Students
Mozart 125
Beethoven 78
Haydn 95
Bach 62
Mozart and Beethoven 65
Mozart and Haydn 50
Mozart and Bach 48
Beethoven and Haydn 49
Beethoven and Bach 39
Haydn and Bach 37
Mozart, Beethoven, and Haydn 22
Mozart, Beethoven, and Bach 19
Mozart, Haydn, and Bach 18
Beethoven, Haydn, and Bach 13
Mozart, Beethoven, Haydn, and Bach 9

How many students had listened to none of the composers?

7. A marketing class did a sample survey to find out how many of a class of 125 people
owned CDs of the Beatles, Alabama, or Bob Marley. The results of the survey showed
the following:

Recording Artist No. of Students Owning CDs
Beatles 65
Alabama 46
Bob Marley 29
Beatles and Alabama 18
Beatles and Bob Marley 21
Bob Marley and Alabama 12
Beatles, Bob Marley, and Alabama 9

How many of the students owned no CD featuring these performers?

CHAPTER 1 Sets, Proof Templates, and Induction

8.

11.

12.

13.
14.
15.

16.

17.

18.

The language department wanted to know how many of the 2000 students at the uni-
versity were not studying a language. Class rosters showed the number of students
studying some combination of French, German, and Spanish, as recapped in the fol-
lowing table:

Language No. of Students
French 75
German 68
Spanish 199
French and German 32
French and Spanish 41
German and Spanish 11
French and German and Spanish 7

How many students were not studying a language?
How many integers between 1 and 250 are divisible by 3 or 57

. In the game of tic-tac-toe, every game ends with one player winning or with a draw.

In a tic-tac-toe tournament, the players merely count the number of times they win

or draw. The match winner is the player with the larger total. If a match between two

players A and B consists of 25 games, player A has a score of 19, and player B has a

score of 23, how many draws were there?

There are 76 students enrolled in Anth229, Intermediate Anthropology. Each of these

students is also required to enroll in either one or both of Biol313, Physiology, and

Engl218, Victorian Poets. Of these 76 students, there are 35 in Biol313 and 49 in

Engl218. How many students are enrolled in all three classes?

The enrollment for the four courses Biol212, Polil15, Econ313, and Fina215 is 108,

203, 315, and 212, respectively. No student is in all four of these courses. No student is

in the three courses Biology 212, Fina215, and Poli115. No student takes Econ313 and

Fina215 in the same semester. Polil15 and Fina215 are not allowed in the same term.

There are 39 students in both Biol212 and Polil15, and 48 students in both Polil15

and Econ313 as well as in the two courses Biol212 and Econ313. Biol212, Polill5,

and Econ313 have a common enrollment of 73. Biol212 and Fina215 have a common

enrollment of 67. How many different students are enrolled in these four courses?

How many numbers between 1 and 1000 are not divisible by 3, 7, or 9?7

How many integers between 500 and 10,000 are divisible by 5 or 7?

(a) How many numbers between 1 and 70,000,000, including both 1 and 70,000,000,
are divisible by 2, 5, or 7?

(b) How many numbers between 1 and 6,000,000, including both 1 and 6,000,000,
are divisible by 4, 5, or 6?

Determine how many numbers between 1 and 21,000,000,000, including 1 and

21,000,000,000, are divisible by 2, 3, 5, or 7.

How many numbers between 1 and 21,000,000, including both 1 and 21,000,000, are

divisible by 2, 3, or 5 but not by 77

Find the number of integers between 1 and 1000, including both 1 and 1000, that are

not divisible by any of 5, 6, or 8.

Mathematical Induction 45

19. Find the number of integers between 1 and 1000, including 1 and 1000, that are not

divisible by any of 4, 5, or 6.

20. Find the number of integers between 1 and 1000, including 1 and 1000, that are not

divisible by any of 4, 6, 7, or 10.

21. (a) Extend Example 9 to cover four Victorian gentlemen and four top hats. With four
gentlemen, there are 4 x 3 x 2 x 1 = 24 ways to give the hats back.

(b) Modify part (a) to ask the number of ways, with four gentlemen and four hats, that
at least two gentlemen can get their own hats back.

(c) Solve Example 9 using an alternative proof that counts the number of ways that
no gentleman gets his own hat back and subtracts that value from the total number
of ways for the hats to be given back.

(d) Challenge: Solve part (b) using the same methods as for part (c).

Mathematical Induction

Mathematical induction is a powerful and fundamental technique for proving results about
all natural numbers. It is most important when it is possible to write down a proof for each
individual natural number but difficult—or even impossible—to give a single direct proof
that works for all natural numbers. This proof technique also often is used to prove that
algorithms are correct and to determine expressions for the complexity of algorithms.

1.7.1 A First Form of Induction

One of the easiest methods (algerithms) for sorting a list of numbers into increasing order
is called selection sort. This algorithm first finds the smallest element in the list and then
interchanges it with the first element. After removing the smallest element from further
consideration, the algorithm finds and removes from consideration the smallest element
remaining (those elements other than the element now first in the list). This process is
repeated until the list has just one element remaining. Since finding a smallest element
in a set with n elements requires n — 1 comparisons, a selection sort, operating on n + 1
numbers, always makes

n+(n—-D+m-2)+-.--+1
comparisons.
Example 1. Carry out a selection sort on the list 2, 1, 4, 3, 5.

Solution. In step i of the process, the ith smallest element is found among the elements
in positions i,i + 1, ..., 5 and is interchanged with the element in position i where 1 <
i < 4. (See Selection Sort Steps on page 46.) ’

To appreciate how many comparisons are needed, it is necessary to find a simpler way
to write the expression for the total number of comparisons. |

How do you go about adding up all the natural numbers from O to n where n can be
5, or 500, or 5000, or any other number? We all know how to do it in a tedious fashion for
any particular n, but that brute force method does not give an easy way to appreciate the
size of the sum for arbitrary n. (Nor does it give a way to compute the sum quickly.) The
problem is to find a simpler way to express the sum.

CHAPTER 1 Sets, Proof Templates, and Induction

Selection Sort Steps
Initialorder | 2 |1 |4 |3 |5
Step One 2 {1 |4 |3 |5 | Identify smallest (nonboxed element) in
four comparisons
2 |4 |3 |5 Swap2with1
Step Two 2 |4 |3 |5 | Identify smallest (nonboxed element) in
three comparisons
3 | 5 || Noswap needed
Step Three 4 |3 |5 | Identify smallest (nonboxed element) in
two comparisons
4 |5 || Swap 4 with3
Step Four 4 | 5 | Identify smallest (nonboxed element) in
one comparison
5 || No swap needed
Step Five 5 || Identify smallest (nonboxed element) in
Zero comparisons
Final Order [[1 |2 |3 |4 |5 || Numberof comparisons=4+3+2+1+0

One way to proceed is to try to find a pattern for small instances of the problem: Add
up, say, the natural numbers from 0 to n for n =0, 1,2, 3, 4, and try to find a pattern.
Patterns can be very misleading, however, because a pattern that may look correct for the
first few numbers may very easily fail later on. If a possible pattern is found, it is necessary
to prove whether it works in general. Consider the sums for the first few integers:

0=0
0+1=1
04+142=3

0+14+24+3=6
0+14+24+3+4=10
0+14+2+3+4+5=15
To find a different form for the problem often requires an idea that is not particularly

obvious. In this case, if you multiply each of the sums by two and then factor the doubled
value, you can hopefully see a pattern emerging. This transformation of the sums gives

2:-0= 0=0-1

2.0+ = 2=1-2
2.0+14+2)= 6=2-3
2-0+1424+3)=12=3-4
2-0+142434+4)=20=4-5

The pattern that seems to be emerging is

2:04+1424+---+n)=n-(n+1)

Mathematical Induction 47

It is not obvious that this formula is true for all n. It is true for n = 0, 1, 2, 3, and 4, but as
yet, we have no reason to believe it is true for, say, n = 12, or 347, or any of the integers
for which we have not shown it to be true.

What is needed is a method to prove that the conjectured formula is correct for all
n € N. The standard method of proof for a result claimed to hold for every natural num-
ber is called mathematical induction. Such proofs use an axiom of arithmetic called the
Principle of Mathematical Induction. This is not like Template 1.2 (Set Inclusion), since
we are not proving the same thing for every element of N. For example, for the sum of the
first n integers, suppose we want to prove the sum is 6 for n = 3 but 15 for n = 5. Before
stating the general principle, we present an example showing how the principle is used to
prove that our conjectured formula for adding the natural numbers from O to 7 is true for
all natural numbers n.

Theorem 1. For any natural number #n,

_n-(n+1)
B 2

Proof. Step 1: (Base step) Prove the result for n = 0, the smallest natural number.
The sum on the left-hand side of the equals sign is just the sum of all the natural numbers
starting at 0 and going up to O—that is, it is just 0. The number on the right-hand side is
0-(0 +1)/2, which is also 0. Therefore, the two sides are equal, and the result is true for
n=0.

Step 1: (Inductive step) Let n be any natural number for which the result is true. Prove
the result is also true for n + 1. The assumption that the result is true for » is called the
inductive hypothesis or inductive assumption. Assuming the result is true for n means
that

O0+1+2+--+n

n-(n+1)

O+ 142+ +n=—"7

Use this assumed-correct result to prove the required result for n + 1—that is, to prove that

n+D-(n+2)
2
To prove this, we start by regrouping the terms on the left-hand side:

0+142+ - +n+@+1)=

O+1+24+---+n+n+D)=0+1424+---+n)+@®n+1)

By the inductive hypothesis, the result is true for n, so we can substitute n(n + 1) /2 for the
terms in the first pair of parentheses on the right-hand side. We get

. 1
O+1424+---+)+m+1 = M”;_) 4+ (n+1) (using the inductive hypothesis)
. 2. 1
=" (n+1) ; (D (simplifying the algebra)
_(m+D-(n+2)
B 2

This means the formula is true forn + 1.

CHAPTER 1 Sets, Proof Templates, and Induction

Since we have proved that the formula is true for n = 0 and is true for n + 1 whenever
it is true for n, we can conclude that the formula is valid for all natural numbers. This
reasoning is call the Principle of Mathematical Induction.]

Let7T={neN:0+---+n=nn+1)/2}

1. Since 0 € 7T by the base step, by the inductive step, 0 +1=1€ 7.
2. Apply the inductive step again: since L € 7,1+ 1=2€ 7.
3. Andagain:since2 € 7,2+1=3€7.

To prove that 100 € 7, apply the inductive step 100 times. To prove that 10,000 € T,
apply it 10,000 times. For any specific natural number n, one can show that n € 7 by
showing that 0 € 7 and then applying the inductive step n times. An inductive proof is
often visualized as an infinite line of dominoes, with the dominoes being pushed over one
at a time starting with the first one. Figure 1.16 gives another way of thinking about what
happens in an inductive proof.

012345 6 7 8 9 1011

Figure 1.16 Falling dominoes.

A First Form of the Principle of Mathematical Induction

The Principle of Mathematical Induction gives a method for writing a single proof that
proves all natural numbers are in 7. Sometimes, this statement of the Principle of Mathe-
matical Induction is called its first form.

Principle of Mathematical Induction

Let 7 be a subset of the natural numbers (that is, 7 C N), and let ny € N, Suppose
(Base step) ng € 7, and

(Inductive step) for all natural numbers n such that n > ng, if n € 7, then
nt+leT.

Then, every natural number greater than or equal to ng is in 7. That is,

T={n:neNandn > ng}

Mathematical Induction 49

In the proof of Theorem 1, 7 was defined to be the set of all natural numbers for which
the formula

n

Y i=n@n+1)/2

i=0

is true. So, in that case, we choose ng = 0. The base step of that proof showed that ng =
0 € 7. The inductive step showed thatif n € T, thenn + 1 € 7. Now, by the Principle of
Mathematical Induction, 7 = {n e N:n > nyg =0} = N.

We give a picture of what is involved in an inductive proof in Figure 1.17.

Base step Inductive step

N+1

Principle of Mathematical Induction

’ y y ’ 3 oo

Values for which the property is TRUE

Figure 1.17 The parts of an inductive proof.

1.7.2 A Template for Constructing Proofs by Induction

Template 1.12 should help you to understand and construct a proof by induction.

Template 1.12 Using the Principle of Mathematical Induction

To construct a proof using the Principle of Mathematical Induction, choose an n €
N appropriate to the problem. Let 7 = {n € N : n > ng and property P holds for n}:

* (Basestep) Provethatng € 7.

¢ (Inductive step) Letn € 7, and prove that n + 1 € 7. The assumption that n €
7 is called the inductive hypothesis.

¢ Infer by the Principle of Mathematical Induction that every natural number n > ng
isin 7.

CHAPTER 1 Sets, Proof Templates, and Induction

The examples that follow show the power of this proof method. Some of the inequal-
ities verified here by induction will appear again in later chapters when we consider the
complexity of programs.

Example 2. For any natural number n such that n > 2, show that n + 1 < n?. Since we
wish to prove our result for every n such that n > 2, we must choose ng = 2 and let

T={neN:n>2andn+1 < n?

According to our template, the proof now has three essential parts: (i) a base step, (ii) an
inductive step, and (iii) an application of the Principle of Mathematical Induction.

For the base step, we must prove that ny € 7. In this case, we must prove for ng = 2
that ng+ 1 < n%. When the proof of the base step is complete, we know 7 #* J, because
ng € T. We would then like to know what elements greater than ng are also in 7. The
elements of 7 other than ng are found using the inductive step and the Principle of Math-
ematical Induction.

The inductive step begins by picking an arbitrary element n of 7. We then write
out property P for n to see what this assumption tells us. Here, it means n > 2 and
n+1 < n?

To complete the inductive step, we must show that n + 1 € 7. We write out property
P for n 4+ 1 to see what we need to prove. In this case, it means that n +1 > 2 and (n +
1) + 1 < (n + 1)?. We must then figure out how to prove that property P holds for n + 1
knowing that property P is true for n. When we complete this proof, the Principle of
Mathematical Induction tells us that for all n such that n > ng, wehave n € 7.

Solution. Letny=2.Let7 ={n€N:n>2andn+ 1 < n?}. Prove by induction that
n € 7T providedn > 2.

(Base step) To show that ng € 7, show that 2 >2and 2+ 1 < 22 Both are obviously
true. Therefore, 2 € 7.

(Inductive step) Letn > ng. Showthatifn € T, thenn + 1 € 7. Thatis, assumen > 2
and n + 1 < n?, and prove that (i) n 4+ 1 > 2 and (ii) (n + 1) + 1 < (n + 1). To prove
(i), observe that since n € 7, we have n > 2. Therefore, n + 1 > 2. To prove (ii), use the
following chain of equalities and inequalities:

m+1D%=n’+2n+1
> (n+1)+2n+1 (using the inductive hypothesis: n?>n+1)
>m+1DH+1 (using the inductive hypothesis: n > 2 > 0)

Therefore,n +1 € 7.
By the Principle of Mathematical Induction, 7 = {n € N: n > 2}.]

You can see the parts of the template being used as you study Example 3. Identify the
steps of the template as they appear in this example.

Example 3. Recallthatn! =n-(n —1):-(n —2)---2. 1. For any natural number n such

that n > 4, prove that n! > n?.

Solution. let ng=4. Let 7 ={n € N:n >4 and n! > n?}. Prove by induction for
every natural number » that n € T provided that n > 4.

Mathematical Induction 51

(Base step) Show that 4 € 7. Since 4! = 24 and 42 = 16, we have 4! > 42, s04 € T.

(Inductive step) Let n € T, then show that n + 1 € 7. As before, it is trivial to show
that n 4+ 1 > 4, so it only remains to show that (n + 1)! > (n + 1)2. To prove this, use the
following chain of equalities and inequalities:

m+1)=m+1)-n! (definition of n!)
> (n+1)-n? (using the inductive hypothesis)
>{mn+1)-(n+1) (use Example 2 in Section 1.7.2 with n > 4 > 2)
= (n+1)?
Therefore,n +1 € 7.
By the Principle of Mathematical Induction, 7 = {n € N : n > 4}.]

You should now show that ng could not be chosen smaller.

In Examples 2 and 3 in Section 1.7.2 we did not prove the results were true for all
n € N. It is quite typical that important relations may not be true for some finitely many
small integers and, instead, are only true for all integers greater than or equal to some
“large” integer.

1.7.3 Application: Fibonacci Numbers

A famous and often-studied sequence of numbers, called the Fibonacci numbers, was
defined by Leonardo Fibonacci (1170-1250, born in Italy).2 The first few numbers in this

sequence are
1,1,2,3,5,8,13,21, ...

Denote the nth Fibonacci number by F,, and let the first element of the sequence be
denoted as Fy. The defining rule for the elements of this sequence is Fop = F1 = 1 and
F, = F,_| + F,— for n > 2. After the initial values given for Fy and F, the following

Fibonacci numbers can be found by adding together the two previous Fibonacci numbers;
for example, F, is the sum of F and Fy. The first six Fibonacci numbers are

Fp=F =1

Fh=F+F=2

F=FKh+F =3

Fa=F+FR=>5

Fs=F4+F3=38
We computed the nth Fibonacci number for n > 2 by adding together the preceding two
Fibonacci numbers. A definition of this sort is called a recursive definition, because the
value we want is given in terms of previously computed values. (We could not compute a
value for Fy directly from the value 4 as we could if the sequence were defined as G(n) =
4 . n.) The resulting sequence is called a recursively defined sequence.

The Fibonacci numbers are probably best known as a source of recreational mathemat-

ics but are also the source of inspiration for searching and sorting methods. Many results
concerning Fibonacci numbers are proved by induction. Example 4 shows a typical proof.

2 We will abbreviate born to b. for other famous persons.

CHAPTER 1 Sets, Proof Templates, and Induction

The Fibonacci numbers were defined by Leonardo of Pisa, filius (son of) Bonacci,
who lived around 1200. Leonardo developed the sequence in predicting the size of
a population of rabbits. F,, is the number of pairs of rabbits he predicted one would
have n months after buying a pair of baby rabbits under the assumption that a pair of
rabbits matured in one month and produced a pair of offspring each month thereafter.

Month (n) Old Pairs New Pairs F,

n

0 |&né 1
1 | & 1
2 | £ iy 2
3 |l i

Furthermore, he assumed that the rabbits always produced a male and a female as
each pair of offspring. So, Fp = 1 for the pair just purchased. F; = 1, because after
one month, the original pair has just matured and are only now ready to start breeding.
F, = 2, because the original pair has just had one pair of offspring. F3 = 3, because
the original pair has had another pair of offspring and the first offspring have just
matured and are only now ready to start breeding. What happens during month rn?
All the rabbits alive during month n — 1 are still alive. In addition, all the rabbits alive
during month n — 2 have matured, and each pair has had one pair of offspring. Hence,
Fp=F—1+ Fy2.

Example 4. Show that the identity Fy + F3 + Fs + -+ Fy,—1 = F2, — 1 is true for
alln > 1.

Solution. Let no = 1. Prove the identity by induction on n. Let
T=meNinzland 1+ i+ -+ Fy = F, — 1}

Provethat7 ={n e N:n > 1}.

(Base step) Prove the result for n = 1. The left-hand side in this case is just the sum
of all the Fibonacci numbers starting with Fi and ending with F3._1). There is just one
such Fibonacci number, Fi, and the value of the left-hand side is 1. The right-hand side is
Fhb.i—1=F —-1=2—-1=1. 8o, the two sides are equal, and 1 € 7.

Mathematical Induction 53

(Inductive step) Letn > ng. Show thatifn € 7,thenn + 1€ 7. Sincen > l,n+ 1 >
1. Assume for n that

Fil+ B+ + P =F,—1
and prove that
Fi+F+ -+ Fp1+ Ppiy-1 = FBap+y — 1

The required computation is

Fil+ B+ -+ o1+ Fagg -1
=(F1+F+ -+ Fp_1)+ Fon+1)-1 (making the formula for n clear)

=Fyp — 14+ Fpi-1 (using the inductive hypothesis)
= (Fan + F2(n+1)) — 1 (rearranging terms)
=Fpyp—1 (using the definition of Fa,+7)
=Py — 1
Therefore,n +1 € 7.
By the Principle of Mathematical Induction, 7 = {n e N:n > 1}.]

1.7.4 Application: Size of a Power Set

The next result was referred to in the discussion of computer switches in Section 1.3.4 and
will be proved several times in the book using several different ideas. Recall that P(X),
the power set of X, is the set of all subsets of X.

Theorem 2. (Size of a Power Set) Let X be any finite set with n elements. Then, P(X)
has 2" elements.

The proof of Theorem 2 can be proved by induction on the number of elements in
X. First, we prove an auxiliary result called a lemma. A lemma is the same as a theorem,
except that the result is not particularly important in its own right but only gives a step in
another proof. Just as procedures divide programs into manageable parts, lemmas are tools
for dividing a proof into smaller, more comprehensible pieces.

Lemma 1: Let X be any set, and let b ¢ X. If X has (exactly) n subsets, then X U {b}
has exactly 2n subsets.

Proof. List the subsets of X:

St, 82,83, ..., 8

54

CHAPTER 1 Sets, Proof Templates, and Induction

Each of these is also a subset of X U {b}. Now, create n more subsets of X U {b}:
S U{b), S U{b},.... S, VU{b}

Obviously, each S§; U {b} is also a subset of X U {b}. Now, we have a list of 2n subsets of
X U {b}):

81,82, ..., S, S1U (b}, S U (b}, ..., S, U (b}

Show that (i) no subset of X U (b} appears twice in this list and (ii) every subset of X U {b}
appears in this list.

Once these two assertions have been proven, it will follow that these 2n subsets are all
the subsets of X U {b}, so X U {b} has 2n subsets. We prove (ii) and leave the proof of (i)
as Exercise 32 in Section 1.9 for the reader.

To prove (ii), follow Template 1.1 (Element Membership in a Set). Let S be an ar-
bitrary subset of X U{b}. If b ¢ S, then § C X, so S is one of the S;’s. If b € S, let
§ =8 — {b). Then, §' C X, so S’ is some §;, and then § is S; U {b} (for the same i). In
either case, S is on the list. [|

Proof of Theorem 2. Let7 = {n € N : for every finite set X with n elements, P (X) has
2" subsets}. We will prove by induction that 7 = N.

(Base step) Let ng = 0. The only set with zero elements is @. The only subset of @ is @,
50 P () has 1 = 2° elements. Therefore, 0 € 7.

(Inductive step) Let n > 0. Show thatif n € 7, then n + 1 € 7. Using the hypothesis
that every set with n elements has 2" subsets, prove that every set with n + 1 elements
has 2"*! subsets. Let X be an arbitrary set with n + 1 elements. Pick one element y € X,
and let Z = X — {y}. Then, Z has n elements, so by the hypothesis, Z has 2" subsets. By
Lemma 1, X = Z U {y} has 22" = 2"*! subsets. Therefore, n + 1 € 7.

By the Principle of Mathematical Induction, 7 = N. |

1.7.5 Application: Geometric Series

A finite geometric series, or just a geometric series, is the sum of terms of the form a - r'
wherea,r e R —{0},r # 1,and 0 < i < n. For example,

n
Zwr[=a+a-r+a-r*+--+a-r"
i=0
is a geometric series. As another example, leta = 5, r = —3, and n = 5, giving
545-(=3)+5(=3"+5-(=3>+5-(=3)* +5-(=3)°

as a geometric series. Although

20
> 3.2
i=5

Mathematical Induction 55

does not look like a geometric series, it is easy to transform this finite geometric series into
a more familiar looking expression:

20
D 320 =3-3243.64+..-43.2%
i=5

=96-1496-2+4-.-496-21

15
=962
i=0

A very useful feature of a geometric series is that we can find a closed form for its sum.
Here, we focus on the sum of a finite geometric series. The sum of an infinite geometric
series is usually studied in a calculus course, since the limiting process is needed. Although
it seems to be unrelated at first, we will begin by proving that for any n € N, 1 — x"*! has
1 — x as a factor. After proving this by induction, we will apply the result to summing the
finite geometric series.

Theorem 3. For any natural number n and for any real number x, prove that
A=) +x+x>+- +x"=1—x"t

Solution. This result is just a familiar factoring rule. The ellipses usually suggest that a
proof by induction is needed. Fix an arbitrary x € R. Let ng = 0 and

T={neN:foranyx e R, (1 —x)(1 +x4+x2+3 4+ 4 =1-x]
(Base step) Show that 0 € 7. Substituting O for n gives (1 — x)(1) =1 — x!as required.

(Inductive step) Let n > 0. Show thatifn € 7, thenn+ 1€ 7. Sincen € 7, it is as-
sumed that

A=A +x+x2+x3+ 41" =1—x"t
We must prove that n + 1 € T or that
A=A +x+x2+x3 4 Fx"h=1-x"2

Use the following chain of equalities to complete the proof:

A=) +x+x2+x3 4. +x" +x"t]
=-x0)A+x+x2+x3+. - +x" + (1 - x)x"+! (making the formula for n clear)

=1-—x"tl 4 (1 - x)xnt! (using the inductive hypothesis)
=1 —xttl g xntl _ yn+2 (simplifying the expression)
=1- xn+2
Therefore,n +1 € 7.
By the Principle of Mathematical Induction, 7 = N. |
Corollary1: Forr € Rwithr # 1,
n . 1— rn+1
Z a-r'=a ;
i=0 -7
N . n+1
Proof. Y ! qa-r'=ad; or'=a- 1_1’_: n

CHAPTER 1 Sets, Proof Templates, and Induction

Corollary 1 gives a formula for finding the sum of a finite geometric series.
Example 5.

(@ 1+3+P+3 4+ 43" =13/ (-2) =@ —1))2.
®) 2+104+50+---+1250=2+2.5+2-5242.53 +2.54
=2(1-5%)/(-4)
= 1562 [

The next example shows how to compute the sum when the first term does not clearly

correspond to what is expected for a term of the form a - r0.

Example 6. Find the sum of
3.243.2243.224...43.2"
Solution. Rewrite the expression with 3 -2 = 6 as a factor of each term:
6:204+6:2" +... +6-2"71)
We now have a geometric series with n terms with @ = 6 and r = 2. The sum is

n—-1
Z6-2i=6-(1—2")/(—1)=6-(2"—1) m
i=0

Program Correctness

An important problem in computer science is to prove that a program executes correctly
for all possible data sets. There is no simple way to do this. In fact, it is impossible in
principle to prove correctness for very complicated programs. Many techniques, however,
are useful for proving the correctness of a wide variety of programs.

One method for checking the correctness of a program is to test the program on lots of
data to make sure it comes up with the right answers in each case. Obviously, this technique
is useful, but it can be used only to find errors, not to establish correctness. The problem is
that if no errors are found by running a program on test data, the only conclusion one can
draw with any assurance is that the program works correctly on all the data tested.

Another useful technique is to prove mathematically that the algorithms (the principles
behind the program) are correct. Such proofs are often proofs by induction.

Before we examine some algorithms, we need to explain how we will present the steps
of an algorithm. The language we use is called a pseudocode, because it is a mixture of
normal language and the precise syntax of a programming language.

1.8.1 Pseudocode Conventions

A variable will simply be a name that will represent a place in a computer to store a value.
When we use a variable, like X, we are referring to the value that is stored in the location
the machine assigns to X. A simple assignment statement of the form

variable = expression

Program Correctness 57

computes the value of the expression on the right-hand side of the equal sign and then stores
the result in the location indicated by the name on the left-hand side. To cause branching
in the code, we use a condition test of the form

if condition then
S

else
$2

When this code is executed, the condition is evaluated to be either TRUE or FALSE. If the
condition is TRUE, then the code represented by S; is executed, the code represented by
S, is not executed, and the execution then continues at the first command following S,. If
the condition is FALSE, then the code represented by S, is executed, the code represented
by S) is not executed, and the execution then continues at the first command following S,.

For a statement that can cause repetition of a block of code, we generally use a for
construct. The code

fori =1tondo
S

starts by initializing i to the value 1. If the value of i is less than or equal to n, the commands
represented by § will then be executed. The code S may or may not use i as a variable. At
the end of executing this indented code, i will be incremented by 1 and then tested to see
if it is still less than or equal to n. If this condition for the current value of i is evaluated
as TRUE, the loop is executed again using the new value of i. When the condition is tested
with a value of i for which the condition is evaluated as FALSE, the program continues at
the next line following the code represented by S. We often refer to such code as a for loop.
To display a result, we use the word print followed by a list of the names of the storage
locations whose values are to be displayed (think of print on the screen or of output to a
printer). Comments in the code will appear as /* any text as a comment */. Comments are
skipped over when the program is executed.

With just these four instructions (assignment, condition, repetition, and printing) for
pseudocode, we can write instructions that could easily be turned into valid code in some
programming language.

An additional way to cause repetition of a block of code is with use of a while loop:

while condition

S

A while statement is a command to execute the code indented below the while state-
ment over and over again as long as the condition written just after the word while is
evaluated as TRUE. If this condition is evaluated as FALSE when the loop is first reached,
the indented statements are executed zero times, that is, they are not executed.

Many authors use the word algorithm to describe only strategies for programs that
will ultimately stop. Others would say there is no “output” unless it stops. We include our
apologies for our use of the word and present the following program as algorithm. The
algorithm will use a while loop to “repeat forever” a block of code, since the condition
in the while statement can never be false. This is just an instruction to execute the while
loop without stopping—or until someone turns off the computer. In this case, it is called
an infinite loop, since it could go on forever!

CHAPTER 1 Sets, Proof Templates, and Induction

1.8.2 An Algorithm to Generate Perfect Squares

We now demonstrate how you can generate all the perfect squares. A perfect square is any
integer n that is equal to k? for some integer k. For example, 1 is a perfect square, because
it is equal to 12. In addition 9 is a perfect square, because 9 equals 32. For the Perfect
Squares algorithm, we give an intuitive argument that the program is correct.

Algorithm: Perfect Squares

INPUT:
OUTPUT: List of perfect squares

Counter =0

while (TRUE) /* repeat forever */
Counter = Counter + 1
print Counter - Counter

To understand the Perfect Squares algorithm, trace its execution for the first few values
of Counter. The algorithm starts with Counter equal to 0 and then repeats the last two in-
structions forever. The first time through, the algorithm adds 1 to Counter, giving Counter
the value of 1, and prints 1-1. The second time through, it adds 1 to Counter, increas-
ing Counter from 1 to 2, and prints 2 - 2. The third time, it adds 1 to Counter, increasing
Counter from 2 to 3, and prints out 3 -3. And so forth. It is obvious that the algorithm
works. In fact, for any natural number k, after the kth time through the loop, Counter is set
to k and the first k perfect squares have been printed.

183 Two Algorithms for Computing Square Roots

There are many algorithms for finding the square root of an integer. The two algorithms
presented here use different strategies for finding a better and better approximation of a
square root. The first was found on ancient Babylonian cuneiform tablets. The second is a
variant of one that has been taught in schools. A fundamental problem with any approxi-
mation algorithm is to have a bound on how far an approximation is from the true value.
For both algorithms presented here, we can prove a result about the bound using induction.

Square Root |

The Square Root I algorithm provides a method of finding an approximation to the square
root of an integer. In this case, the first approximation is a value less than the desired result.
Each iteration of the procedure gives a larger value than the previous one.

Program Correctness 59

Algorithm: Square Root |

RESULT: Approximation of /17

Root =4
DecimalPlaceValue = 1
fori =1to8do

DecimalPlaceValue = DecimalPlaceValue/10
/* Search for the digit at the decimal place.*/
Digit =9
/* 9 is the largest possible value for Digit. */
AddOn = Digit - DecimalPlaceValue
while((Root + AddOn) - (Root + AddOn) > 17) do
/* Digit is too big, so try a smaller value. */
Digit = Digit — 1
AddOn = Digit « DecimalPlaceValue
/* At the end of the while loop the next digit is found. */
Root = Root + AddOn
print Root

The code starts by approximating +/17 by 4. The variable DecimalPlaceValue is used
to keep track of which decimal digit is being added to the approximation. When i is equal
to n, DecimalPlaceValue will be equal to 107". The first value added to the previous ap-
proximation is Digit+ 10™" where Digit is 9. The while loop sees if adding Digit- 107"
gives a new value for the approximation by computing

(Root + Digit - 107")? < 17
If the value of Digir gives
(Root + Digit - 107™)? > 17

a new, smaller value of Digit is tried. At some point, Digit will take on a first value, say
Digitg,,, for which

(Root + Digitg,, - 107)* < 17

The new approximation for 417 will be formed by adding Digitg,,, + 107" to Root to form
the next approximation. The first iteration of the for loop gives the value 1 for Digitg,,.
Consequently,

Root=4+1-10"" =4.1
for i = 1. Now, in the second iteration, Digitg,,, takes the value 2, so

Root=4.14+2.1072 =4.12

60

CHAPTER 1 Sets, Proof Templates, and Induction

The process continues to add decimal digits to the intial approximation for as many itera-
tions of the for loop as are required by the code. For the code shown, the final approxima-
tion is Root = 4.12310562 and Root - Root = 16.9999999536.

For Square Root I, we can find an explicit formula for a bound on the error after
iterations. Let R, denote the value of Root after n iterations of the for loop. The error term
is defined as ¢, = V17 — R, forn e N,

Theorem 4. Prove that for Square Root I, the error bound ¢, for R, satisfies the inequal-
ity ¢, < 107" foreachn € N.

Proof. Letng=0.Let7 ={neN:R, <417 < R, +107"}.

(Base step) For n = 0, the result follows, since Root is 4 and the for loop is not executed.
Clearly, 4 < +/17 < 5,800 =/17—-4 <1 = 1079, Therefore, 0 € 7.

(Inductive step) Choose n > ng such that n € 7. Now, prove that n + 1 € 7. That is,
assume R, < /17 < R, + 107", and prove that R,41 < +/17 < Ryy1 + 10~ ¢+ By
the inductive hypothesis,

R, <17 < R, + 107" = R, + 10-10~+D

The search for Digir finds the largest integer Digit where R,. + Digit- 10~¢"+D < /17,
Since Digit is the largest such integer,

R, + Digir- 107D < /17 < (R, + Digir- 10~®+Dy 4 100+
Since Digit + 1 has the property that
(R + (Digit + 1)-10~¢+1D)2 5 17
then

R. + Digit- 107D = R\ < /17 < R, + Digit- 10~ "+ 4 10~ ¢+D
= Rpy1 + 107D

as desired,andn +1 € 7.
Therefore, 7 = N by the Principle of Mathematical Induction.]

Square Root II

The Square Root II algorithm produces an approximation of the square root of an inte-
ger by generating approximations that are alternately larger than the square root and then
smaller than the square root. Each iteration of the procedure, however, brings the value of
the approximation closer to the true value of the square root.

Program Correctness 61

Algorithm: Square Root li

RESULT: Approximation of +/17

Root =4
fori = 1to4do

Root = (Root + 17Root) /2
print Root

The computation starts by assigning 4 to Root. The value in Root at any time will
represent the current approximation to +/17. For each iteration of the for loop, the current
approximation is improved by evaluating the expression

(Root + 17/Root) /2

and storing the “better” approximation in Root. This process continues until the for loop
has been executed four times. The value of Root after each of the first four iterations is
shown in Table 1.2.

Table1.2 Qutput from Square Root ||
Values of Rootfor/1=1,2,3,4
Root

4.125

4.12310606060606
4.12310562561768
4.12310562561766

W N = Py

With any iterative algorithm, it is important to know with each iteration that the error
gets smaller. Let R, denote the value of Root after the for loop has been executed n times.
Then, as before €, = v/17 — R, is the error in the calculation after n executions of the for
loop. The error can be either positive or negative.

Theorem 5. Prove that for Square Root II, the error bound ¢, for R, satisfies the inequal-
ity |€n] < (1/2)6°2"-3 for eachn € N.

Proof. Letno=0.LetT ={n e N: || < (1/2)6°%"73}.

(Base step) Since (4.1)2 = 16.81 and (4.125)% = 17.015625, it follows that
4.1 < /17 < 4.125

Now, Rg = 4, so

4.1— Ro < v/17 = Ry < 4.125 — Ry
€0 < 0.125 (Ro = 4)
€ < (1/25 %72

CHAPTER 1 Sets, Proof Templates, and Induction

Therefore, 0 € 7.
(Inductive step) The remainder of the proof is left as an exercise for the reader.]

Exercise 39 in Section 1.9 explores other properties of this algorithm.

Exercises

Assume that all variables not given an explicit domain are elements of N.

1.

10.

11.
12.

Show that for n = 0, 1, 2 the following is true:
2+22432 4. 4n=ntn+ DR+ 1)/6

. Find all the elements of {0, 1, 2, 3} that, when substituted for n, satisfy:

1 + 1 + " 1 _n
1.2 2.3 ntn+1) n+1

. Write out the information that describes what the inductive step assumes and what the

step must prove for proving
124224324+ 40’ =n(r+1)Q2n+1)/6

with ng given.
Write out the information that describes what the inductive step assumes and what the
step must prove for proving
1 1 5 1
S RS- BN g

3 n
6 2 120 12

P+22+3 4+ +n
with ng given.
Write out the information that describes what the inductive step assumes and what the
step must prove for proving that 6 divides n> + 5n with ng given.

. Write out the information that describes what the inductive step assumes and what the

step must prove for proving that 120 divides n> — 5n3 + 4n with ng given.

. Show forn =0, 1, 2 that

(n+1DCn+1D2n+3)/3+2n+3)2=n+2)2n+3)2n+5)/3

. Show that

(n+1)2n+1)2n+3)/3 + (2n 4+ 3)* = (n + 2)(2n + 3)2n + 5)/3
Show that
nn+2m+)=+ 1D+ @n+1)
Show that

n
Z Fit1=Fpqz2—1
i—0
forn=1,2,3,4.

For which elements n € {0, 1,2, 3, 4, 5} does 6 divide n> + 5n?
Show that 8 divides k> — 1 fork € {1, 3, 5, 7}.

13.
14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

Exercises 63

Find the smallest n € N such that 2n2 + 3n + 1 < n°.
Prove by induction for n > 0:

24446+---+2n=n’+n

Prove by induction:

@ 2422432 4+...4n2=n(m+1)Q2n+1)/6forn>0

b) P+2+3F 4+ . 4n¥=0+2+3+---+n)2forn>0

© *+2*+3* ... 4n*=n(+1)@2n+1)Bn2+3n—1)/30forn > 0

d) P+25+3 4+ +n° =1+ In5+ Zn* — Ln’forn>0

Prove by induction:

(@ 0-2°41.2142.2243.23 4 ...y pn."=@m—-D2"" 4+ 2forn >0

) 24+324+52+...+ 2+ 12 =mn+1)Q2n+1)Q2n+3)/3forn>0

(€ 12-22432 ... (=" 2 =(-1)"'nm+1)/2forn >0

d1:242:34344+---+n-m+1)=nm+1)(n+2)/3forn=>0

) 1-2-34+2-3.443:4.5+--.4n-n+1)-n+2)=nm+1)(n+2)
(n+3)/4forn>0

Prove by induction:

(a) 1{—2+21f3+---+n(—nl+ﬁ=n"?fornzl

b j+5+5+ - +pm=2-"%2forn>1

Prove by induction that 8 divides 2n + 1) — 1 for all n € N.

Prove by induction for n > 0:

(a) 3 divides n® + 2n

(b) 5 divides n°> —n

(c) 6dividesn® —n

(d) 6 divides n> + 5n

Prove by induction for all n € N:

(a) 7 divides n” —n

(b) 11 divides n'! —n

(c) 13 dividesn!?® —n

(d) 120 divides n®> — 513 + 4n

Prove by induction: The sum of the cubes of any three consecutive natural numbers is

divisible by 9.

Show that any integer consisting of 3" identical digits is divisible by 3". Verify this for

222;777;222,222,222; and 555,555,555. Prove the general statement for all n € N by

induction.

Prove by induction that the following identities are true for the Fibonacci numbers:

@ Yj—o Fait1 = Faup2 —1forn >0

() Y F?=F,Fap1 —1forn > 1

(©) X! oF =Fyo—1forn>0

Find the Fibonacci numbers Fg through Fis5. Prove the following results for the Fi-

bonacci numbers:

(a) F3, and F3,.) are odd, and F3,,; iseven forn > 0
(b) Fo+F2+---+ Fop = Fopt1 forn > 0

CHAPTER 1 Sets, Proof Templates, and Induction

25.

26.

27.

28.

29.

30.

31.

32.
33.

© Fo+F3+: -+ F3y = F3,42/2forn >0
(d) F2 | =Fyp+Fpya— (—1)" forn >0
The Lucas numbers are defined as Lo =2, Ly =1,and L, =L, 1+ L,_» forn >
2. Prove the following identities for Lucas numbers.
(@ Li+L+---+L,=Lp4a—3forn>1
(b) L2+ L2+ L3+ -+ L2=Ly+Lpy —2forn>2
©) Lo+ La+---+Layy=Loyy1—1forn =2
Find the value of the following sums:
@2+3+5++%
1.1 1 —1
®1-5+7—5+--+(F)
() 2+4-84+16+---+ (=)l
(d) 1.03 4+ (1.03)2 4+ (1.03)3 + - - - + (1.03)"
Find a rational number representing each of the following repeating decimals:

(a) 0.537537537537537537537537537...
(b) 31.25469696969696969696969 . ..

A fixed dose of a given drug increases the concentration of that drug above nor-
mal levels in the bloodstream by an amount Co (measured in percent). The effect
of the drug wears off over time such that the concentration at some time 7 is Coe™**
where k is the known rate at which the concentration of the drug in the bloodstream
declines.

(a) Find the residual concentration R, the accumulated amount of the drug above nor-
mal levels in the bloodstream, at time ¢ after n doses given at intervals of ¢y hours
starting with the first dose at = 0.

(b) If the drug is alcohol and 1 oz. of alcohol has Cy = 0.05%, how often can a “‘dose”
be taken so that the residual concentration is never more than 0.15%? Assume
k = (1/3) In(2).

(a) Prove by induction that 2" > n for alln > 0.

(b) Provethat2” > n directly from Theorem 2 in Section 1.7.4, without explicit use of
induction. (That is, Theorem 2 in Section 1.7.4 itself was proved using induction,
but you should not have to do any additional induction.)

(c) Prove by induction that 2" > n3 forn > 10.

Prove by induction:

(a) There is a natural number k such that n! > n3 for all n > k. (Try to find the least
such number k.)

(b) n! > nt forn >17.

Let 7 = {n € N:sin(n -) = 0}. Prove that 7 = N. (Hint: sin(a + b) = sin(a) -

cos(b) + cos(a) - sin(b).)

Prove assertion 1 from Lemma 1.

(a) Suppose you take out a mortgage for A dollars at a monthly interest rate / and
a monthly payment P. (To calculate I: if the annual interest rate is 12%, divide
by 12 to get a monthly rate of 1%, then replace the percentage with the decimal
fraction 0.01.) Let A, denote the amount you have left to pay off after n months.
So, Ag = A by definition. At the end of each month, you are first charged interest

34.

35.

36.

37

38.

Exercises 65

on all the money you owed during the month, and then your payment is subtracted.
So,

An+1 =A,(1+1)—-P

Prove by induction that
P P
Ap=A——= A+ D"+ —
(aPyarir st

(b) Use this to calculate the monthly payment on a 30-year loan of $100,000 at 12%
interest per year. (Note that the formula is inexact, since money is always rounded
off to a whole number of cents. The derivation here does not do that. We use 12%
to make the arithmetic easier. You should consult a local bank to find a current
value.)

Sometimes, induction is not necessary for a proof, but an inductive proof can be sim-
pler than a noninductive proof. This is true for Examples 2 and 3 of Section 1.7.2.

(a) Find proofs of Examples 2 and 3 using familiar algebra but no explicit induction.?

(b) Optional: Find proofs of Examples 2 and 3 using calculus. (To some students
calculus may be more familiar than induction, but it is certainly more complicated
theoretically!)

Prove Theorem 4 of Section 1.5.4 in full generality. You may use Theorem 3 of Section
1.5.3, since it has already been proven. (Hint: Use induction on the number of sets).
For natural number exponents and nonzero bases, most of the familiar laws of expo-
nents can be proved by induction on the exponents using the facts that B0 =1 (for
b # 0) and " T! = b+ b". Assuming that m and n are natural numbers and both r and
s are nonzero real numbers, prove the following:

(@ rmtt =pmopn,

(b) r™" = (r™)".

(c) Ifr > 1, then r™ > r” if and only if m > n.

(d) Ifn,r,s > 0, then " > 5" if and only if r > s.

A common use of inductjon is to prove various facts that seem to be fairly obvious but

are otherwise awkward or impossible to prove. These frequently involve expressions

with ellipses. Use induction to show that:

(@ XUXINX2NX3N---NXH=XUX)NXUX)N---N(XUX,)

B) XN(X1UX,UX3U---UX)=XNXDUXNX)U---UXNXy)

) XiNXaN-—-NX,)=X UX,U---UX,

@ XjUXU---UX,)=XNX2N---NX,

(a) Prove that x € XN X; N---N X, if and only if x € X; for every i such that
0<i<n.

(b) Prove that x € XoU X; U---U X, if and only if x € X; for some i such that
0<i<n.

(c) Use part (a) to give another proof of Exercise 37(a).

3 We say explicit induction since, in the development of arithmetic from the foundations, almost everything about
+ and - is proved by induction, including the familiar algebra needed for this problem.

CHAPTER 1 Sets, Proof Templates, and Induction

39.

40.

41.

Refer to the Square Root 11 algorithm.

(a) Finish the proof of Theorem 5.

(b) Show that €,+1 = —€2/(2R,). (Hint: Simplify +/17 — (R, + (17/R,,))/2.)

(c) How close do you think the value printed is to the actual value of /177 Approxi-
mately how many decimal digits in accuracy is that?

Challenge: Exactly where is the mistake in the following proof that all personal com-
puters are the same brand? Let 7 = {n € N: n > 1 and in every set of n personal
computers, all the personal computers are the same brand}. Prove by induction that for
every natural number » such that n > 1isin 7.

(Base step) 1 € 7, since, trivially, if a set of personal computers contains only one
computer, then every (one) computer in the set has the same brand.

(Inductive step) Suppose n € 7. We need to show n + 1 € 7. So, let P be any set
of n + 1 personal computers. Pick any computer ¢ € P; we need to show that every
computer in P is the same brand as c. So, let d be any computer in P. If d = c,
then, trivially, d and c are the same brand. Otherwise, ¢ € P — {d}. The set P — {d}
contains n computers, so by inductive hypothesis, all the computers in P — {d} are
the same brand. Furthermore, d € P — {c}, and, also by inductive hypothesis, all the
computers in P — {c} are the same brand. Now, let e be a computer in both P — {c}
and P — {d}. Then, d is the same brand as e, and c is the same brand as e. Therefore,
d is the same brand as c.

Using the Principle of Mathematical Induction, prove each of the following different
forms of the principle:

(a) Induction with a possibly negative starting point: Suppose that § C Z, that some
integer ng € S, and that forevery n € Z, if n € S and n > ng, thenn + 1 € §.
Then, for every integer n > ng, we have n € §.

(b) Induction downward: Suppose that § C Z, that some integer ng € S, and that for
everyn € Z,ifn € Sandn < ng, thenn — 1 € S. Then, for every integer n < ng,
we haven € §.

(c) Finite induction upward: Let ng, n| € Z, ng < ny. Suppose that S C Z, ng € S,
and foreveryn € Z, if n € §, n > ng, and n < nj, thenn + 1 € S. Then, every
integer n where ng < n < npisin S.

(d) Suppose S € N is infinite, and suppose that for every n € N, if n + 1 € S, then
n € §. Provethat § = N.

Strong Form of Mathematical Induction

The Fundamental Theorem of Arithmetic states some familiar results about factoring
integers. Part of the Fundamental Theorem of Arithmetic is the result that every integer
n > 1 can be factored as a product

n=pipapk

Strong Form of Mathematical Induction 67

for some prime numbers pi, ps, ..., pr. The p;’s are not required to be distinct, and
k simply denotes the number of factors needed to express p. For example, 4 =2-2is a
factorization of 4 into two primes. If k = 1, then n is a prime, and n = n is a factorization
into primes. We just define the term factorization into primes to include the one-prime
case.

The proof that every integer n > 1 can be factored into primes goes as follows: If n is
prime, then n = n is a factorization of n into primes. Otherwise, if n is not a prime, then n
can be factored as n = k - m for some integers m and k where n > m, k > 1. Since k and
m are both less than n, we can conclude that m and & can be factored. We would now use
the factorizations of m and & to form a factorization of n.

This is not an application of an inductive hypothesis as induction has been presented
so far. The problem is that the Principle of Mathematical Induction only uses the result for
n — 1 to prove the result for n = (n — 1 + 1). Here, the result for n has to be proved from
the same result for rwo smaller numbers &k and m, neither of which (it turns out) is n — 1.
In fact, k,m < n/2.

The Strong Form of Mathematical Induction has a somewhat different form of in-
ductive hypothesis: It assumes the result for all natural numbers k where ngp < k < n—
with ng € N just as before—and then proves the result for n. This was what we needed
for factoring—whatever k, m are, we get to apply the inductive hypothesis to both of
them.

We now give a formal statement of this new form of induction and then complete the
proof that every integer can be written as a product of primes.

Strong Form of Mathematical Induction

Let 7 € N and ng € N. Suppose that for all natural numbers n > ng, ifng, ng +
1,...,n—1€T, thenn € T. Then, every natural number n > ng isin 7.

If ng is equal to zero, then the Strong Form of Mathematical Induction proves that
T7=N.

The Strong Form of Mathematical Induction is also sometimes called Complete In-
duction or Course of Values Induction. It is the inductive hypothesis which is “‘stronger,”
not the principle itself. Indeed, any theorem provable with the strong form of induction is
also provable with the first form, but such proofs may require some awkward complica-
tions.

To use the strong form of induction, one must prove the if-then statement that

ifng,no+1,...,.n—1€7T,thenneT

Virtually always, the proof is broken into cases. For some values of n, including ng, the
result is proven directly; this set of cases is sometimes called the base step. For the other
values of n, the result is proved using the assumption that ng, no + 1,...,n — 1 € 7. This
is called the inductive step, and that assumption is called the inductive hypothesis.

CHAPTER 1 Sets, Proof Templates, and Induction

Inductive step

Base ste
P ng no+1||(ng+2 n-1|[— n

base
cases

2 2 LA

Assumed true cases

/

Strong Form of Mathematical Induction

2 2 2 2 LIERCE

Values for which the property is TRUE

Figure 118 Typical proof using the Strong Form of Induction.

Using Figure 1.18 as a guide, we now return to proving the result about factoring
integers. As noted above, the proof breaks into two cases: one case for prime numbers 7,
and one case for nonprimes.

Theorem 1. (Part of the Fundamental Theorem of Arithmetic) Every natural num-
ber n such that n > 1 can be factored into a product of one or more primes.

Proof. The proof will use the Strong Form of Mathematical Induction. Let no = 2, and
let

T={neN:n>1landn = p1:ps--- pi for some prime numbers p;, ps, ..., pk-

Let » be any natural number greater than or equal to 2.

(Base step) The base cases deal with any » that is a prime. Since n is prime, n = n is a
factorization of n into the product of one prime.

(Inductive step) In this step, we will prove the result for any » that is not a prime. As-
sume that for all m where2 <m < n,m € 7. Now, proven € 7.

Since n is not prime, n can be factored as n = k - m where k # 1 and m # 1. It follows
easily that 1 < k < n and that 1 < m < n. Hence, by the inductive hypothesis, k, m € 7.
So, k and m can be factored into products of primes:

k=p1-p2---pi and m=gqi-q2---q;

Then,

Strong Form of Mathematical Induction 69

n=pi-p2---pi-q1-q2--4g;

so n can be factored into a product of primes. Therefore,n € 7.
By the Strong Form of Mathematical Induction, 7 = {n e N:n > 1}. |

1.10.1 Using the Strong Form of Mathematical Induction

The Strong Form of Mathematical Induction is often used to prove a closed form for the
elements of a recursively defined sequence like the Fibonacci sequence. A closed form
for the elements is a representation for each term that can be computed without knowing
any other element(s) of the sequence. Exercise 16 in Section 1.11 is to show that the nth
Fibonacci number can be computed as

. __1_.(1+«/5_)n+1_i.(1—«/5_)n+1

J5 2 NG 2

for each n € N. This expression is a closed form for the Fibonacci sequence.

The next example is similar to the result about Fibonacci numbers, but the computa-
tions are less complex. The verification of the closed form for the Fibonacci numbers is
left as an exercise.

Example 1. The terms of a sequence are given recursively as
ag=0,a1 =2, and a, =4(a,_1 —a,_7)forn>2

Prove by induction that b, = n - 2" is a closed form for the sequence. That is, prove that
a, = b, forevery n € N.

Solution. Letng=0and 7 = {n € N: b, = a,}. In this case, two elements of the se-
quence, ag and aj, are defined directly. As is fairly typical, these special cases constitute
the base cases for the proof.

(Base step) The two base cases are n = 0 and n = 1 Evaluating by and b; gives by = 0
and by = 2. Thus, ag = bgand a; = b1,500,1 € 7.

(Inductive step) We now deal with any » such that n > 2. Assume that for all k¥ where
0 <k <n,k € T.Prove that n € 7 by showing a, = b,. Sincen >2,n —1,n — 2 >0,
son—1,n—2¢T.
anp = 4(a,—1 — an—2) (by definition of a,)

=4((n — 1)2""1 — (n — 2)2""%) (by inductive hypothesis)

=4p.2r L2l _p2"2 0. 0m72

= 4(n(2n—1 _ 2n—-2) _ (2n—l —2. 2n—2))

=4(n2-2""2 2" —(2.2"2 —2.277Y))

=4.n.2""2 = p.2"
Therefore, b, = a, andn € T.

By the Strong Form of Mathematical Induction, 7 = N. That is, b, = n - 2" is aclosed
form for the terms of the recursively defined sequence.]

70

CHAPTER 1 Sets, Proof Templates, and Induction

Constructing a proof by induction using the Strong Form of Induction requires a dif-
ferent template than the one for the first Principle of Mathematical Induction. This new
template makes clear what is being done at each step, but be careful: There is more variety
in the form of proofs using the Strong Form of Induction than in proofs using the ordinary
Principle of Mathematical Induction.

Template 1.13 Using the Strong Form of Mathematical

Induction

To construct a proof using the Strong Form of Mathematical Induction, choose an
no € N appropriate to the problem. Let

T ={n € N:n > ngp and property P holds of n}

(Base step) Show explicitly that property P holds for certain numbers n, called the
base cases. ng should be one of those values; the choice of the other values depend on
the problem.

(Inductive step) For all n > ng not covered in the base case, assume that property
P holds for all k = ng,ng + 1...,n — 1, and prove that property P holds for n.

Infer by the Strong Form of Mathematical Induction that

T={neN:n>ng}

Using the Strong Form of Mathematical Induction

As in an ordinary inductive proof, an inductive proof using the strong form of induction
has three essential parts: (i) a base step, (ii) an inductive step, and (iii) an application of the
Strong Form of Mathematical Induction.

Translating the problem includes specifying no and clearly defining the set 7 whose
elements the inductive proof will determine—that is, clearly stating the property P to be
verified. This definition does not tell us that any number is in 7.

The first step of the proof is called the base step, and it involves proving the result for
the base case(s). Identify one or more values for which property P can be verified directly.
Often, one might verify it directly for values ng, no + 1, n9 + 2, ..., n1 for some ny > nyg.
In the base step of the proof, prove directly that ng,no + 1, ...,n1 € 7. As in Example 1,
the base cases often correspond to the initial conditions specified in the problem.

The inductive step is usually quite different in the Strong Form of Mathematical Induc-
tion from the inductive step in the Principle of Mathematical Induction. Begin by letting
n > ng be an arbitrary natural number that is not covered in the base case. Assume that
no,no+1,...,n—1 € 7. To complete the inductive step, use that assumption to show
that n € 7. Again, start by writing out property P for n to see what is to be proved. There
is no real formula for the next part of the inductive proof. Figure out how to prove property
P holds for n knowing that property P holds for ng, ng + 1, ..., n ~ 1. When that is done,
use the Strong Form of Mathematical Induction to infer that for alln > ng,n € 7.

Strong Form of Mathematical Induction n

In practice, you may often try to work out the Inductive step first. You will then see
certain values—and you may as well assume that ng must be one of them—for which the ar-
gument doesn’t use the inductive hypothesis. These values are identified as the base cases.

Example 2. The terms of a sequence are given recursively as
a=1, a=1, and a,=2-ap,-1+3-a,_»forn>2

Prove by induction that b, = % -3+ % - (—=1)" is a closed form for the sequence.
Solution. letng=0and7 ={n e N: b, =ay}.
(Base step) Identify n = 0, 1 as the base cases. The defined values in such a definition
often are the base cases. Evaluate by and b; directly:

bo =33+ (D% = ;A+ D =1=a

b =33 +(-DH=33-1 =1=a
So0,0,1e7T.

(Inductive step) Now, let n > 2, and assume fork =0, 1,...,n — 1 that k € 7. Prove
that n € T by showing that a, = by:

anp = 2ap-1 + 3ay_2 (by definition of a,)

1 1 .
=2. 5(3"—1 + (D" H+3. —2—(3"—2 + (—=1)"72) (by inductive hypothesis)

2
We know that (—1)"2 = (=1)", (=1)""! = —(=1)", and 3"~ = 3.3"2, So,

3 3
— 3"—1 + (_l)n—l + - .3n—2 + 5(_1)n—2

3 3
an — 3.3n—2+ E.3n-—2 _ (_l)n + E(_l)n

=__3n— __ln
> +t5D

1 1
- _. 3" _ _1 n
53"+ 5(=1)
= b,
as desired. Therefore, n € 7.

By the Strong Form of Mathematical Induction, 7 = N. That is, b, = %-3" +

% - (=1)" is a closed form for the terms of the recursively defined sequence. |

Unlikely as it might seem, we can use the Strong Form of Mathematical Induction to
show which amounts of postage can be made from a fixed number of several denominations
of stamps.

Example 3. The country of Oz issues only 3-cent and 8-cent stamps. What amounts of
postage are possible with just these two kinds of stamps?

Solution. Obviously, some packages will require a lot of surface area to affix all the
required postage! By experimentation, we can find out that all of 0, 3, 6, §, 9, 11, 12, 14,
15, 16, 17, 18, 19, 20, and 21 cents are possible. Since we are getting all amounts of 14

72

CHAPTER 1 Sets, Proof Templates, and Induction

cents or greater, we conjecture that all amounts except 1, 2, 4, 5, 7, 8, 10, and 13 cents are
possible.

We conjectured that all values starting at 14 are possible, so we handle all n < 14
separately. We noted that 0, 3, 6, 8,9, 11, and 12 cents are all possible. Amounts of 1, 2,
4,5,7,8, 10, or 13 cents are impossible: To get any of those amounts, one would need to
use, at most, 4 stamps (why?), and we can list all the possible combinations of 0—4 stamps
to show that none add upto 1, 2,4, 5,7, 8, 10, or 13 cents.

Let

T={neN:n>14andn=k-3+1-8forsomek,/ € N}

We must then prove that every natural numbern > 14 isin 7.

(Base step) After some experimentation, we decide the base cases are 14, 15, and 16.
Since 14 =2:3+4+1-8,15=5-34+0-8,and16 =0-3+2-8,wehave14,15,16 ¢ 7.

(Inductive step) Let n > 14, and assume that 14, 15,16, ...,n — 1 € 7. Now, prove
thatn € 7.

Since 14, 15, and 16 are base cases, every possible value for » that is not a base case
and is greater than or equal to 14 is also greater than or equal to 17. For n > 17, we have
n — 3 > 14. So, by the inductive hypothesis, for some k,/ ¢ N,n —3 = k-3 41 .8.Then,

n=m-3)4+3=%k-34+1-84+3 = (k+1)-3+8-!

So, n € T, as desired.
By the Strong Form of Mathematical Induction, 7 = {n € N : n > 14}. |

There are some other values for which Oz can make postage—for example, 3, 6, 8, 9,
11, and 12. When we looked carefully at the inductive step, we saw we would have to be
able to go back three from any n for which we were proving the postage amount could be
made. We were then more clear on what the base cases would need to be. Consequently,
the base step proved postage can be made for n = 14, 15, and 16. It is not unusual that the
base cases are identified by trying the inductive step of the proof. Note that in the proof
of the inductive case above, before applying the inductive hypothesis to n — 3, we checked
that n — 3 > ng. Not making that check is a very easy way to make an error. In this case,
had we not made that check, we might have started with n = 12, asserted thatn —3 =9
was in 7, and proceeded as with the inductive case above—and we would have “proved”
something that was actually false.

1.10.2 Application: Algorithm to Compute Powers

Suppose you want to compute x” for some nonzero real number x and some natural number
n. One way is to multiply together »n copies of x, a task that requires n — | multiplications.
Are there faster ways to complete this computation? We will prove that the following al-
gorithm computes x” using far fewer multiplications for large values of n.

Strong Form of Mathematical Induction 73

Algorithm: Compute Powers

INPUT: A nonzero real number x and a natural number n
OUTPUT: The value of x"

FastPower(x, n) /* The initial call */

FastPower (base, expont) [* The recursive procedure */
if (expont = 0) then
return 1
else
if (expont is odd) then
return base - FastPower(base - base, (expont — 1)/2)
else
return FastPower(base - base,expont/2)

The algorithm presented uses a programming feature called recursion. In this algo-
rithm, a call to the algorithm FastPower is part of its own code. In a programming language
that supports this feature, the compiler will keep track of which version of FastPower is
being executed and which values should be used for the arguments. For more details about
how recursion is implemented in a programming language, the reader should consult a
manual for a language such as Java, C, or C*+.

The reader should trace through the algorithm by hand for some sample values of
base and expont. For example, a computer executing this algorithm to compute 25 will go
through the following steps:

FastPower(2, 5) identifies 5 as odd and computes
2 - FastPower(2-2, (5 — 1)/2) = 2 - FastPower(4, 2)
To execute FastPower(4, 2) requires the execution of
FastPower(4 - 4,2/2) = FastPower(16, 1)
Now, expont = 1 is odd, so the program computes
16 - FastPower(16-16, (1 — 1)/2) = 16 - FastPower (256, 0)

When FastPower(256,0) is executed, the program starts the return process. Fast-
Power(256, 0) returns 1 to FastPower(16, 1). The returning value using FastPower(16, 1)
is 16 - FastPower(16, 1) = 16. This value is FastPower(4, 2), which must be multiplied by
2 before that value is returned to FastPower(2, 5). Thus, FastPower(2, 5) = 32.

The flow of control for this example is shown in Figure 1.19 on page 74.

Even though the example computation for 2> works correctly, it is, however, not quite
obvious that the FastPower algorithm correctly calculates powers for every nonzero base

11

CHAPTER 1 Sets, Proof Templates, and Induction

FastPower (2, 5)

return 32

base expont
call 1: 2 5

return 32

base expont
call 2; 4 2

return 16

base expont
call 3: 16 1

return 1

base expont
call 4: 16 1

Figure 1.18 Flow of control for FastPower (2, 5).

and every exponent. Using the Strong Form of Mathematical Induction, we now prove that
the algorithm is correct for all cases.

Theorem 2. The FastPower algorithm returns the value base” for base € R — {0}, and
neN.

Proof. The proof is by induction on the value of n. Let np = 0 and

7 = {n e N: forevery base € R — {0}, FastPower(base,n) = base""}
Prove by the Strong Form of Mathematical Induction that 7 = N.
(Base step) For n = 0, the algorithm returns 1, as required. So, 0 € 7.

(Inductive step) Let n > 0. Assume that for all k£ such that 0 < k < n, k € 7. Now,
prove thatn € 7.
This case breaks into two subcases:

Case 1: n is odd. So, n =2k + 1 for some k € N. Clearly, 0 < k < n. By familiar
properties of exponentiation,

2k+1 — pase - base**

= base- (basez)k

base

By the inductive hypothesis, since k < n, the algorithm correctly computes b* for any b.
In particular, it computes (base®)*; thus, base - (base?)f = base?**1,

Case 2: n is even. The proof is analogous to the proof of Case 1. In either case, n € 7.
By the Strong Form of Mathematical Induction, 7 = N. []

FastPower is actually used in many computer science applications when the exponent
is known to be an integer. Special computer chips are used in cryptography for doing

Strong Form of Mathematical Induction 75

arithmetic of numbers up to approximately 300 digits. These chips essentially compute
powers this way, with one modification: FastPower, as written, makes a recursive call—it
invokes (another copy of) itself. To calculate 2°, for example, the procedure was called
four times (the original call and three recursive calls). There is computer overhead in each
of these calls. It turns out that the special chips have had the recursive calls replaced with
a loop, producing the program actually used. Interested readers should try writing this
algorithm nonrecursively.

1.10.3 Application: Finding Factorizations

The Fundamental Theorem of Arithmetic was proved at the beginning of this section. As
important as the result is, however, it does not provide any insight regarding how one goes
about finding such a factorization. The two algorithms here explore factoring integers. The
first looks for the largest odd divisor. In a theorem we will prove later, the proof does
not provide a method for finding the largest odd divisor but, instead, uses the Fundamental
Theorem of Arithmetic to guarantee the existence of such a factor. When you actually want
to find the elements that the theorem only says will exist, you can use the first algorithm as
a method for doing this step of the proof. The second algorithm takes the guarantee of the
Fundamental Theorem of Arithmetic that a factorization exists and actually finds it. Later,
you will be asked to prove that these algorithms are correct. At this point it, however, is
important to understand what the algorithms are doing.

Largest Odd Divisor

A while loop controls the iterations in Largest Odd Diviser algorithm, because each it-
eration reduces the number being considered by a factor of 2 until only an odd number
remains.

Algorithm: Largest Odd Divisor

INPUT: Integer value N > 0
OUTPUT: Largest odd divisor of N

LargeOdd (N)
while (Mod(N, 2) = 0)
N=N/2
print N

In this code, the condition mod (N, 2) = 0 returns TRUE when N is divisible by 2 (N
is even). The code returns FALSE when N is not divisible by 2 (N is odd). The first test of
the condition simply asks if the original number is odd. If the number is odd, it is certainly
the largest odd factor, and N is printed. If the condition is TRUE and N is even, then the
code controlled by the while loop divides N by a factor of 2. The resulting value (N/2)
is used in the condition the next time the while statement is executed. If the condition is
TRUE, the division by 2 is repeated. Eventually, the condition in the while statement with

16

CHAPTER 1 Sets, Proof Templates, and Induction

the value N/ 2k, where 2 is the highest power of 2 that is a factor of N, will be evaluated
as FALSE, because the value tested is odd. In this case, the process terminates by printing
the final value of N/ 2% For example, if N = 78, the condition Mod(78, 2) = 0 is TRUE
and N is replaced by 78/2 = 39. Now, when the condition Mod(39, 2) = 0 is tested, the
condition is FALSE. The while loop is exited, and the value of N/2 = 39 is printed.

Theorem 3. Prove that the Largest Odd Divisor algorithm is correct.

Proof. Exercise for the reader.]

Factorization

Often, a small insight that does not seem particularly significant can make a big difference
in developing an algorithm. In the code for PrintFactors, the idea is that if an integer n can
be factored as j -k where 1 < j, k < n, then either j or k is in the range 1 to 1/n. To find
a factor of n, we can focus on finding a value between 2 and ﬁ rather than a value from
2ton — 1.

Algorithm: Print a Prime Factorization of an Integer

INPUT: Integer N > 1
OUTPUT: Factors of N

PrintFactors (N) /* Initial call */

PrintFactors (n) /* The recursive procedure */

RootN = /n

TrialFactor = |RootN |

while (mod (n, TrialFactor) # 0) do
/* If TrialFactor is a divisor of n, the loop
will be executed zero times. */
TrialFactor = TrialFactor — 1

if (TrialFactor < 1) then
print n

else
PrintFactors(TrialFactor)
PrintFactors(n/TrialFactor)

The procedure PrintFactors is designed to display the factors of any integer. For
example, we know that the factors of 12 are 2, 2, and 3. The value of RootN is ini-
tially assigned the value |+/12] = 3. Therefore, the first time through PrintFactors, we
set TrialFactor equal to 3, and we test Mod(n, TrialFactor) # 0. The condition is FALSE,
which means that 3 is a factor of n. TrialFactor is greater than 1, so we call PrintFactors(3)
and PrintFactors(12/3). PrintFactors(3) prints the factor 3. PrintFactors(4) starts by set-

Strong Form of Mathematical induction n

ting TrialFactor equal to 2. Because now Mod(n, TrialFactor) # 0 is FALSE, we call
PrintFactors(2) and PrintFactors(4/2). These two calls to PrintFactors both print a 2,
completing the factorization of 12.

When you trace the execution of a procedure, some visual help to see how control
passes from one step to another can be valuable. In Figure 1.20 we show how 376 is fac-
tored. The while loop determines whether there is a factor for n starting with \/n and
working down to 1. The figure displays the flow of control after the while loop has been
executed. Each time the while loop identifies a factor, it prints the factor and terminates.
This is seen when PrintFactors(2) is executed. If the while loop identifies a factor of n
such that

n = TrialFactor - (n/TrialFactor)

and TrialFactor is greater than 1, then it executes PrintFactors again on both TrialFactor
and n/TrialFactor. This is indicated, for example, in the case of PrintFactors(4) that must
execute both PrintFactors(2) and PrintFactors(4/2) when the while loop identifies 2 as a
factor.

PrintFactors(376)
Executes Executes
PrintFactors(8) PrintFactors(47)
Execu:V \Yecutes Prints 47
PrintFactors(2) PrintFactors(4)
Prints 2 Executes Executes
PrintFactors(2) PrintFactors(2)
Prints 2 Prints 2

Factors: 2, 2, 2,47

Figure 1.20 Flow of control for PrintFactors(376).

Theorem 4. Prove that the algorithm PrintFactors is correct.

Proof. Exercise for the reader. |

1.10.4 Application: Binary Search

If you think about how you look for a name in a phone book, you will have a good idea
of what the code in the BinarySearch algorithm does. A common process is the following:
You open a phone book to about the page where you think the name should appear. If you
have turned past the name you want, you continue this process with the first part of the
phone book. Otherwise, you have not gone far enough in the phone book, so you continue
this process using the pages from that point forward to the end of the phone book. More
mechanically, you could think of a program always choosing a page halfway through those

CHAPTER 1 Sets, Proof Templates, and Induction

that could possibly contain the name. If the name is not on the middle page, the search
continues either in the first half of the pages being considered or in the last half of the pages
being considered. This strategy is just what BinarySearch does by repeatedly halving the
range of pages that it thinks could contain the name. Eventually, the process comes to a
page that must either contain the name or the process knows that the name does not occur
in the phone book.

Algorithm: Binary Search of Phone Directory

INPUT: Name to be found in the phone directory City
OUTPUT: Message indicating whether or not Name was found

BinarySearch(Name, City)
FirstPage = the page number of the first page of City
LastPage = the page number of the last page of City
PageFound = FALSE
NameFound = FALSE
while (FirstPage < LastPage and PageFound = FALSE) do
MiddlePage = | (FirstPage + LastPage)/2]
if (Name falls between the first name on page MiddlePage
and the last name on page MiddlePage) then
PageFound = TRUE
else
if (Name is alphabetically less than
the first name on page MiddlePage) then
LastPage = MiddlePage — 1
else
FirstPage = MiddlePage + 1
if (PageFound = TRUE) then
Examine all names on page MiddlePage
if (Name is found on MiddlePage) then
NameFound = TRUE
else
NameFound = FALSE
if (NameFound = TRUE) then
Print a message saying Name is on MiddlePage
else

Print a message saying Name is not in City

Example 4. Determine whether Joe Smith is in a phone book with 521 pages. For this
problem, suppose Joe Smith appears on page 326.

Exercises 79

Solution. We start with FirstPage =1 and LastPage = 521. MiddlePage = |(1 +
521)/2] =261. Since Joe Smith should appear after page 261, we let FirstPage = 262.
Now, MiddlePage = | (262 4 521)/2] = 391. Since Joe Smith is not on page 391 and we
are beyond the page we want, we let LastPage = 390 and compute MiddlePage = | (262 +
390)/2] = 326. We find Joe Smith on this page and return an appropriate message.

Theorem 5. Prove that the algorithm Binary Search of Phone Directory is correct.

Proof. Exercise for the reader. n

Exercises

Assume that all variables not given an explicit domain are elements of N.

1. The terms of a sequence are given recursively as ag = 2, a; = 6, and a, = 2a,_1 +
3a,—2 for n > 2. Find the first eight terms of this sequence.

2. The terms of a sequence are given recursively as pp =3, p1 =7, and p, =3 pp—1 —
2 pp—s for n > 2. Find the first eight terms of this sequence.

3. The terms of a sequence are given recursively as ag =0, a1 = 4, and a, = 8a,_1 —
16 a,_, for n > 2. Find the first eight terms of this sequence.

4. Prove that with just 3-cent and 5-cent stamps, you can make any amount of postage
less than 35 cents (any natural number of cents) except 1 cent, 2 cents, 4 cents, and 7
cents.

5. The terms of a sequence are given recursively as pp = 1, p1 = 2,and pp, =2 pp—1 —
pn—2 for n > 2. Write out the information that the inductive step assumes and what
the step must prove in proving b, = 2- 3" is a closed form for the sequence. Suppose
ng = 0 and the base cases are 0 and 1.

6. The terms of a sequence are given recursively as pp = 3, p1 =7, and pp, =3 p,—1 —
2 pp—, for n > 2. Write out the information that the inductive step assumes and what
the step must prove in proving b, = 2"*2 — 1 is a closed form for the sequence. Sup-
pose ng = 1 and the base cases are 0 and 1.

7. The terms of a sequence are given recursively as ap =0, a; = 4, anda, = 8a,_1 —
16 a,_, for n > 2. Write out the information that the inductive step assumes and what
the step must prove in proving b, = n4”" is a closed form for the sequence. Suppose
ng = 1 and the base cases are 0 and 1.

8. Given that b,_; =2-3""! and b,_p = 2-3"2, prove that if b, = 2b,_1 + 3bp_3,
then b, = 2-3” provided n > 2.

9. Given that b,_; = 2"t — 1 and b,_» = 2" — 1, prove that if b, = 3b,_1 — 2b,_3,
then b, = 2"+2 — 1 provided n > 2.

10. Given that b,_; = (n — 1)4"~! and b, _» = (n — 2)4"~2, prove that if b, = 8b,_1 —
16b,,_2, then b, = n4" provided n > 2.

11. The terms of a sequence are given recursively as ag = 2, a1 = 6, and @, = 2ap—1 +
3a,_; forn > 2. Prove by induction that b, = 2 - 3" is a closed form for the sequence.

12. The terms of a sequence are given recursively as po =3, p1 =7, and pr =3 pp—1 —
2 pp—p for n > 2. Prove by induction that b, = 2"+2 _ 1 is a closed form for the
sequence.

CHAPTER 1 Sets, Proof Templates, and Induction

13.

14.

15.

16.

17.

18.

19.

20.

21.

The terms of a sequence are given recursively as ap =0, a1 = 4, and a, = 8a,_1 —

16 a,,—; for n > 2. Prove by induction that b, = n 4" is a closed form for the sequence.

The terms of a sequence are given recursively as po =1, py = 2,and p, =2 pp—1 —

pn—p for n > 2. Prove by induction that b, =14n is a closed form for the

sequence.

(a) Prove that with just 3-cent and 5-cent stamps, you can make any amount of postage
(any natural number of cents) except 1 cent, 2 cents, 4 cents, and 7 cents.
(Hint: That you can make O-cent postage is obvious. You need to prove two things:
(1) that you can assemble any amount of postage except 1 cent, 2 cents, 4 cents,
and 7 cents; and (ii) that you cannot assemble these four amounts. Be careful about
whether you use the Principle of Mathematical Induction or the Strong Form of
Mathematical Induction.)

(b) What amounts of postage can be assembled with 4-cent and 7-cent stamps only?

(c) What amounts of postage can be assembled with 8-cent and 10-cent stamps only?

(d) What amounts of postage can be assembled with 7-cent, 8-cent, and 10 cent stamps
only?

(e) What amounts of postage can be assembled with 2-cent and 5-cent stamps only?

Prove by induction that

F__l— 1+ﬁ n+1_—1_ 1—\/5 n+1
"S5 2 NG 2

is a closed form for the Fibonacci sequence.

Prove that F,4py = F,+-Fy + Fp—1-F,—1 form > 1. Prove the following
corollaries:

(a) Fo1 l FZn—l-

(b) Fo. | F3n—l-

©) F,;2 + FZ‘ 1 is a Fibonacci number.

In how many ways can you climb a ladder with n rungs if at each step you can go
up either one or two rungs? The terms of a sequence are given recursively as a; = 1,
ap =2, and a, = a,_1 + a,—; for n > 2. Prove by induction that b, = F,1] gives
the terms of this sequence where F,) is the (n + 1)st Fibonacci number.

The Lucas numbers are definedas Lo =2, Ly = 1l,and L, = L,.1 + L, forn > 2.
Provethat L,y) = F,_1 + F,4+) forn > 2.

Trace through the execution of the procedure FastPower on the following inputs:

(a) base = 3, expont = 9.

(b) base = 2, expont = 10.

(¢) base =35, expont = 6.

(d) Count the number of multiplications needed in (a)—(c).

What exactly is wrong with the following “proof” that for every real number x > 0,
x =2x:

Suppose the result is true for all real numbers y where 0<y < x.

Case 1: x =0.Then,2x =2-0=0=x.

Case 2: x > 0. Then, 0 < x/2 < x. So, by hypothesis, x/2 = 2(x/2) = x. Doubling
both sides, deduce that x = 2x. So, the result holds for every real number x > 0 by
the Strong Form of Mathematical Induction.

Chapter Review 81

22. Challenge: There is a third principle related to induction, the Principle of Well-
Ordering for the Natural Numbers. It is the following: If 7 C N and 7 # &, then
7 contains a minimum element; that is, there is a natural number ng € 7 such that for
all natural numbers k < ng, we have k ¢ 7.

(a) Use the Principle of Well-Ordering for the Natural Numbers instead of the Strong
Form of Mathematical Induction to prove that

cn+1
0+1+2+---+n=£$

Hint: LetT ={neN:0+14+24+---+n#n-(n+1)/2})

(b) Use the Principle of Well-Ordering for the Natural Numbers instead of the Strong
Form of Mathematical Induction to prove that every integer n such that n > 1 can
be factored into a product of one or more primes.

(c) Using the Principle of Well-Ordering for the Natural Numbers, prove one of the
forms of the Principle of Mathematical Induction.

(d) Using one of the forms of the Principle of Mathematical Induction, prove the Prin-
ciple of Well-Ordering for the Natural Numbers.

23. The Binary Search of Phone Directory algorithm in Section 1.10.4 looks for any page
(if any) containing a name Name in a telephone book City. The portion of the algorithm
used in searching for the page is called BinarySearch. Prove that the algorithm works
correctly.

Chapter Review

The language of sets was introduced. The basic operations of union, intersection, set dif-
ference, and complementation were studied. The properties of these operations were given
as well as the properties of these operations when they are used with each other. One im-
portant way that union, intersection, and complementation interact is through DeMorgan’s
Laws. Finally, the power set of a set and the product of two sets are introduced. The proof
techniques used with sets are highlighted as templates for an idea of how to approach sim-
ilar proofs. The chapter then moves to the topic of determining the number of elements in
a set of overlapping sets using the Principle of Inclusion-Exclusion. The last two sections
introduce extremely important proof techniques for proving results about the natural num-
bers. Both the Principle of Mathematical Induction and the Strong Form of Mathematical
Induction are explained and used in constructing proofs of statements about natural num-
bers. The basic idea of a pseudocode that is used to present algorithms is described for use
throughout.

Set operations are used as examples of operations that define boolean algebras and
lattices. Induction is used to study Fibonacci numbers and geometric series. Important
examples regarding the use of induction in both forms in proving an algorithm is correct are
given. For example, algorithms for computing powers, finding factorizations of an integer,
and carrying out an efficient search are proven to be correct algorithms.

CHAPTER 1 Sets, Proof Templates, and Induction

1121 Terms, Theorems, Algorithms, and Templates

1.1 Summary

TERMS

algebraic identity is a member of real numbers
empty set is an element of set

equal is contained in set-theoretic notation
factor is in subset

finite set is not an element of universal set
if and only if natural numbers universe
implication not finite sets vacuously
infinite set proper subset Venn diagram
integers rational number

THEOREM

A=Bifandonlyif ACBandBC A

TEMPLATES

Template 1.1 Element Membership in a Set

Template 1.2 Set Inclusion

Template 1.3 Set Non-Inclusion
Template 1.4 Proper Set Inclusion

Template 1.5 Set Equality
Template 1.6 Set Inequality
Template 1.7 Implications and If and Only If

1.3 Summary

TeErRMS

absolute difference disjoint sets minimum element
analogous distributive lattice power set

bit representation equivalent statements product

boolean algebra inclusive or proof by cases
bottom indirect proof relative difference
complement intersection (N) set difference
complementation inverse statement
complemented lattice join (V) symmetric difference
contrapositive lattice top

converse maximum element union (U)
counterexample meet (A)

THEOREMS

Absorption Law for Join Commutative Law for Intersection
Absorption Law for Meet Commutative Law for Join

An Absorption Law Commutative Law for Meet

Associative Law for Intersection
Associative Law for Join
Associative Law for Meet
Associative Law for Union

Commutative Law for Union
DeMorgan’s Law for Intersection
DeMorgan’s Law for Union
DeMorgan’s Laws

Distributive Law for Intersection
Distributive Law for Join

TEMPLATES
Template 1.8 Proof by Cases

Template 1.9 Disproof by Counterexample

1.5 Summary
TERMS

cardinality
even intersection
hat check problem

THEOREMS

Basic Counting Theorem

Principle of Inclusion-Exclusion

Principle of Inclusion-Exclusion for
Finitely Many Sets

1.7and 1.8 Summary
TERMS

algorithm

base step

condition
correctness
Fibonacci numbers
finite geometric series
first form

for loop

geometric series
inductive assumption
inductive hypothesis

THEOREMS

Principle of Mathematical Induction
Size of a Power Set

ALGORITHMS

Perfect Squares
Square Root I
Square Root II

TEMPLATES

Template 1.12 Using the Principle of
Mathematical Induction

Chapter Review 83

Distributive Law for Meet
Distributive Law for Union

Template 1.10 Proof by Contradiction
Template 1.11 Indirect Proof

number of divisors
odd intersection

Principle of Inclusion-Exclusion for
Three Sets

Principle of Inclusion-Exclusion for Two
Sets

inductive step

infinite loop

lemma

mathematical induction
perfect square

pseudocode

recursive definition
recursively defined sequence
selection sort

while loop

CHAPTER 1 Sets, Proof Templates, and Induction

110 Summary
TERMS

base cases

base step(s)

closed form
inductive hypothesis
inductive step

THEOREMS

Fundamental Theorem of Arithmetic
Strong Form of Mathematical Induction

ALGORITHMS

Compute Powers
Largest Odd Divisor
Print a Prime Factorization of an Integer

TEMPLATE

Template 1.13 Using the Strong Form of

Mathematical Induction

1.12.2 Starting to Review

prime numbers

recursion

recursive call

recursively defined sequence

Binary Search of Phone Directory
Compute F,

1. Which of the following set descriptions gives the set {2, 8, 14, 20, 26, 32}?

(@) {n € N:n = 2x + 6 for some integer x such that 1 < x < 6}
(b) {n € N:n = 6x + 2 for some integer x such that 1 < x < 6}
(¢) {n € N:n = 6x + 2 for some integer x such that 0 < x < 6}

(d) None of the above

2. LetB={2,3,6,9,11}and C = {1, 4, 6, 11, 15}. Which of the following sets are not

anyof BUC,BNC,and B— C?

(@ {1,6,9,15}

(b) {6, 11}

(©) {2,3,9}

(d) None of the above

3. What is the contrapositive of the statement “If the sun is shining, then it is time to go

outside.”

(a) If the sun is shining, then it is not time to go outside.
(b) If it is time to go outside, then the sun is shining.
(c) Ifitis not time to go outside, then the sun is not shining.

(d) None of the above.

Chapter Review 85

4. Of 26 students who are either females or biology majors, there are 17 females and 23
biology majors. How many females are biology majors?
(a) 12
(b) 17
(c) 14
d 9
5. Describe each of the following sets in the format {x : property of x}.
(a) A=1{0,2,4,6,8,...}
(b) B=1{1,2,5,10,17,26,37,50,...}
() C={1,5,9,13,17,21,...}
(d D={1,1/2,1/3,1/4,1/5, ...}
() E = {lemon, lime, 1, 3,5,7, ...}
6. ForU =1{1,2,3,...,9,10},1et A ={1,2,3,4,5}, B={1,2,4,8},C ={1,2,3,5,
7}, and D = {2, 4, 6, 8}. Determine the elements of each of the following sets
(@ (AUB)NC
(b) AU(BNC)

(c) CUD
d) CTND
(&) (AUB)-C
) AuB-C0C)
(g (B-C)—-D

(h) B—(C—-D)
A (AUB)—(CND)
7. List the subsets of each of the following sets:
a A={1,2,3}
() B={1,{2,3}}
() C={{1,2,3}}
. Find a counterexampleto A C B & AU B = A.
9. List the first eight terms of the sequence defined as co = 1,¢; =3, and ¢, = ¢4—1 +
2¢,_o forn > 2.
10. Let A be a subset of some universal set U. If A contains 58 elements and A contains
37 elements, how many elements are in U?

[o.2]

1.12.3 Review Questions

1. Let A=1{1,2,4,7,8}, B={1,4,5,7,9}, and C ={3,7,8,9}). Let U=
{1,2,3,4,5,6,7,8,9,10}. Find set expressions using these sets and the opera-
tions of union, intersection, absolute difference, and relative difference to represent
the following sets:

(@) {2,7,9}
(b) {3,5,6,7,9, 10}

CHAPTER 1 Sets, Proof Templates, and Induction

2.

N-JE-CREN I~ NV N

10.

11.

12.

A survey of reading habits was proposed for the city of Lewisburg. Let U be the sample
set of adults in Lewisburg, F the set of females in the sample, B the set of readers who
have finished five or more books in the past year (called regular book readers), and P
the set of readers who read some of every issue of a periodical during the past year
(called the regular periodical readers). Use set notation to identify the following sets
of readers:

(a) Females who regularly read books or periodicals

(b) The men who read both books and periodicals regularly

(c) Adults who regularly read either books or periodicals, but not both
(d) The women who do not read either books or periodicals regularly
(e) The men who read books but not periodicals regularly

Now, describe in words the following sets:

& FNnP

(g FNBNP

(h FNBNP

i FNBNP

G) FN(PUB)—FN(PNB)

. Forsets A and B, provethat AU(B — A) = A UB.
. Forsets A and B, provethat ANB =0 < A C B.

Prove by induction that 3+ 11 4-.- 4+ (8n —5) =4n? —nforn € Nandn > 1.

. Prove by induction that 2n +1 < 3n — 1 forn € Nand n > 3.

. Prove that for every n € N that n® +n is even.

. Prove by induction that 73 | (8”2 + 92"*1) for every n € N.

. Prove that b, = 52" 4+ 1 is a closed form for the recursive relation ag = 6, a; =

11, and a, = 3a,_; — 2a,_; forn > 2.
Let S € Nand 3 € S. Also, assume that if x € S, then x + 3 € S. Prove that

{3-n:neN}yCSs.

The country of Xabob uses currency consisting of coins with values of 3 zabots and
5 zabots. If you cannot combine some number of these coins to pay a bill, the item is
free. For what number of zabots are items free? Prove your answer.

Challenge: The name Strong Form of Mathematical Induction suggests that that form
really is a logically different assertion than the Principle of Mathematical Induction.
In fact, however, this is not so. It is not too difficult to prove one form from the other.

(a) Assuming the Strong Form of Mathematical Induction, prove the Principle of
Mathematical Induction. You need to do the following: Assume the hypothesis of
the first form of the Principle of Mathematical Induction, and using just the Strong
Form of Mathematical Induction, prove the conclusion of the (first form of the)
Principle of Mathematical Induction. So, assume 7 C N, some ng€ 7,
and for every n > ng, if n €7, then n+ 1€ 7. Then, using the Strong
Form of Mathematical Induction but not the (first form of the) Principle
of Mathematical Induction, prove that 7 = N. (For a statement of the first
form of the Principle of Mathematical Induction, see Section 1.7.1) (Hint: Let
T'=TU{0,1,...,n0 — 1}. Prove, using the Strong Form of Mathematical In-

13.

14.

Chapter Review 87

duction but not the Principle of Mathematical Induction, that 7/ = N. Then, use
that to show that every natural number n > ngisin 7'.)

(b) Assuming the (first form of the) Principle of Mathematical Induction, prove the
Strong Form of Mathematical Induction. You need to do the following: Assume
7 € N and that for all n € N, if all k < n are in 7, then n € 7. Prove, using
the Principle of Mathematical Induction but not the Strong Form of Mathemati-
cal Induction, that 7 = N. (Hint: Let 7' = {n € N:forall k < n,k € 7}. Prove
7’ =N, and then use that to prove 7 = N.)

How many students are in Math347? From the survey of all the students, it was found
that 43 had taken Econ103, 55 had taken Soci213, 30 had taken Musil11, 8 had taken
both Econ103 and Soci213, 13 had taken both Econ103 and Musilll, 15 had taken
Soci213 and Musil 11, and 8 had taken none of the courses. No one had taken all three
courses.

How many integers between 1 and 250, including 1 and 250, are divisible neither by 3
nor by 7 but are divisible by 5?

1.12.4 Using Discrete Mathematics in Computer Science

1.

2.

. (a) Inthe calculation of base

Prove that the Largest Odd Divisor algorithm outputs the largest odd divisor of N for
all integers N > 0.

Prove that the PrintFactors algorithm factors natural numbers N > 1 into primes.
Prove that, in fact, its output is a list of one or more primes whose product is N.
So, for N = 24, the outputs are the numbers 2, 2, 2, and 3, in some order.

Consider the Binary Search of Phone Directory algorithm. This algorithm looks for
the page (if any) containing a name Name in a telephone book City. The portion of
the algorithm used in searching for the page is called BinarySearch. Prove that the
algorithm works correctly.

. The summation shown arises in determining how long it takes part of one particular

method, called heapsort, to sort a list of numbers into increasing order. More pre-
cisely, heapsort often is written with a preprocessing step called heapify. (Preprocess-
ing means that this step is performed once before the main step of the program.) This
summation arises in determining how long it takes to “heapify” a list of 2" numbers:

0-27+1-27"' 2.2 43. 23 4 ...t =12 4020 =2 2

Prove by induction that the summation is correct for n > 0.

. Show by induction on n that forb € N, b > 2,

(b— 1) Zbl bn+l

Interpret this identity in the context of number representation in the base b using the

standard positional notation. Start by seeing what this means for » = 10 and n = 4.

Xport using FastPower, how many copies of the algorithm
will be invoked?

(b) Show that if the FastPower algorithm is invoked » times (that is, n total invoca-
tions, including both the original invocation from the outside and the recursive
invocations), somewhere between 0 and 2n multiplications will be performed.

CHAPTER 1 Sets, Proof Templates, and Induction

(c) A simpler algorithm to calculate 1.001199 s to multiply 1000 copies of 1.001
together, using 999 multiplication in all. Using parts (a) and (b), estimate how
many fewer multiplications the FastPower algorithm performs.

7. Let X and Y be two lists sorted in nondecreasing order. Suppose that for some positive
integer n, there is a combined total of n numbers in the two lists. Prove that X and

Y can be merged into a single list of n numbers in nondecreasing order using at most

n — 1 comparisons.

8. Prove that the following code to compute Fibonacci numbers is correct:

Algorithm: Compute Fp

INPUT: n € N
OUTPUT: F,
recursiveFibonacci(n)
if n = 0 then
recursiveFibonacci(0) = 1
else
if n = 1 then
recursiveFibonacci(l) = 1
else
recursiveFibonacci(n) = recursiveFibonacci(n — 1)
+ recursiveFibonacci(n — 2)

9. Prove that, at most, n + 1 comparisons are required to determine if a particular number
is in a list of 2" numbers sorted in nondecreasing order.
10. Prove that exactly n — 1 multiplications are needed to compute the product of n dis-

tinct real numbers in a fully parenthesized expression, regardless of how parentheses
are used.

CHAPTER 2

Formal Logic

It is an old dream to write a formal, mathematical description of the laws of human thought.
The goals are to identify what it is that makes certain arguments correct and to identify
correct arguments only from their logical form. Work toward these goals is ancient. It
began with the early Greeks and was extensively developed by Aristotle (384-322 BC). The
study was again actively pursued in the Middle Ages. During the nineteenth and twentieth
centuries, the field developed rapidly, with explosive growth starting around 1930. The
understanding of formalized reasoning is one of the major topics of formal logic, and it
has been extensively applied to studying mathematical proofs. In computer science, formal
logic has many applications in areas such as database theory, artificial intelligence, program
language design, and automated verification of software and hardware. In database theory,
logic is used to formalize the definitions of queries. In artificial intelligence, logic is used
to formalize human inference. Proving a program to be correct can use logic-based notions
such as loop invariants and both pre- and postconditions. Formal logic also plays a major
role during many phases in the design of electronic computers, including the design of
efficient combinatorial networks or circuits.

This chapter provides an introduction to formal logic. First, we give the basic defini-
tions of propositional logic. These cover the usual material expected of a discrete math-
ematics course—propositional logic and logical truth. Next, we introduce normal forms
in propositional logic, particularly simple ways to write formulas, a topic that is now of
special interest in computer science. One application of normal forms is in combinatorial
network design. Examples of the relationship between normal forms and combinatorial
networks will be explained as well. Finally, we discuss an extension of propositional logic
involving predicates and quantifiers. These are key ideas in an extension of propositional
logic to predicate logic. An important part of predicate or first-order logic is to express, in
a single statement, how elements in a set of values can make the statement true.

m Introduction to Propositional Logic

The simplest variant of formal logic is propesitional legic. Its basic object is a sim-
ple, declarative sentence, called a propesition. Propositional logic is concerned with
combining sentences, such as “The world is round” and “Columbus was right” to form
“If the world is round, then Columbus was right.”

89

CHAPTER 2 Formal Logic

A proposition is something that is either true or false; it is not both. “The cover of this
book is pink” is a proposition. “Napoleon spent at least one day of his life in Paris” and
“Either the butler did it with a bottle or the colonel did it with a lead pipe” are also propo-
sitions. On the other hand, “Justice,” “The Queen’s birthday,” “Whoever is the stronger,”
and “Why is the world almost round?” are neither true nor false and, therefore, are not
propositions.

In formal notation, the letters p, g, r, and s (plus those letters subscripted with natural
numbers, such as p;, g2, and ry27) are used to stand for, or to denote, propositions. Such
a variable is called a proposition letter. We consider proposition letters to be essentially
the same as boolean (logical) variables in a programming language. T and F are propo-
sitional constants—that is, propositions with fixed truth values of TRUE and FALSE,
respectively.

Propositional logic is concerned with certain ways in which simple sentences can be
combined into more complex sentences. Several standard operations are used on proposi-
tions to form other propositions. Such an operation is called a propositional connective.
The common propositional connectives are shown in Table 2.1.

Table 21 Propositional Connectives

Connective Sample Use Common Translation
- -p “not p”
A PAg “p and g”
\ pVvgq “p or g (or both)”
- p—>q “if p, then g,” or “p implies g”
© pq “p if and only if ¢,” or “p is equivalent to ¢”

Example 1. Let p denote “Henry eats halibut” and g denote ““Catherine eats kippers.”

(a) The proposition —p is read “Henry does not eat halibut.”

(b) The proposition p A g is read “Henry eats halibut, and Catherine eats kippers.”

(c) The proposition p — q is read “If Henry eats halibut, then Catherine eats kippers.”

(d) The proposition p <> g is read “Henry eats halibut if and only if Catherine eats
kippers.”

(e) The proposition (—p) Vv (—q) is read “Henry does not eat halibut, or Catherine does
not eat kippers.”

(f) The proposition p <> (—g) is read “Henry eats halibut if and only if Catherine does
not eat kippers.”

Example 2. Let p denote “Henry eats halibut,” g denote “‘Catherine eats kippers,” and r
denote “I’ll eat my hat.”

(a) Write a proposition that reads “If Henry eats halibut but Catherine does not eat kippers,
then I’ll eat my hat.”

(b) Write a proposition that reads “Either Henry eats halibut or Catherine eats kippers, but
not both.”

Introduction to Propositional Logic 91

Solution.

(@) (p A—g) — r. Since and and but usually both get translated as A, the difference be-
tween the two English words is usually an issue not of what is the case but, rather, of
what we would have expected to be the case.

® (pva)A-(pAg).

This proposition is “logically equivalent to” the proposition in Example 1 (f), meaning
that p < (—q) is an equally good answer. We shall discuss logical equivalence in the next
section. |

Definition 1. Let p, g, and r be propositions. The proposition —p is the negation of
p- The proposition p A g is the conjunction of p and ¢, and p and g are called its con-
Jjuncts. The proposition p V g is the disjunction of p and ¢, and p and g are called its
disjuncts. The proposition p — g is a conditional, or an implication, with hypothesis p
and conclusion g. The proposition p < ¢ is an equivalence or a biconditional.

Since the English language is often ambiguous, and the meanings of words can vary
from context to context, the English translations of the symbols we have just introduced
(=, A, V, =, and <) do not define the meanings of the symbols precisely. A precise def-
inition of each symbol is given by a truth table, which provides the truth value for the
result of applying the operation on each possible set of truth values for the operands. As
mentioned, we shall use the symbols T and F to denote the truth values TRUE and FALSE
as well as to denote propositional constants. Table 2.2 shows the truth table for negation.

Truth Table for —

P 4
Table 22 Truth Table for Negation T 7
F T

Table 2.2 is read as follows: For any proposition p, if p is T, then —p is F, and if p
is F, then —p is T. This assignment of truth values agrees with the common usage of the
word not. Truth tables for the other propositional connectives are shown in Table 2.3.

Truth Table for A Truth Table for v

P q PANg P 9 pVvVq
T T T T T T
T F F T F T
F T F F T T
Table 23 Truth Tables for Logical F F F F F F

Connectives Truth Table for — || Truth Table for <

p—>4q

0y

P eq

MmN N
MmN N e
NN
MmN
N
N

92

CHAPTER 2 Formal Logic

As an example of using the truth table for A, suppose you know that both p and g are
T. Look in the truth table for A to find the row where both p and ¢ have the value 7. Then,
look across that row to find the truth value of p A g. In this case, p A g has the value T.
Now, suppose in another instance you know that p is T’ and g is F. The second row of the
table for A has the value T for p and F for g. In that row, the truth value given for p A g
is F.

It is helpful to consider how the truth table for — relates to common usage of “if ...
then.” A simple requirement of a notion of “if ... then” is that “if ... then” statements
should be usable in arguments. If it is true that “The carriage had mud on its tires” and is
also true that “If the carriage had mud on its tires, then it is raining outside,” then one can
correctly infer that “It is raining outside.”” The truth table definition of — is that p — g is
F just in case it would lead from a true hypothesis to a false conclusion. The truth table for
— also corresponds to the template for proving an “if . .. then” result that was introduced
in Chapter 1.

211 Formulas

More complicated propositional expressions, called formulas or well-formed formulas
(wffs), can be built from the proposition letters using the propositional connectives and
parentheses. When we say ¢ = (p A g) — r, we mean that ¢ is the string of symbols
(p A q) — r. For the following formulas, we would like to know when the conclusion is
necessarily true:

¢ = (p Ag) — r, which can be paraphrased as “If p and g are both true, then r is also
true.”

¢1 = (p Vv q) — r, which can be paraphrased as “If p or g (or both) is true, then r is also
true.”

¢ = (p—=>r) = ((p Agq) = r), which can be paraphrased as “Suppose that if p is 7,
then r is T. Then, if p and g are both 7', then r is T.”

In the last formula, we translated two of the —’s as if . . . then and one as suppose . . . then.
We did that to make the reading easier. One advantage of a formal notation is that it lets us
express concepts that cannot be expressed easily and unambiguously in everyday language.

Example 3. Translate the following sentences into a formula in propositional logic: “If
Mr. Holmes told the truth and Mr. Watson did not hear anything, then it cannot be both that
the butler did it and that the butler returned to his hotel room that night.”

Solution. Actually, there are many translations, depending on which parts of the sentence
are chosen to be represented by proposition letters and on which proposition letters are
chosen to represent them.

Let p denote “Mr. Holmes told the truth,” g denote “Mr. Watson did not hear any-
thing,” r denote “the butler did it,” and s denote “the butler returned to his room that
night.” The sentence can now be translated into propositional logic as

d=(pArqg) > (=F As) []

The reader is urged to do Exercise 1 in Section 2.2 before going on to the rest of the
section.

Introduction to Propositional Logic 93

The formal definition of a formula is an inductive definition of a set of strings. The
base cases correspond to the base step of an inductive proof. The closure rules correspond
to the inductive step.

Definition 2. A formula is any string of symbols that is formed using the following rules:

1. Base cases: Every proposition letter is a formula. 7 and F are formulas.
2. Closure rules: Let ¢ be a formula. Then, (—¢) is a formula. For formulas ¢ and ,

(@AV), (Vv ¥), (¢ — ¥),and (¢ < ¥) are formulas.

According to the base case alone, p, ¢, and T are formulas. From the base case and
just one application of the closure rules, one can show that (p A q), (pV p), (p — T),
and —q are formulas. From the base case and two applications of the closure rules, one can
show that (—(p A q)) and (g < (p — T)) are formulas.

It often seems that in elementary logic, most theorems are proved by induction on
some integer related to formulas, such as the number of symbols, the number of parenthe-
ses, the number of propositional connectives, or the number of times the closure rules of
Definition 2 were applied to generate the formula. (Let this be a hint for the Exercises.)

Theorem 1. (Principle of Induction on Formulas) Let F be a set of formulas such
that:

Base cases Each proposition letter is in F, and T and F are in F.

Closure rules If ¢, y are formulas in F, so are

(=), (0 AY), (@ VY), (¢ — V), and (¢ < V)
Then, F is the set of all formulas.

Proof. letT = {n € N: all formulas formed using n elements of {—, Vv, A, =, <>} are
in F}. If we prove 7 = N, then all formulas are in F. We will use the strong form of
mathematical induction to complete this proof.

(Base step) Let n = 0. All formulas using 0 instances of elements of {—, Vv, A, =, ©}
are just the proposition letters and the two logical constants T and F. Because these are
just the elements in the base cases used to define F, all these elements are in F,and 0 € 7.

(Inductive step) Letn > Oand assumethat0,1,...,n — 1 € 7. Toproven € T will be
a proof by cases (see Template 1.8, Proof by Cases). We use a proof by cases because a for-
mula formed using n instances of elements of {—, V, A, —, <>} is of one of the following
forms:

(a) —¢, where ¢ is formed using n — 1 elements of {—, V, A, —, <}

(b) ¢ v, where ¢ and ¢ are each formed using fewer than n elements of
(=, VoA, =, o)

(c) ¢ Ay, where ¢ and ¢ are each formed using fewer than n elements of
(= VLA, =, o)

(d) ¢ - ¥, where ¢ and i are each formed using fewer than n elements of
(=, V, A, =, o}

(e) ¢ & ¢, where ¢ and ¢ are each formed using fewer than n elements of
(=, V, A, =, o)

The details of the proof in each of these cases are left as an exercise.]

CHAPTER 2 Formal Logic

The theorem that follows is included because it is an example of an easy application of
the Principle of Induction on Formulas: It may look rather uninteresting and technical: It
deals only with counting the parentheses in a formula. Suppose, however, you were writing
a computer program to check something about logical formulas. In this case, you would
need to pay close attention to the parentheses. (Of course, you would have to worry about
more sophisticated issues than just counting the parentheses.) Or, consider the job of a
person writing a compiler for a computer language. The compiler code will have to pay
close attention to)’s, 1’s, and }’s, because having them misplaced causes difficulties for the
program.,

Theorem 2. Every formula has an equal number of right and left parentheses.

Proof. Let F be the set of formulas that have an equal number of right and left parenthe-
ses. Prove by induction on formulas that F is the set of all formulas.

(Base cases) Each proposition letter is in F, since it is a formula with no left parentheses
and no right parentheses. Similarly, 7, F € F.

(Closure rules) Let¢, ¥ € F. Let ¢ have n left parentheses and » right parentheses and
¥ have m left parentheses and m right parentheses. Then:

(a) (—¢) has n + 1 left parentheses (n in ¢ plus one more in front) and n + 1 right paren-
theses (n in ¢ plus one more following), so (—¢) € F.

(b) (¢ A) has m +n + 1 left parentheses (m in ¥, n in ¢, and one more in front)
and m + n + 1 right parentheses (m in ¥, n in ¢, and one more following), so
(@Ay)eF.

(c) (¢ v ¥), (@ —> V), and (¢ <>) each have m + n + 1 left parentheses and m + n +
1 right parentheses, so each is in F.

Therefore, by the Principle of Induction on Formulas, it follows that F is the set of all
formulas. |

2.1.2 Expression Trees for Formulas

An expression tree is simply a visual representation for the way that a formula is built
from propositions and logical operators. A proposition is represented by a single node,
simply a filled-in circle, as shown in Figure 2.1.

Figure 2.1 Representation for p.

For an expression involving two propositions and a logical operator, the propositions
are represented by nodes at the same level, and then at a higher level, a node represents
the result of applying the operator to the two propositions. The nodes representing the
propositions and the node representing the result of the operation are joined by lines. For
example, the final picture for p Vv ¢ is shown in Figure 2.2.

Introduction to Propositional Logic 95

pvq

N\

P q

Figure 2.2 Representation for pv g.

To introduce the representation structure for a more general formula, we will de-
scribe how you build an expression tree from the top down. To build an expression tree
from an expression, first place the final expression at the top of the representation, and
then put the expressions that are operated on to form the final expression underneath.
Join by lines the nodes representing the expressions operated on and the node represent-
ing the result of the operation. The process can continue until the lowest level contains
only propositions. The resulting picture or representation of an expression is an expression
tree.

The expression tree structure gives exactly the same information as the parentheses
in the formula about the order of execution, but the expression tree sometimes gives a
better picture. Because this representation is so useful in evaluating an expression, we
will give several more examples and then a formal description of how you can build an
expression tree from the bottom up. The expression tree of ((p A g) A r) is shown in Fig-
ure 2.3.

((Prg)rn

e

~

P q

Figure 23 Expression tree of (o A g) A 1).

The expression tree of ((—p) V g) — (r — p) is shown in Figure 2.4.

(-p)vg) > (r—p

vy (r—p)
(-p) q r P
p

Figure 24 Expression tree of {{{—p) v g} = {r — p)).

Definition 3. (Expression Tree for a Formula) The expression tree for a proposition
letter p, for T, or for F consists of a single node as shown:

e o o
p T F

CHAPTER 2 Formal Logic
If ¢ is a formula with expression tree Ty, then an expression tree for T(—g) is

(~9)

|

¢

If ¢ and ¢ are formulas with expression trees Ty and T, respectively, then an expression
tree for Tgay) is

©ry)

N\

o v

Expression trees for (¢ Vv), (¢ — V), and (¢ < V) are defined analogously to the way
the expression trees is defined for (¢ A vr). The corresponding expression trees are

ovwy G-v) bew
] y ¢ vy ¢ v

It can be proved that each formula has exactly one expression tree. This principle
sometimes allows arguments that manipulate expression trees to be used as a replacement
for induction on formulas. Some examples can be found in writing formal proofs for the
theorems on substitution.

For any expression tree T and any node x in the expression tree, the portion T of the
tree at or below x forms another expression tree—namely, the expression tree for x.

Definition 4. Let x be a formula with expression tree T', and let v be a formula with
expression tree U. Then, x is a subformula of if, for some node x of U, T), = Uy.

Example 4. For the expression tree T, determine the subformulas defined by p and
=(pVq).

(rra (== v)

(=(~ v 9

Introduction to Propositional Logic 97

Solution. The subtrees Tp and T(—(pvy)) are as shown:

v

[]
p
T A
p q
T v q)]
The term syntax refers to the rules for forming grammatically correct strings of sym-
bols of a language. The rules specified here in the definition of the terms formula and
subformula are examples of rules for forming correct strings of symbols for propositional
logic. In the next section, we will discuss the semantics of propositional logic—that is,

what the strings of symbols mean—though we have already begun discussing semantics
by giving the truth tables.

2.1.3 Abbreviated Notation for Formulas
A formula such as
({(((—EPY A EQ) ATV (g A () As)) < (s — p)

has so many parentheses that the reader can easily get confused. Just as in ordinary arith-
metic, however, formulas in informal usage are abbreviated by dropping some of the paren-
theses or by using different styles of parentheses, such as brackets. Some widely accepted
conventions are summarized in Table 2.4.

Table24 Common Abbreviations and Other Informal Usage

1. Drop the outermost set of parentheses, simplifying (—p) to —p and (p vV q) to
pVyg.

2. In a series of conjunctions nested to the left, such as (p A g) A r, drop the paren-
theses, writing p A g A r. Similarly, with disjunctions, abbreviate (p vq) v r to
pvgvr.

3. A — symbol always applies to as little as possible. That is, — is the highest priority
operation, and —~a V b means (—a) V b.

4. The remaining operations are often given priorities as follows, from highest to
lowest: A, V, —>, and <. Thus:

(a) —~a A bV ¢ Ad abbreviates (((—a) Ab) V (c Ad)).

(b) a = b Vv b A c abbreviates (a — (b V (b A 0))).

(¢) a & b — c Ad abbreviates (a & (b = (c A d))).

(Caution: Use this rule sparingly to omit parentheses. Overuse of the rule creates
almost-unreadable formulas. When in doubt, leave the parentheses in.)

5. In formulas with nested parentheses, it is common to replace some of the paren-
theses with other symbols, usually brackets that is, ([and]). So, the formula in
Section 2.1.3 might be written as

[(==pA—=gAr)V (m~g A-r A9] o [s > pl

CHAPTER 2 Formal Logic

2.1.4 Using Gates to Represent Formulas

At the basic hardware level, computer memory has two states, which are identified as the
two logical values or boolean values of T and F. Computer operations are thought of as
being composed of operations on these boolean values and, hence, as operations of propo-
sitional logic. In describing computer circuits, a specialized notation for propositional logic
is used. Special physical devices, called gates, implement the A, Vv, and — operations. A set
of gates to represent a circuit is called a combinatorial circuit or combinatorial network.

Think of a gate as representing an operation and of the wires going into the gates as
representing its operands. For example, a A gate will let current flow out if and only if both
operands (that is, both wires coming in) carry current. Notation for these gates is shown in
Figure 2.5.

p p
pvq pvq P—F| >e—> P
q q

Figure25 AND, OR, and NOT gates.

A combinatorial circuit is, roughly, the analogue of a formula. Boolean circuit nota-
tion for the formula

(pAg@ AT

q @rnrr
r ————

is shown in Figure 2.6.

Figure 26 AND gates.

For the formula

(pApP)ADP),

instead of having three separate p’s as in an expression tree, the gate to represent it has one
line that splits, as shown in Figure 2.7.

PAP

, >(PAP)Ap

Figure 2.7 Another form of AND gates.

p

Since gates are used to describe computer circuits that will be implemented in a device
or printed on a chip, it is common to represent more than one formula in the same diagram,
as shown in Figure 2.8. The arrow in Figure 2.8 indicates that the output from gate C is
an input for both gates A and B. Each of the “output wires” (A and B) corresponds to the
output of a different propositional formula, as described earlier.

Exercises 99

y ¢ /
X
A
y
r
Ry
B
t
w -

Figure 2.8 Multiple formula representation.

m Exercises

1. Translate the following expressions into propositional logic. Use the following propo-
sition letters:

p = “Jones told the truth.”

= “The butler did it.”

= ‘“T’ll eat my hat.”

= “The moon is made of green cheese.”

= “If water is heated to 100°C, it turns to vapor.”

- b N

(a) “If Jones told the truth, then if the butler did it, I’ll eat my hat.”

(b) “If the butler did it, then either Jones told the truth or the moon is made of green
cheese, but not both.”

(c) “It is not the case that both Jones told the truth and the moon is made of green
cheese.”

(d) “Jones did not tell the truth, and the moon is not made of green cheese, and I'll
not eat my hat.”

(e) “If Jones told the truth implies I’ll eat my hat, then if the butler did it, the moon is
made of green cheese.”

(f) “Jones told the truth, and if water is heated to 100°C, it turns to vapor.”

2. Translate the following expressions of propositional logic into words using the follow-
ing translation of the proposition letters:

p = “All the world is apple pie.”

= “All the seas are ink.”

= “All the trees are bread and cheese.”
= “There is nothing to drink.”

= “Socrates was a man.”

= “All men are mortal.”

= “Socrates was mortal.”

[~JC N P)

100

CHAPTER 2 Formal Logic

@ (pArgnar)y—s

d) tAruy—>v

) s > v

@ pAr@nar)v{EAu)Vv(-sV o)

(&) (pvA(gVu)) <« (sAv)

One must sometimes be a bit creative in using language to make the results compre-
hensible.

. Let p denote the proposition “Jill plays basketball” and g denote the proposition “Jim

plays soccer.” Write out—in the clearest way you can—what the following proposi-
tions mean:

(a) —p

(®) pnrg
)y pvyg
d —prg
e p—g
® peg
(8 q—0p

. Let p denote the proposition “Sue is a computer science major” and g denote the

proposition “Sam is a physics major.” Write out what the following propositions mean:

(@) ~¢q
b)gnp
©) pvg
d) —~gAp
eg—p
® regq
& —q—-0p

. Jim, George, and Sue belong to an outdoor club. Every club member is either a skier

or a mountain climber, but no member is both. No mountain climber likes rain, and all
skiers like snow. George dislikes whatever Jim likes and likes whatever Sue dislikes.
Jim and Sue both like rain and snow. Is there a member of the outdoor club who is a
mountain climber?

. Let proposition p be T and proposition g be F. Find the truth values for the following:

(@ pvg
® gnrp
(©) ~pvg
@ pAr—q
© qgq—p
® -p—gq
(8 ~q—>p

. Let proposition p be T, proposition g be F, and proposition r be T. Find the truth

values for the following:

(@ pvgvr

®) pv (=g A-r)
© p—>@vr)
d @r-p)or

10.

11.

12.

13.

14.

15.

Exercises 101

(€ ~-r—>(pArg)
® (p—>q)—>—-r
@ (pAr) > (—qVvp)—>(qvVvr)

. Find the expression tree for the following formulas:

@ (prg)vr

b)) (p—>q)—>r

© p=>@—>r)

Find the expression tree for the following formulas:
(@ —pA(=gVr)

(b) pV (=g A—r)

©) (pvg)or)ep

d) (mgA—-r)o(p—>(@Vvr)

Find the expression tree for the formula

(p— ((=p) > q)
Find the expression tree for the formula
(e Ag) V(=g AN AP < (—(=s)) Vv {((r As)V(—9)))
Find the expression tree for the formula

(((CEP) AEE) ATV (=) A () As)) © (s — p)

Find a boolean expression to represent the following combinatorial circuits:
A
(a)
B
C
A
B
? s—— | D - ‘
5 —
C
D
Draw a combinatorial circuit for each of the following boolean expressions:

@ (xAy)V-z

() xAY)V(mxAY)

©) ~(~xVy)Vv(xA2)

@ (xAY) VAV 2z

() (xV—=(xVy)V(mxA-y)

Find a boolean expression to represent each of the following combinatorial networks
shown.

102 CHAPTER 2 Formal Logic

(a) Y

(b)

16. Prove Theorem 1, the Principle of Induction on Formulas. (Hint: If ¢ v ¥ is a formula
containing n occurrences of the logical operators, then ¢ and each are formulas
containing fewer than n logical operators. By the inductive hypothesis, both ¢ and
are in F, so by the closure rules, ¢ V ¥ is in F.)

17. (a) What is the relationship between the number of propositional connectives in a

formula and the number of parentheses? Prove your answer.

(b) What is the relationship between the number of A’s, V’s, —’s, and <’s in a for-
mula and the number of proposition letters in the formula? Prove your answer.

(c) What is the relationship between the number of —’s in a formula and the number
of proposition letters in the formula? Prove your answer.

(d) How many left parentheses may a formula contain? Prove your answer.

(e) How many total symbols may a formula contain? Count each occurrence of each
proposition letter as one symbol, so (p123 A pi23) contains five symbols—that is,
(, p123, A, p123, and). For example, can a formula contain exactly two symbols?
Exactly 17 symbols? Prove your answer.

m Truth and Logical Truth

The semantics of a language is the relationship between strings of symbols in a language
and their meaning, Consider a formula, such as

¢=0=pVvgqg)—>(r—p)

Truth and Logical Truth 103

How can the truth value for the formula be determined? Since this discussion is formal
logic, one must first define what it means for ¢ to be T or F. Of course, this definition, to
be useful, must match most people’s intuitions.

To start, one must know what p, ¢, and r stand for. At first sight, one might expect to
be told what sentences they stand for, such as

p = “Mr. Holmes never made a mistake.”
q = “The professor is not a criminal.”
r = “Mrs. Hudson suspected the thief from the start.”

For ordinary applications, that is exactly where one begins, but for the study of proposi-
tional logic, this is an unnecessary detail. In propositional logic, it matters not at all what
sentences the proposition letters represent, only what the sruth values of the sentences are.
(This will become apparent as you see how truth values are assigned to complex formulas).
Remember, F is shorthand for FALSE and T for TRUE. So, the starting point in proposi-
tional logic is an assignment of truth values to the proposition letters. For example, p may
be assigned the value T, and g and r may be assigned the value F.

Definition 1. Let P be the set of proposition letters. An interpretation is an assignment
I of a truth value (T or F) to every proposition letter in P. For r € P, the assignment of a
truth value to r is denoted I (r).

Example 1. Let P be the set of proposition letters, andlet p, g, and r € Pand X = P —
{p.q.r}. Let I be the following assignment of truth values to elements of P: I(p) = F,
I(@)=F,I(r)=T,and I(x) = F forevery x € X. Then, [is an interpretation.

An interpretation must assign a truth value to every proposition letter. (This is a tech-
nicality, just as it appears to be. Requiring this now simplifies the discussion a bit later.)

Once the interpretation I of the proposition letters is fixed, the interpretations of all
other formulas can be computed by induction on formulas. We illustrate this here with
an expression tree. The process is different from the way that arithmetic expressions are
evaluated, because a value is found in a simple, bottom-up fashion.

Example 2. Determine whether the formula
¢=(CpVvyg —~> T —>p

is T or F for an interpretation / where I(p) =T and I(g) = I(r) = F. (Remember: All
other proposition letters have value F.)

Solution. Mark the leaves of the expression tree of ¢ with the truth values as shown in
Figure 2.9.

(-P)vg > (r—>p)

Figure 2.9 Expression tree.

104

CHAPTER 2 Formal Logic

Now, use these truth values to move up the tree toward the root, using the truth tables for
the propositional connectives (see Tables 2.2 and 2.3 in Section 2.1). First, work one level
up from the leaves. The truth table for — says that if p is T, then —p is F. The truth table
for — says thatifris F and pis T, thenr — pisT.

Next, use the truth table for Vv to compute a truth value for —p Vv g. Since the truth
value of —p is F and the truth value of g is F, the result is F.

Finally, use the truth table for — to assign a truth value to the entire formula. The truth
value of an implication for which the hypothesis is F and the conclusion is T is just T.
Therefore, T is the truth value of ¢. The steps of this evaluation are shown in Figure 2.10.

Cpve->->p T

Figure 210 Step 3 of evaluating a formula.

The truth value of the entire formula ¢ is denoted by I (¢). In the case shown here,
I(¢)=T. []

Formally, what happened in Example 2 is an induction on formulas. The interpretation
I specified the truth values for the proposition letters. The truth /(¢) for more complex
formulas ¢ is defined using the truth values for simpler formulas and the truth tables for —,
A, V, =, and <> as shown here:

1. IT)=T,and I(F) = F

e - | 1492
N e
R

5. 1(¢_>,/,)=[; ;fhleg)iS:Tandl(zp)=F
saeev={F ez

Since each formula ¢ has exactly one expression tree and these rules define the truth
value of each node on the tree in terms of the truth values of the nodes with edges joining
them to this node, there is only one way to calculate I (¢).

Definition 2. Let / be an interpretation of P. A formula ¢ is truein / if /(¢) = T, and
¢ isfalsein I if I (¢) = F.

Truth and Logical Truth 105

In Example 2, if / is the interpretation with /(p) =T and I(q) = I(r) = F, then
(-pVvgqg)— (r > p)istruein /.

Example 3. Let
¢=((-pvgqg)—> r— p)
Find I (¢) for all interpretations /.

Solution. Three proposition letters— p, g, and r—are in the formula. Hence, the truth of
the formula depends only on /(p), I(g), and I(r). Each of 1(p), I(g), and I(r) can be
one of T or F, so there are 2> = 8 possible interpretations.

The calculation of the truth value for each of the eight interpretations can be shown
concisely in a truth table. Start out with a truth table that has eight rows, one for each
interpretation:

p q r
b|T T T
L|lt 1t F
L|T F T
L|T F F
L|F T T
Is|F T F
k| F F T
nh|F F F

Next, assign truth values to larger and larger subformulas until the formula itself is evalu-
ated.
‘We now repeat the evaluation of the formula

¢=(—pvVvqg)—>(r— p)

using this method. Evaluating —p and r — p, we get

P q r |7p —pvVgr—p (-pVvgqg)—> (r—p)
L |T T T| F T
L|T T F| F T
L|T F T| F T
L|T F F| F T
LIF T T|T F
Is|F T F| T T
Isk|F F T | T F
L|F F F| T T

and in two more steps, we complete the evaluation of the formula:

106 CHAPTER 2 Formal Logic

p q r |-op —pVvg r—=>p (opvqg) —(—p
L|T T T| F T T T
L|T T F| F T T T
L|T F T| F F T T
L|T F F| F F T T
LIlF T T|T T F F
Is|F T F| T T T T
Itk |F F T| T T F F
L|F F F| T T T T

By convention, we put the truth value directly under the operation performed. The truth
values in the right-most column of the table are the truth values of each of the inter-
pretations of this formula. The truth tables show that ¢ is T in the interpretations Iy,
I, I, I, Is, and I;. The truth table also shows that ¢ is F in the interpretations I4
and Jg. [|

23.1 Tautologies

Propositional logic is the study of propositions and the propositional connectives. It is the
study not only of one particular interpretation of a formula but also of what can be deduced
about all interpretations of a formula. Of particular interest are those formulas that are true
“by virtue of pure logic.” Definition 3 captures the notion of “true by virtue of pure logic,”
at least as closely as is possible from the standpoint of propositional logic.

Definition 3. Let ¢ be a formula. Then, ¢ is a tautology, or is logically valid, if it is T in
every interpretation. ¢ is satisfiable if it is 7 in some interpretation, and it is unsatisfiable
if itis T in no interpretation. Unsatisfiable formulas are also called contradictions.

A formula is a tautology if and only if all entries under the formula in its truth table
evaluation are T. For example, “John is married, or John is not married” is a logical truth.
“John is married, or John is a bachelor” is not a logical truth, since it depends on the
meaning of the word bachelor.

“John is married, and John is not married” is unsatisfiable, since the proposition “John
is married” cannot be both T and F. On the other hand, “John is married, or John is a
bachelor” is clearly satisfiable. Of course, every tautology is also satisfiable.

Example 4. Construct a truth table to show that (p A g) — p is a tautology.

Solution. The truth table for (p Ag) — pis

p 49 |prg ((pAg)— p)
T 7| T T
T F| F T
F T| F T
F F| F T

Since all entries under ((p A g) — p) are T, the formula is a tautology. |

Truth and Logical Truth 107

The reader should note that, intuitively, (p A g) — p “asserts” that if p and g are both
T, then p is T. Thus, we expect it to be a tautology.

Example 5. Construct a truth table to show that p — (p V r) is a tautology.

Solution. The truth table for p — (p v r)is

p_rlpvr (p=>(pvr)
T T T T
T F T T
F T T T
F F F T
Again, all entries in the final column are T, so the formula is a tautology. n

This tautology also “asserts” an obvious truth. If p is T, then it is true that either p is
T orris T (or both).

The next two examples show how logical connectives can be expressed in terms of
each other.

Example 6. Construct a truth table to show that (p — g) < (—p V g) is a tautology.

Solution. This formula shows how — can be expressed using Vv and —.

p g9lp—=>q -p -pvg (po> g o (=pVy
T T| T F T T
T F| F F F T
F T| T T T T
F F| T T T T

Since the formula involving only — is T (F) if and only if the formula involving — and v
is T (F), all the entries in the final column are T, so the formula is a tautology. |
Example 7. Construct a truth table to show that

peoq o (p—>aA(g—>p))
is a tautology.

Solution. This formula shows how to express <> in terms of A and —.

(req)e
P 9q|lpvq p=>q q—p (p=>g9Arg—->p) (p—=>g9Ag—p)
T T T T T T T
T F F F T F T
F T F T F F T
F F T T T T T

All the entries in the final column are 7', so the formula is a tautology. n

108 CHAPTER 2 Formal Logic

Table 2.5 lists many commonly used tautologies. The reader should study them care-
fully and determine what they “assert”” The names should suggest analogies to other
operations. For example, v, A, and < all obey associative laws, just as + and - do in
arithmetic.

Table25 Commonly Used Tautologies

@ (pAp)ep Idempotence

® (pvp)ep Idempotence

(¢ pv-p Law of the Excluded Middle
d —~(pA—p)

e (pA(p—>q)—>gqg Modus Ponens

® (po>pAr@—>1r)—>((p—>r) The Law of Syllogism
@ ((pvg)A—p)—gq Modus Tollendo Ponens
h) (pAg)Ar) o (pA(gAaT)) Associative Law

@ pvgvr)ye(pvigVvr)) Associative Law

G (pogone(peo@or) Associative Law

& (pAr)ye(rAp) Commutative Law

O (pvryo(rvp) Commutative Law

(m) (por)o(op Commutative Law

m (pAGvg) e {(paryv(pAag)) Distributive Law
(0) (pv(rag) o ((pvr)n(pVvg)) Distributive Law

(p) ——mpeop Double negative
(@ —(pAr)y<o (—pVv-r) DeMorgan’s Law
(r) —(pvr) <o (—pA-r) DeMorgan’s Law
® (p—>r)yo (-r—>—-p) Contrapositive
® o> @r—->qg)opar)—>q)

@ (—p—>r)A(p—>-r)op Contradiction
v ((pAanyvryor Absorption

w) (pvnAryor Absorption

® peoqgo((prg)V(mpA—g)
¥ ~(peoqg o (CprgVvIpA—g))
@z (p—~> F)o(—p)

The two tautologies (g) and (r) in Table 2.5, called DeMorgan’s Laws, are the logi-
cal analogues of the DeMorgan’s Laws of set theory (Theorem 8 in Section 1.3.2). That
theorem states how the set operations of union, intersection, and complementation interact.
Here, we see how conjunction, disjunction, and negation interact with propositions.

Example 8. Let p denote “X is a bird” and r denote “X can fly.” Tautology(s) from Table
2.5 states that “If X is a bird implies that X can fly” is equivalent to “If X cannot fly, then
X is not a bird.”

The following theorem is the basis of many proofs, notably many proofs by contradic-
tion.

Theorem 1. A formula v is a tautology if and only if —1/ is unsatisfiable.

Truth and Logical Truth 109

Proof. (=) Let be atautology, and let I be any interpretation of the proposition let-
ters in ¥. Since ¥ is a tautology, I () = T, so I (—y) = F. Hence, — is not satisfiable.

(<) The converse is analogous.]

A proof by contradiction shows that if () = T for an interpretation, then we prove
I(—y) = T in that interpretation, which is clearly a contradiction.

2.3.2 Substitutions into Tautologies

The formula ¢ = (p A (p = q)) — q is a tautology. Now, replace each occurrence of p
in ¢ with another formula, say p; V ps. The result is the formula

h=(nVvp)IAU{p1Vp)—>q9)—>q

The reader can easily write the truth table for ¢; and see that it also is a tautology. Some-
thing more general, however, is taking place here. One can think of the substitution not as
substituting the formula p; V ps into ¢ for p but, rather, as substituting the truth value for
p1 V pa for the truth value of p in ¢. Since ¢ is a tautology, any truth value for p together
with any truth value for g yields a truth value of T for ¢. So, ¢; should also be a tautology.
This intuitive argument can be formalized to prove the following theorem. (The interested
reader is invited to prove it.)

First Substitution Principle

Let ¢ be a tautology; let p;, p2, ..., pr be any proposition letters appearing in ¢,
and let xj, x2, ..., xx be formulas. Form a formula ¢, by simultaneously replacing
p1 with xy, pp with x2,..., pr with x; wherever they occur in ¢. Then, ¢; is a
tautology.

The requirement of simultaneous replacement is important, since it allows, say, x; to
contain a p, without forcing that p; to be replaced with x2. For example, again let

p=prlp—>9)—>q
and replace p with x; =g — r and g with xo =r — q. The result is
&1 = (A (= x2) > x2
pr=@->rNr{@->r—>0C—>9)>F—>q)

Since ¢ is a tautology, so is ¢;. The simultaneous replacement condition meant that the g
in x; did not have to be replaced with x>.

2.3.3 Logically Valid Inferences

We began the study of logic to help distinguish valid from invalid arguments. We have now
covered enough material to present a formal notion of a valid argument for propositional
logic.

110

CHAPTER 2 Formal Logic

Definition 4. Let S be a set of formulas. An interpretation [satisfies S if /(¢) = T for
every ¢ € S. A set S of formulas is satisfiable if there is an interpretation / that satisfies S.

For example, {p, g, r} is satisfiable. It is satisfied by any interpretation I where I (p) =
I(q) = I(r) = T. However, {p, —p} is not satisfiable.

One intuition is that I describes the actual state of the world and that S is a set of
formulas, which can be thought of as assertions about the world. / satisfies S if each
formula in S is a true statement about (the state of) the world. Another intuition is that / is
a possible state of the world. Suppose it is known that all statements in S are 7. Then, one
can check whether a possible state / of the world matches what is known—that is, whether
I satisfies the known facts S.

Theorem 2.

(a) Every interpretation satisfies 0.

(b) If S={¢1,...,¢} and I is an interpretation, then [satisfies S if and only if
I@Gin... AN)=T.

Proof. This Proof is left for Exercise 23 in Section 2.4.]

Definition 5.

(a) For formulas ¥ and y, ¥ logically implies, x, or ¢ tautologically implies y, if, for
every interpretation /,

ifI(Y)=T, thenl(x)=T
We denote i logically implies x as ¢ = x.

(b) Formulas i and yx are logically equivalent, or tautologically equivalent, or equiva-
lent, if, for every interpretation /, we have I () = I(x).

As a natural extension of one formula logically implying another formula, we say that
for a set of formulas S, S |= x means that inferring x from S is logically valid.

Example 9.

@@ pAgEPVY.
(b) p A g is logically equivalent to =(—p Vv —g).
(¢) pAgand pV g are not logically equivalent.

Solution.
(a) Suppose I is any interpretation. We need to show thatif I(p Aq) =T, I(pvgq)=T.

So, suppose [(p Aq) =T. Then, I(p) =T, and I(q) =T. So, I(pVvq) =T, as
desired.

Truth and Logical Truth m

(b) We show that I (p A q) always equals I (—(—p Vv —q)) by building a truth table of all
possibilities:

PANqg —p —q =—pV-—q =(-pV-gq)

MmN NS
N NS
SECE
NN
NN
N NNy
EECEUE

Note that all entries under p A g and —=(—p Vv —q) are identical—that is, that I (p A q)
is always equal to I (—(—p Vv —q)).

(c) Let I be the interpretation where I (p) = T and I(q) = F. Then, I(p A q) = F, and
I(p v q) = T. Because these two truth values are not the same, the two formulas are
not logically equivalent. -

The intuitive content of logical implication is that if ¥ = x, then it is correct to infer
x from ¥ in any argument. The definition of logically implies can be extended to sets of
propositions in a straightforward way. At this point, we need to understand this notion at
the level of formulas only. For example, if we have two sets of formulas R and S, then R
logically implies S if, for every interpretation /, [satisfies R if and only if / satisfies S.

Compare the formula ¢ — i with the assertion “¢ logically implies v.” The first is
just a formula. It may be T, or it may be F. We are just discussing, or mentioning, the
formula. The second is an assertion that some logical relationship holds. Nevertheless,
there is a connection between them. This connection is given in part (a) of Theorem 2.5.

Theorem 3. Let ¢ and v be formulas. Then:

(a) ¢ &= v ifand only if ¢ — 1 is a tautology.

(b) R k= y if and only if R U {—1/} is unsatisfiable.

(c) LetR = {1,902, ... ¢} R =y ifandonlyif¢; A ¢y A --- A ¢ — ¥ is a tautology.
(d) @ k= if and only if ¥ is a tautology.

(e) ¢ and ¥ are logically equivalent if and only if ¢ < ¥ is a tautology.

Proof. (a) (=) First, suppose ¢ = i, and let I be any interpretation. It is necessary to
show that /(¢ —) = T. The only way that / (¢ —) canbe F is for I (¢) tobe T and
I() to be F. However, if I (¢) = T, then, since ¢ logically implies v, I (1) must also be
T.Hence, I(¢p — ¢) =T.

(«=) Second, suppose ¢ — ¥ is a tautology. It is necessary to show that for any
interpretation I, if I (¢) = T, then I () = T as well. So, suppose [is an interpretation,
and suppose I (¢) = T. Since ¢ — ¥ is a tautology, I(¢ —) = T. By the truth table
for»>,ifI(@)=TandI(¢p - ¥)=T,then I(Y)=T.

(b)—(e) These proofs are left for Exercise 24 in Section 2.4. [|

The next theorem tells us that if two propositions are either always T or always F,
then they are logically equivalent.

112

CHAPTER 2 Formal Logic

Theorem 4.

(a) Suppose ¢ and i are both tautologies. Then, ¢ and are logically equivalent.
(b) Suppose ¢ and ¢ are both unsatisfiable. Then, ¢ and ¢ are logically equivalent.

Proof. These proofs are left for Exercise 25 in Section 2.4. |

The result just says that since a tautology is T for every set of truth values of its
propositions, its truth value will match the truth value of any other tautology for those
same truth values. Similarly, the same holds for two unsatisfiable formulas.

In Table 2.6, we add a bit of notation; rather than just saying {p, p — q} =g, we
replace p and g with the symbols ¢ and v, representing arbitrary formulas. What Table
2.6 really means is that if we replace ¢, ¥, and x with any formulas, the results are logical
implications.

Table 26 Some Logically Valid Inferences and Their Traditional Names

Some Logically Valid Inferences
a. . 0=V} E=y Modus Ponens
b. p—=>v.¥y—>xIEd—>x Law of Syllogism
c. {oVvy, ¢l =y Modus Tollendo Ponens
d. ——¢ = ¢ Double Negation
e > EY>P Contrapositive
£ ¢ —> ¥ E-¥ - —¢ . Contrapositive
g P—>x. 0> -x1 ¢ Proof by Contradiction
h. (= > x, ~p—>—x}lE=0¢ Proof by Contradiction
i v o>, v > xlEX Proof by Cases
J- {# A¥} = —(—¢ Vv —¥) DeMorgan’s Law
k. {(~oA¥)} = (=¢V=y) DeMorgan’s Law
L {¢ V¥} | —~(=¢ A=y) DeMorgan’s Law
m. {=l¢ Vvl (-¢A—Y¥) DeMorgan’s Law
Example 10.

(a) Let ¢ denote “X is a cat” and ¢ denote “X is an animal.” Under the assumption that ¢
is true and ¢ — 1 is true, we can use Modus Ponens to conclude that X is an animal.

(b) Let ¢ denote “X is a cat” and ¢ denote “X is a bird.” If we are given that ¢ Vv ¥ is true
and —¢ is true, then we can use Modus Tollendo Ponens to conclude that “X is a bird.”

a

As commented earlier, computer programs have been written to automate logical in-
ference. Some material relevant to this are discussed in the next section and in Section 2.4.

2.3.4 Combinatorial Networks

A combinatorial network is just another representation for a formula or a set of formulas
of propositional logic. Start with an assignment of truth values to the wires going into the
circuit-—that is, to the proposition letters. The circuit computes a group of outputs that
correspond to the truth values of the corresponding formulas.

Truth and Logical Truth 113

Gates and Boolean Algebra

In Section 1.3.5, the axiom system for a boolean algebra was introduced. Example 10
showed that if B is a set of elements with values from {0, 1}, and with the operations A and
v defined as

01 0 1
0 010 O
1|1 110 1

then B with A as meet and V as join forms a boolean algebra.

If we interpret the operation of Vv as the logical operation of OR and A as the logical
operation of AND as well as substitute 7 for 1 and F for O, then these operation tables
are just the tables of AND and OR introduced in Table 2.3. The logical value T satisfies
the conditions for T, whereas F satisfies the conditions for L. Finally, if we interpret
complementation as —x, then the conditions for complements hold. What all this means
is that there are two different but equivalent ways to represent a circuit. The first is to draw
the gates, as shown in Figure 2.11.

P —4

op ™

The second is to represent the gates as boolean operations and the whole gate structure as
a boolean expression. In Figure 2.12, we show a circuit and its equivalent boolean expres-
sion.

UuImn

Figure 2.11 Half-adder.

“p
p—|>0— phg
g— |
P——=g1 \prog —\ (P r)vPrg9)vprg
P SR (R I
p prgq
q

Figure 212 Gates for (~p A g) vV (b A—g) V(D A Q).

The power of this alternate representation is shown in Example 11 where we use
logic—which we can also think of as boolean algebra—to find a simpler expression to
represent this set of gates.

114

CHAPTER 2 Formal Logic

Example 11. Use logic to show that (=p A q) V (p A —=q) V (p A q) is logically equiv-
alent to the formula p Vv ¢ thus providing us with a one-gate equivalent to the circuit in
Figure 2.12.

Solution. We use the axioms for the Commutative Law, the Distributive Law, and the
basic properties of T to simplify this expression.

PAQV(PA—q)V(PAG)
=(PAQVEpAp VY (pA—g)VIipAg) (PAQ)=((pAq)VI(PAg))

=({(pVv-P)AqQV(PA(—qgVQq)) (Distributive Law)
=(TA@QV(pAT) (property of T)
=qVp

=pVg (Commutative Law)

The simplified circuit is shown in Figure 2.13.

P pvq
q

Figure 213 Equivalent, simpler circuit. |

It is not always possible to have such clear reduction in the complexity of a combina-
torial circuit. Example 11, however, shows how computer science can use different tools in
approaching a problem.

235 Substituting Equivalent Subformulas

In many respects, logically equivalent formulas are indistinguishable from each other. The
sense in which two logically equivalent formulas are indistinguishable is stated as the Sec-
ond Substitution Principle.

Second Substitution Principle

Let ¢1 be logically equivalent to ¢, and let ¥ be any formula containing ¢1, possibly
several times, as a subformula. Form a new formula v’ by replacing some (or possibly
all) of the occurrences of ¢; in ¥ with ¢,. Then, v is logically equivalent to ¥’

The Second Substitution Principle is really quite useful. Consider, for example, the
formula

p=(p—>a) >

Truth and Logical Truth 115

Since the subformula ¢; = —p — ¢ is logically equivalent to ¢» = p V g (see Example
9 in Section 2.3.1) by the Second Substitution Principle, we can transform the formula as
follows:

1 —>r
¢ —>r
(pvqg)—>r

Many people would find the last formula easier to understand than the original one. We
shall not prove the Second Substitution Principle; the reader is invited to prove it.

236 Simplifying Negations

When given a formula, it is often useful to find a simpler formula that is logically equivalent
to the first. Here, simpler has no fixed meaning; it just means simpler to use in some
application. For example, in programming, we write conditions saying when a loop should
continue for another pass and when a loop should stop. One equivalent way of writing that
condition may be easier than another for someone reading the program to understand. In
the context of boolean networks, simpler can mean smaller, such as having fewer gates or
taking up less area on a chip. A standard, though obviously imprecise, meaning of simpler
is “‘easier for people to understand.” This latter notion of simpler comes up often.
Consider a piece of a program:

while (not((x < 3) or (x > 5)))
{...}

A complex formula that is negated is usually difficult to understand. Consequently,
programmers look for logically equivalent formulas where the operator not is “pushed
inside” and applied to simpler formulas. Unfortunately, in this example, one might think
the negation is logically equivalent to

while ((x > 3) or (x < 5))
{...}

which turns out to be an infinite loop. The problem, of course, is that DeMorgan’s Law was
not applied correctly.

Let us rewrite the condition by letting the proposition letter p stand for x < 3 and ¢
for x > 5. Hence, —p is true just in the case x > 3, and —gq is true just in the case x < 5.
The condition at the top of the while loop can be rewritten —(p V q). By DeMorgan’s Law,
this formula is equivalent to —=p A —g. So, the proper translation would have been

while ((x > 3) and (x < 5))
{...}

In fact, for any formula ¢, it is possible to find an equivalent formula in which nega-
tions are applied only to proposition letters. The technique can be thought of as “moving
negations inward.” This technique is done in two steps.

Step 1. Find an equivalent formula containing no <>’s or —’s. First, replace each sub-
formula of the form ¢ < ¥ with the logically equivalent subformula

@—=>VAW—>9)

16

CHAPTER 2 Formal Logic

This is an application of the Second Substitution Principle. Then, eliminate all —’s as
follows: Replace each subformula of the form ¢ — 1 with the logically equivalent sub-
formula —¢ Vv .

Step 2. Apply DeMorgan’s Laws,
—(pVvq) e (mpA—q) and —(pAg) e (—pVq)

to “push negations” in past A and V and replace each double negation ——p formed with
the unnegated p. Ultimately, only proposition letters will be negated. By the Second Sub-
stitution Principle, the formula so formed will be equivalent to the original formula.

Example 12. For the formula

—(=(pA—q) V(g A—T))
use DeMorgan’s Laws and the law of double negation to “push negations inside.”
Solution. Start from the “outside” and work “inside.”

1. This formula is of the form —(¢ Vv ¥), where ¢ = —(p A —q) and ¥ = (g A —r), s0O
we apply DeMorgan’s Law to get the equivalent

—=(p A—g) A—(g A)

2. Apply the same techniques to the “outermost” subformulas, ——(p A —g) and —(g A
—r). By the law of double negation, the first is equivalent to (p A —g) and by DeMor-
gan’s Laws, the second is equivalent to —g vV ——r. So, the entire formula is equivalent
to

(pA—g) A (—g V ——r)

3. Now work “inward.” Again, by the law of double negation, —=—r is equivalent to r, so
the entire formula is equivalent to

(PA—g) A (g V)

which is in the desired form.]

Exercises

1. A restaurant displays the sign “Good food is not cheap,” and a competing restaurant
displays the sign “Cheap food is not good.” Are the two restaurants saying the same
thing?

2. The country of Ost is inhabited only by people who either always tell the truth or
always tell lies and who will respond to questions only with a “yes” or a “no.” A
tourist comes to a fork in a road, where one branch leads to the capital and the other
does not. There is no sign indicating which fork to take, but Mr. Zed, who is a resident
of Ost, comes along. What single question should the tourist ask Mr. Zed to determine
which fork in the road to take?

10.

Exercises 117

. Find the expression tree for the formula

p— ((—=p) — q)

Evaluate the expression tree if proposition p is T and proposition g is F.

. Find the expression tree for the formula

((p—>—~q)Vg) —>gq

Evaluate the expression tree if proposition p is F and proposition g is T.

. Find the expression tree for the formula

(((CEP) AED) ATV {(R(=g)) A () As) < (s = p)

Evaluate the expression tree if proposition p is T, proposition g is T, proposition r is
F, and proposition s is F.

. Find the expression tree for the formula

(=A@ YV (=@ AT A((=(p < (=) V((r As)V (—g)).

Evaluate the expression tree if proposition p is F, proposition g is 7, proposition r is
F, and proposition s is 7.

. Find the expression tree for the formula

—~(pAg) < (—pV—q)

Evaluate the expression tree for all possible pairs of truth values for p and q. Use these
evaluations to prove this formula is a tautology.

For each of the following sets of propositions, identify a logically valid inference listed
in Table 2.6 that could be used to draw inferences from the formulas given. Identify
the rule of inference and what the inference rule implies.

(a) “If the sun is shining, then the courts will be open for play.”
“If the courts are open for play, then we will play at 3 PM.”
(b) “The sun is shining, or the courts are closed.”
“The sun is not shining.”
(c) “Itis false that the sun is not shining.”
(d) “If the courts are not open for play, then the sun is not shining.”
(e) “If the sun is not shining, then the courts are not open for play.”
“The courts are open for play.”
(f) “If it is raining, then the courts are wet.”
“If it is raining, then the courts are closed.”
“If the courts are wet, then the courts are closed.”
“The sun is shining.”

. Let ¢ = “The home team is ahead.” Let y = “The fans are happy.” Let x = “The

visiting team is losing.” For inference rules (a), (g), and (i) in Table 2.6, write out the
hypothesis and the conclusion for ¢, ¥, and x.

Write the truth tables for the following formulas. Use the truth table to determine
whether any of these formulas is a tautology.

@ ((po>pAr@—>r)—>(per)

bd) (p>A@—>r)—>(p—>r1)
© p=>q—>r)>p—>@—>r)

118 CHAPTER 2 Formal Logic

@ pPpo>0vg)>Up—>rIVIp—q)
e pPpo>EArg)>U(p—>r)vip—q)

® (p=>q9)>qp—->p
11. Construct the truth table for

pAp=>g)N(@G@—>r)—>r

Simplify this expression to one using only A, Vv, and —.
12. Show that the following formulas from Table 2.5 are tautologies:

(@ (pAp)ep
®) (pAp—>q))—q
© (p>r)ye (—r—>—p

13. Let ¢ =(pvg) —> (r A—s). For each of the following interpretations of
p,q,r, and s, compute I (¢) using the truth tables for -, v, A, =, and <

@ I(p)=T,1(q)=T,1(r)=T, and I(s) = F
() I(p)=T,1(q)=T,I(r)=F, and I(s) = F
(© I(p)=F,1(q)=T,1¢r)=T, and I(s) =T
@ I(p)=F,I1(q)=F,I¢r)=T, and I(s) =T

14. Let ¢ = (p — q) — ((r A —s) — q). For each of the following interpretations of
p.q,r, ands, compute I (¢) using the truth tables for —, v, A, —, and <

@ I(p)=T,1(q)=T,1(r)=F, and I(s) =T
() I(p)=T,1(q)=F,I(¢r)=T, and I(s) = F
(© I(p)=F,I(q)=T,1¢)=T, and I(s) = F
@ I(p)=F,I(q)=F,I¢r)=T, and I(s) = F

15. Let ¢ = (—(p A q)) & (—r Vv —s).

For each of the following interpretations of

p,q,r, and s, compute I (¢) using the truth tables for —, v, A, -, and <

@ I(p)=T,1@q)=T,I¢r)=F, and I(s) =T
() I(p)=T,1(q)=F,I(r)=F, and I(s) = F
) I(p)=F,1(q)=T,I¢r)=F, and I(s) =T
(d) I(p)=F,I(q)=F,I(r)=F, and I(s) =T

16. Simplify the following boolean expressions:
@ xANVEAYIV(xAY)V (X ATY)
B GAYADVEAYADV(XAYA-ZDV(XADYAZ)
© GAYADVEATYAZDVXA-YA—Z)
17. Find formulas equivalent to the following formulas with all the negations “pushed

inward to the proposition letters’”:

(@ —~(pAT)

® (p>q)>r)—>F
© (p>q)>r)>T
@ peg)or

e (peoq)eF

(Hint: Look for a way to simplify this last one.) (Note: The method given to “push
negations inward”” does not always give the shortest formula that is equivalent to the
given formula and has — applied only to proposition letters.)

18.

19.

20.

21.

Exercises 119

Find all truth values for which the following combinatorial circuit gives a value of
T. Interpret this combinatorial circuit in terms of mechanizing majority rule for three
parties. (Hint: If current is interpreted as a “yes” vote and no current as a “no” vote,
then you should be able to see from a truth table when at least two of the three votes
are in favor of the measure.)

X

y-———

X

4

— —

y—
z—

Prove that a combinatorial network for

XAYADV(XAYADVEA=YAIDVXAYATZ)
can be simplified to a combinatorial network representing
xAYVEAZDV (AL

(Hint: Replace (x A y A 2) with (x Ay A 2) V (x Ay A 2) as often as needed.)

A half-adder circuit was given in the text. It adds two 1-bit numbers and produces two
1-bit outputs, a sum and a carry. To add two r-bit numbers, it is tempting to try to use
n half-adders in parallel, one for each position, but this does not work. Consider the
following base-2 addition:

carries 1 1 1 1 0
1 1 0 1 0
+ 1 0 1 1 1y
1 1.0 0 0 1,

For example, the fourth digit of the sum, the third position from the right, is the sum of
a 1 plus a0, plus 1 carried from the position to the right of it. So, to compute that one
position, one needs a circuit that computes the sum of three 1-digit binary numbers,
the two digits and a carry. It should output the sum (the 1’s position of the sum) and a
carry (the 2’s position of the sum). Such a circuit is called a full-adder.

(a) Draw a full-adder circuit.

(b) Draw a circuit, with one half-adder and three full-adders, for adding two 4-digit
binary numbers.

(c) Draw a circuit that implements the multiplication table (for one-digit numbers).

(a) The conjunction of n formulas pj, pa,..., pn is defined to be the formula
(...((p1 A p2) A p3) A...) A pp. Forn = 0, there is a special case: The conjunc-
tion of zero formulas is defined to be T. For n = 1, that conjunction simplifies to
pi1. Let ¢ be the conjunction of pj, pa, ..., p,. Prove that for any interpretation
I, I(¢) =T if and only if I(p;) =T for each i such that 1 <i < n. (Hint: Use
induction.)

120

CHAPTER 2 Formal Logic
(b) Let ¢ be the formula

(...((p1o p2) o p3)o..) o py

for n > 1. For what interpretations 7 is I1(¢) = T? (Hint: The answer involves
counting how many of the p;’s are true in /. Prove the result by induction on n.)
22. Two other commonly used propositional connectives are exclusive or (either one or
the other but not both are T'), denoted V, and the Sheffer stroke (not both T'), denoted
|. Their truth tables are as follows:

P q|pVvg P alplg
T T F T T F
T F T T F T
F T T F T T
F F F F F T

(a) Do commutative laws hold for Vv and |?

(b) Do associative laws hold for Vv and |?

(¢) For what interpretations 7 is I ((...((p1 ¥V p2) VYV P3)V ..V pp) =T7?

(d) Find formulas ¢; and ¢,, (containing only proposition letters; the propositional
constants T and F; the propositional connectives —, Vv, and A; and parentheses)
that are logically equivalent to p Vv g and p|q. (Compare formula x in Table 2.5 in
Section 2.3.1, where such a formula is given for p < q.)

(e) Repeat part (d) for p v p and p|p, but find the shortest formulas you can.

(f) Find formulas logically equivalent to p A g, p V ¢, and —p built from p and q
using only | and parentheses.

23. Prove both parts of Theorem 2.
24. Prove parts (b) through (e) of Theorem 3.
25. (a) Prove both parts of Theorem 4.
(b) Show that the converses to both parts of Theorem 4 need not be true.
(c) Does Theorem 4(a) remain true if the word fautology is replaced with satisfiable?

Definition A formula is an alphabetic substitution of a formula ¢ if y is formed from
¢ by replacing every occurrence of some proposition letter p in ¢ with some proposition
letter ¢ where g does not occur in ¢. (Note: The relation of being an alphabetic substitution
is symmetric, but it is not reflexive or transitive.) Define ¥ to be an alphabetic variant of
¢ if there is a finite sequence of formulas ¢y, ¢y, ..., ¢, where ¢ = ¢, each ¢; 4+ is an
alphabetic substitution of ¢;, and ¢, = V.

26. (a) Show that (p Vv q) is an alphabetic variant of (g V p).
(b) Show that the relation of being an alphabetic variant is an equivalence relation.
(c) Show that if is an alphabetic variant of ¢, then ¢ is a tautology (respectively, is
satisfiable, is unsatisfiable) if and only if ¥ is a tautology (respectively, is satisfi-
able, is unsatisfiable).
(d) Show that ¢ being an alphabetic variant of ¥ does not imply that ¢ and ¢ are
tautologically equivalent.
27. The first stage of the method described to “push negations inward” was a method to
eliminate —’s and <>’s. Prove that in the method to eliminate them, the process of

Normal Forms 1rAl

substituting always stops. Consider, for example, the substitution in the formula
(poqg) o Fos)
If the substitution is first performed on the second <>, the resultant formula is
(pog)—= ros)Ares) —>(poq)

which has more < ’s to replace than in the original formula! At first sight, one might
expect that if the substitutions are made in the wrong order, the process might continue
generating more <>’s at each stage, and the process might continue forever. (Hint: One
method is to, instead of just counting the number of < symbols, put a weight on
each < symbol, with the weight of the <> symbol in ¢ <> x being dependent on the
number of <’s in ¢ and . If the correct method of calculating weights is used, it can
be shown that the total weight of the <>’s decreases with each substitution.

28. The second stage of the procedure to “push negations inward” started with a formula
whose only logical connectives are —, v, and A and constructed a tautologically equiv-
alent formula with negations applied only to proposition letters.

(a) Write an algorithm describing exactly what is done. The algorithm should work
on formulas as strings of symbols. To avoid what in this case is irrelevant detail,
the program should assume that all proposition letters are one character long and
that any symbol encountered, except for (,), A, Vv, and —, is a proposition letter.
Assume that the formula contains no blanks. (It is perhaps easiest to consider the
program as a function that is passed the original formula—a string—as a parame-
ter, and then returns the equivalent formula with all the negations pushed inward.
It is easiest to use recursion to handle many subformulas.)

(b) Prove that your program from part (a) works. (Hint: if your program in part (a)
uses recursion to handle subformulas, it is natural to do this proof by induction on
formulas. However, the induction may not be straightforward.)

Normal Forms

Although two formulas may be logically equivalent, one may be “easier” for someone to
understand or to manipulate. For example, in one formula, it may be easy to determine
that the formula is satisfiable. It may be fairly obvious that one formula is a tautology but
quite difficult to conclude that from the other form of the same formula. In this section, we
discuss two special forms or representations for formulas logically equivalent to a given
formula. These forms are called disjunctive normal forms and conjunctive normal forms.
Formulas in conjunctive normal form make it easy to determine when a formula is satisfi-
able. Formulas in disjunctive normal form are easy to use when asking whether a formula
is a tautology. These special forms have assumed prominence in computer science, in both
theoretical and applied areas. The famous P # NP problem deals with conjunctive nor-
mal forms, and combinatorial networks use both conjunctive and disjunctive normal forms
to find representations of combinatorial circuits.

122

CHAPTER 2 Formal Logic

251 Disjunctive Normal Form

Consider the following two formulas:

¢=(p—>@Vvr) < (@—p)

and

Y=(pPAqQV(PA—qAr)V(—pA—g)

The truth tables for ¢ and ¥ would show that these two formulas are logically equivalent.
By some measures, ¥ is more complicated. For example, ¢ has four propositional connec-
tives, whereas ¥ has nine. Nevertheless, many people find ¥ to be far easier to understand.
The formula ¢ explicitly lists three cases in which the formula is true:

(1) pand g areboth T.
(2) pandrareT andq is F.
(3) p and g are both F.

For all other interpretations of p, ¢, and r, the truth value of v is F. It is not nearly so
obvious what ¢ “says.” Although ¢ is shorter, it also seems to be more complex.

A formula like ¥ that is just a list of cases that make the formula have a truth value of
T is called a disjunctive normal form (DNF). Each of the three cases, (p A g), (p A —g A
r), and (—p A —q), is called a term. One might think of each term as describing a single
case. The entire disjunctive normal form formula is just a disjunct of terms that make the
formula T'. (The words term and disjunctive normal form will be defined formally below.)

The difference in comprehensibility is even more extreme if the formula ¢ is negated.
The formula

—((p > (qVvr) o (g—>p)
is logically equivalent to the disjunctive normal form formula
(P A@V(pA—gA—T)

The disjunctive normal form is a disjunction of only two terms, which makes it particularly
easy to understand.

Definition 1. ' Let p be a proposition letter. Then, p is a positive literal, and —p is a
negative literal. A literal is a positive literal or a negative literal.

Definition 2. Let Ay, Ay, ..., A, be a set of m literals with m € N. A term is a conjunc-
tion

AMAAMA- Ay

of m literals. A formula ¢ is in DNF if it is a disjunction ¢; vV ¢ V - - - V ¢ of k terms
where k € N.

The disjunction of zero formulas is F. The conjunction of zero formulas is 7. This is
analogous to defining the sum of zero numbers to be zero and the product of zero numbers
to be 1. For example, F vV p < p is analogousto 0 + x = x.

Normal Forms 123

Example 1.

(a) a Ab A —cisaterm.
(b) The formula

(@anbacyv(—an—-bnar-c)v@an—cng)

is in disjunctive normal form.
(c) T isaterm. It is a conjunction of zero literals.
(d) ais aterm. It is a conjunction of one literal.
(e) a AbA—candT are in disjunctive normal form. Each is a disjunction of one term.
() F is in disjunctive normal form. It is a disjunction of zero terms.

Theorem 1. Every formula is logically equivalent to a formula in DNF.
The proof of Theorem 1 is just a formalization of what is done in Example 2.
Example 2. Let ¢ be the formula
Yv=0Cp—>9)—>(@nr-r)
Determine a DNF for .

Solution. A formula may have several equivalent formulas in DNF, but we want a sys-
tematic way to find one.

The first step in finding a DNF for is to find the truth table for all the interpretations
of v, as shown in Table 2.7.

Table 27 Abbreviated Truth Table for v

Interpretation

Iy
I
I
I
Iy
Is
Is
I

(=(p—>q)—> (gAr-r)

S
LS
~

T T Y NNNN
M ENNTTYNN
NN TN TN
NNNNTTNN

The next step is to construct, for each interpretation I;, 0 < i < 7, a term that is T in
that interpretation and F in all other interpretations. Such terms are listed in Table 2.8.

Interpretation | Matching Term
Iy PAGAT
I PAGA-—T
Table 2.8 True Terms I PA—GAT
in the Interpretations I PATGgA-T
I “pPAGAT
Is —“pAGA-T
Ig —“pATGAT
I; —“pATgGA-T

124

CHAPTER 2 Formal Logic

The reader should observe that these terms have the desired properties. That is, Ip
satisfies p A g A r, and all seven other interpretations do not satisfy p A g A r.

Now, breaking into the cases where is 7, we construct a disjunction of terms with
one corresponding to each interpretation where ¥ is T:

dy =(PAGANINV(PAGA—I)V(CPAGAT)V(mpAGA-T)
V(mpA—gAT)V (mpA—g A-r)

Clearly, ¢y is in DNF. The only question is whether ¢y is logically equivalent to .
As a result of the construction, however, each term of ¢y is T for exactly one of the
interpretations for which ¢ is T, whereas ¥ is F in all other interpretations. So, ¢y is T
when ¢ is T. Each term of ¢ is F in each interpretation for which y is F. Therefore, ¢,
is F in each interpretation for which v is F. Thus, ¢y, is logically equivalent to .]

Example 3. Let ¢ be the formula

Y=(p—>@Vvr)A(g)A(-r)Ap
Find a DNF for .

Solution. 1t is easy to see that i is unsatisfiable. We see this from the truth table for ¥
shown in Table 2.9.

Table 29 Abbreviated Truth Table for ¥

Interpretation | p q¢ r {p—>(qVr) =g —r|(p—=>@Vr)A(~g)A(=r)Ap
Iy T T T T F F F
I T T F T F T F
) T F T T T F F
Iz T F F F T T F
Iy FTT T F F F
Is F T F T F T F
I F F T T T F F
I; F F F T T T F

Since at least one of the formulas p — (¢ Vv r), =g, —r, and p is F in each interpre-
tation, the disjunct of these terms is always F. Therefore, the construction as in Example
2 that formed terms for interpretations satisfying ¥, would construct no terms. Accord-
ingly, the formula generated as in Example 2 would be a disjunction of zero terms, which,
by convention, is the formula F. The formula F is in DNF and is logically equivalent
to . |

25.2 Application: DNF and Combinatorial Networks

To interpret the DNF for a boolean expression, we view a term as a product or a join of
a set of literals. The DNF for a formula is viewed as a sum or a meet of a set of terms.
The DNF for a boolean expression gives us an option to use when designing combinatorial
circuits.

Normal Forms 125

Example 4. Let x, y be elements of a boolean algebra. Use the DNF for the boolean
expression (x A y) V (—x A —y) to design a combinatorial circuit.

Solution. The boolean expression is in DNF. Therefore, the combinatorial circuit is

@AYV (oxAy)

. xay
4

253 Conjunctive Normal Form

Consider again the formula used as a motivating example for DNFs:
(p—=>@vVvr) og—>p
The formula is logically equivalent to the formula
(pV—g)A(-pVgVr)

This logically equivalent formula is in conjunctive normal form (CNF). It consists of
a conjunction of two formulas that are disjunctions of literals. In this example, it is the
conjunct of (p vV —gq) and (—p V g Vv r). Each disjunction of zero or more literals can be
thought of as a restriction on when the formula can be T'. The first restriction is that at least
one of p and —g must be T. The second is that at least one of —p, ¢, and r must be T.
This can be thought of as a list of rules that must all be met for the formula to be satisfied.
Thus, CNF formulas are often easy to understand.

Definition 3. Let A1, A2, ..., A, be a set of m literals with m € N. A clause is a disjunc-
tion

AMVAI V...V,
of m literals. A formula ¢ is in CNF if it is a conjunction
PLAGIA - AN

of k clauses ¢1, ¢2, ..., ¢ where k € N.

126

CHAPTER 2 Formal Logic

Example 5.

(@) avVv bV —cisaclause.

(b) T isin CNF. It is a conjunction of zero clauses.
(c) F isa clause. It is a disjunction of zero literals.
(d) a is aclause. It is a disjunction of one literal.
(e) The disjunction of clauses shown is in CNF:

(avbveoyA(—av—-bv-c)A(av-—cVg)
(f) av bv —cand F are in CNF. Each is a conjunction of one clause.
Theorem 2. Every formula is logically equivalent to a formula in CNE
The proof of Theorem 2 is just a formalization of what is done in Example 6.

Example 6. Find the conjunctive normal form for the formula
Yy=0Cp—>q)—> (@A)

Solution. The process starts by finding a formula in DNF that is equivalent to —yr.
The following is an abbreviated truth table for —y». We will misuse the word
interpretation exactly as we did in Example 2 in Section 2.3.

Interpretation

Iy
I
I
I
Iy
Is
Is
I;

Now, put =y into DNF:

=((—=(p = q)) = (g A—T))

N NNNNT
MNN T NNR
MNTNTNNN Y
T TmNNT Y

$-y = 2V 3 = (PA=GAT)V(PpA—gATT)

So, ¢ is logically equivalent to

~((pA—=g AT)V(pA—gA—T))
Push the negations inside, first past the v using DeMorgan’s Law:

“(pAgATYA—=(pA—g A—T)
then past the internal A’s, again using DeMorgan’s Law:

(=P V=g V=) A (Sp V=g V =)
and finally, eliminate the double negations:
(-pVgV-or)yA(-pVgVr)

Since ¢y was in DNF, negating and pushing the negations inside creates a formula in
CNF logically equivalent to . [|

Normal Forms 127

Example 7. Let i be the formula
¥ =—((p—>(@Vr)A(=q)A(=r)Ap)
Find a CNF for .
Solution. The negation of ' is equivalent to
P—=@Vr)ANEgAN(ET)AP

which in Example 3 was shown to have F as a DNF. So, i is equivalent to —F, and
pushing negations inward gives the CNF formula 7.]

25.4 Application: CNF and Combinatorial Networks

To interpret the CNF for a boolean expression, we view a clause as a meet of a set of
literals. The CNF for a formula is viewed as a join of a set of clauses. The CNF for a
boolean expression gives us another option to use when designing combinatorial circuits.

Example 8. Let x, y be elements of a boolean algebra. Use the CNF for the boolean
expression (x A y) V (—x A —y) to design a combinatorial circuit.

Solution. The truth table for the expression is

x|y [xAay | xAa=p) | GAY V(x Aoy
T|T| T F T
T|F| F F F
F|T| F F F
F|F| F T T

The DNF for = ((x A y) V (—x A —y)) is just
xA=Y)V(CxAY)
Therefore, the CNF for (x A y) V (—mx A —y) is
(A=) V(ExAY) =AY A=(xAY)
=(-xVy)A(xV-y)

The combinatorial circuit for this boolean expression is

xvapr(xvy)

255 Testing Satisfiability and Validity

It turns out to be very easy to tell when a formula in DNF is satisfiable. This is one reason
why a DNF is often nice to work with.

128

CHAPTER 2 Formal Logic

Example 9.
(a) Show that
d=(@AN-b)yVv(—an—-cAb)V(an—a)

1s satisfiable.
(b) Show that

p=@A—=bAb)V(man—-cAbArC)V (aA—a)
is unsatisfiable.
Solution.

(a) To find an interpretation / where I (¢) = T, itis enough to find an interpretation where
one of the terms is true. In this case, there is an interpretation where the first term is
true.If I(a) =T and I(b) = F,then I(a A —b) =T and, hence, I (¢) =T.

(b) In this case, ¢ is unsatisfiable, because every term is F in every interpretation /. For
example, in the first term, we require both / (—b) and I (b) to be T in an interpretation.
In the second term, we require both /(c¢) and /(—c) to be T in an interpretation. In
the third term, we require both /(a) and /(—a) to be T in an interpretation. These
conditions are clearly impossible in any interpretation.]

Similarly, it is easy to tell when a formula in CNF is a tautology.

Example 10.
(a) Show that

¢=(av-b)A(—aVv-cVvb)A(aV —a)

is not a tautology.
(b) Show that

p=@v-bvb)A(—maVv-cVvbVvc)Al(aVv—a)
is a tautology.
Solution.

(@) If I(a) = Fand I(b) =T, thenI(aVv —b) = F,s0I(¢p) = F.
(b) The first clause is a tautology, since b v —b alone is a tautology. The second clause is
a tautology, since ¢ Vv —c alone is a tautology. The third clause is also a tautology.
|

Theorem 3.
(a) Letor, ¢, ..., ¢ be clauses fork € N. Let

Q=¢1 A2 N ... AP

Then, ¢ is a tautology if and if every ¢; is a tautology.
(b) LetAq, Ao, ..., A, beliterals for some m. Let

Gi =AM VAV Vi,

Normal Forms 129

Then, ¢; is a tautology if and only if ¢; contains two literals, A, and Ap, where A, = —Ap
andl <a#b<m.

Proof. The proofs of parts (a) and (b) just formalize what was done in Example 10. W

256 The Famous P # N P Conjecture

How easy is it to test whether a formula in DNF is satisfiable or whether a formula in
CNF is a tautology? One way to check whether a CNF formula ¢ is satisfiable is to write
its truth table, but this can be a time-consuming process. A formula ¢ with n symbols
may contain more than r/4 different proposition letters. The truth table has to have a
row for each assignment of T’s and F’s to these n/4 proposition letters—thus, 2"/# rows.
Hence, for some formulas, the size of the truth table is exponentially larger than the size
of the formula. Consequently, this does not give a practical way to check satisfiability. Just
check how many rows that is for n = 1000, because it’s common, for example, in computer
hardware verification applications to have more than 1000 variables.

Another way is to find an equivalent formula ¢’ in DNF. Now, the construction given
in the proof of Theorem 1 (Section 2.5.1) requires writing down the truth table for ¢, so
that method is too slow. Maybe, however, there is a faster way to find such a formula ¢’ in
DNF. If so, that may provide a way to check satisfiability. Unfortunately, this approach also
is not, in general, practical: The shortest such formula ¢’ may itself be far longer than ¢.

It turns out that there is a reasonably fast algorithm for checking satisfiability for CNF
formulas

=R VADAQ2VA) A= A2V A2n41)

where each clause contains at most two literals—formulas in what is called 2-CNF.
However, if the clauses are allowed to contain even three literals (3-CNF), then the an-
swer is unknown. This problem is called the 3-satisfiability problem.

The 3-satisfiability problem is one of a large group of problems called N'P—complete
problems, which will be discussed further in Section 5.3.5. Another famous A/ P-complete
problem is a form of the traveling salesperson problem, which will be discussed in Chapter
7. The commonly believed conjecture, called the P # NP conjecture, is that no N'P-
complete problems can be solved, in general, by algorithms that are even remotely prac-
tical. However, the conjecture is neither proved nor disproved (at least as of the time this
book was written), and it appears to be a very hard mathematical problem. It is considered
by many to be the most important unsolved problem in theoretical computer science—and
one of the most important unsolved problems in all of mathematics.

257 Resolution Proofs: Automating Logic

The ancient dream of automating reasoning will require a computer program to be able to
arrive at conclusions using rules of inference such as those shown in Table 2.6. One attempt
to automate reasoning in a special context was made by John R. Robinson, who used a
single inference rule called resolution. This inference rule deals exclusively with formulas
in CNF (clauses). As a simple example of this inference rule, called the resolution rule,
suppose the two clauses

130

CHAPTER 2 Formal Logic

pVv—gandrvg

are given. What conclusion is possible for the conjunction of these two clauses as a hy-
pothesis? In the resolution system, we are interested in the implication

(pv-)ATVg)—>(pVvr)

It is easy to prove using a truth table that this implication is always T. With this inference
rule, we can then use the clause p Vv r as another clause in the resolution system. The reso-
lution rule uses only this inference rule with formulas in CNF. We often display this rule as

pv —q
r vgqg
pVvr

Definition 4. Lettwo clausesc; = ¢ V p and ¢ = vV —p be given where p is a propo-
sition letter and ¢ and y are clauses. The resolvant of ¢; and c; on p is the clause ¢ V .

Example 11. Letc; = p v —-gVvrandcy; = —p Vvr VsVt Theresolvant of clauses c;
and c; on p is

SgVIrvVrvsvt=—qgVrVvsvt

In a resolution proof or resolution refutation, we imagine the conjunction of a set of
clauses being the hypothesis for an implication. The resolution rule can be used to see if
the set of clauses is satisfiable. If the conjunction of the set of clauses is F, then the set of
clauses is unsatisfiable. We formalize the idea of this proof technique in the next definition.

Definition 5. Let S be a set of clauses. A resolution refutation of S is a sequence of
clauses rg, r1, .. ., ry such that:

(a) eachr; is either an element of S or aresolvant of r; and r; where 0 < j #k <i <k,
and
M®) ry=F.

Example 12. Let S be the set of clauses {p, =p vV —q, —p VvV q V r, —r}. Give a resolu-
tion refutation of S.

Solution. The right-hand column of the following table just explains why each step is
valid. The left-hand column simply numbers the lines so that we can refer to them later.

Proof Step Clause Justification

ro p Element of §

r] —p Vv —gq | Elementof S

r —q Resolvant of rg and r; on p

r3 —pvqvVvr | Elementof §

r4 qVvr Resolvant of rg and r3 on p

rs r Resolvant of r4 and r; on ¢

rs -r Element of S

ry F Resolvant of r5 and rg on r []

Exercises

131

Example 13. LetS={pvgq,pVv—q,—pVgq,—pV —q}. Give aresolution refutation

for S (plus comments, as noted in Example 12 above).

Solution.

Line | Proof Step Justification
ro pVyq Element of S
r —pVyq Element of S
r q Resolvant of rg and r; on p
r pVvV—q Element of §
r4 —pV —q | Element of S
rs —g Resolvant of 3 and r4 on p
3 F Resolvant of r; and r5 on ¢

A proof method is sound if everything that is provable is true or satisfiable. Here,
that means that for any set S of clauses, if there is a resolution refutation of S, then S is

unsatisfiable.

A proof method is complete if everything that is true is provable. If there is a resolution
refutation of a set of clauses S, then § is not complete, since some things that are not true

are provable—that is, any set of clauses for which there is a resolution refutation.

Exercises

1. Write DNFs and CNFs corresponding to each of the following truth tables:

(@ | p q r | Truth Value (b) | p q r | Truth Value
T T T T T T T F
T T F T T T F T
T F T T T F T F
T F F F T F F T
F T T F F T T F
F T F F F T F F
F F T T F F T T
F F F F F F F T
{c) | p q r | Truth Value (d|p q r s | Truth Value
T T T T T T T T F
T T F T T T F T F
T F T F T T F F T
T F F T T F T F T
F T T F F T T T F
F T F F F T T F T
F F T T F T F T T
F F F F F F F F T

132

CHAPTER 2 Formal Logic

e} | p g r s | Truth Value | p q r s | Truth Value
T T T T F T T T F T
T T F T T T T F F F
T F T F T T F F F T
F T F T F F T T F T
F T F F T F T F T F
F F T F F F F T F F
| F F F F F

. Find formulas in DNF equivalent to each of the following formulas:

(@ —=(pAT)

® (p—>q)—>r)—>F

@ p—=>q)—>n)—>T

@d (peoqg)or

() ~(peqg)or

® (pvag)—>r)A(r—=(pVvg))
& (=)= (((pvqg) —>r)—>—q)

. Which of the following DNF formulas are satisfiable? If the formula is satisfiable, give

an interpretation that satisfies it. If it is not satisfiable, explain why not.
@ (@nAnbarc)vicn—-cnab)

®) @rnbrcAndnrn—-b)vicndAn—crenf)

© (@anbac)Vv(—an—-bna=c)

. Find formulas in DNF equivalent to each of the following formulas, and find at least

two interpretations that make each formula satisfiable:
@ (p>q)—>r)—>F

b)) ~(peog or

© (=r) > (((pVvg) >r1)—> —q)

. Find formulas in CNF equivalent to each of the following formulas:

(@ —~(pAT)

b (p>q)—>r)>F

@ p—>q)>nr)—>T

@ (peog)or

(&) ~(poqg) or

® ((pvg) > r)A({r—>—=(pVg))
& (=r)—=> (((pVvgqg)—>r)—> —q)

. For the following formulas find equivalent formulas in CNF and DNF form. Draw

combinatorial networks corresponding to the original formulas and their equivalent
CNF forms.

@ (prg) o (pAr)

b (p=>a)—>1r)—>p

. Which of the following formulas in CNF are tautologies? Explain, as in Example 6.

@ (avbve)n(cv—-cvb)
(b) avbvevdv-byA(cvdv—-cVeV f)
© (avbve)n(—av-bv—c)

Exercises 133

8. Find a CNF for each of the following formulas, and prove that each formula is a
tautology.

(@ (pAp)op

® (pA(p—>q) —>q

© (p>Fr—>q){(pAr)—q)
(d (p—>r)< (-r— —p)

9. (a) Show that the following formula in CNF is unsatisfiable:
PV APV =) A(=PV g APV —g)
(b) Show that the following formula in CNF is unsatisfiable:

(pvgvr)A(pv—qgVI)A(CpVgVIr)A(=pV—gVr)
ApPVgVY=F)A(pV =gV —F)A(mpVgV-r)A(=pV =gV —r)

Can you find an easier argument than just writing the entire truth table?

(c) Generalize the above to some class of CNF formulas on an arbitrary number n > 1
of proposition letters, and prove it by induction on n.

10. (a) Prove that the formula —p is not equivalent to any formula built from the proposi-

tion letters T and F using only A and V plus parentheses.

(b) Prove that the formula p V g is not equivalent to any formula built from the propo-
sition letters using only <.

(c) Prove that there is a formula not equivalent to any formula built from the proposi-
tion letters using only V. (See Exercise 22 in Section 2.4.)

(d) Prove that there is a formula not equivalent to any formula built from the proposi-
tion letters using only — plus parentheses.

11. Write pseudocode for a program that, given a formula ¢, finds (i) a logically equivalent
formula ¢’ in CNF and (ii) a logically equivalent formula ¢’ in DNF. The algorithm
should be recursive (similar to an induction on formulas) and should not involve the
construction of truth tables. Prove the algorithm works. This gives an alternate proof
of the theorem that every formula is equivalent to a formula in CNF.

Definition A k-term is a conjunction of k literals. A k-DNF formula is a disjunction of
k-terms.

12. (a) Show that every formula containing only k (different) proposition letters is equiv-
alent to a k-DNF formula.

(b) Show that p < ¢ is not equivalent to any 1-DNF formula.

(c) Show that for every natural number & (including 0), there is a formula contain-
ing only k + 1 (different) proposition letters that is not equivalent to any k-DNF
formula.

13. (a) Find the resolvant of (p Vv q) and (=p Vv r) on p.

(b) Find the resolvant of (p Vg vV r Vvs)and (—pV —g Vi)onp.

(¢) Find the resolvant of (p Vv g) and —p on p.

(d) Find the resolvant of (p) and (—p) on p.

(e) Which resolvant above from parts (a) through (d) is a tautology? Which is tauto-
logically false?

14. Write resolution refutations of the following sets of clauses. Include line numbers and

justifications, as in Example 12.

134

CHAPTER 2 Formal Logic

@ {p,—pVvq,—pV—gVr, —r}

®) {-p,pVvg.,~qV-r,pvr}

© {pvg,~pvr,mgVr,mpVs,—qgVs,—rV x}

d {pvgvr,pvgVv-r,pv—-qVvr,pv-ogN-or,ap\vgVvr,-pVvqV r,
—“pvV-ogVr,mpV-ogVorh

15. (a) Show that if r is the resolvant of two clauses cy, ¢z on proposition letter p, then

{c.aalE=r

(Hint: For each interpretation, break into cases, depending on whether p is T or
F in each interpretation.)
(b) Prove that if there is a resolution refutation of a set S of clauses, then § is unsatis-
fiable. (Hint: Use strong induction on the length of the resolution refutation.)
16. The length of a clause is the number of literals in the clause. The length of a CNF
formula is the sum of the length of its clauses. The number of excess literals in a CNF
formula is the length of the formula minus the number of clauses in the formula.

(a) Show that if an unsatisfiable set S of clauses contains only clauses of length 0 and
1, it has a resolution refutation. (Hint: Prove the following: If S contains a clause
of length 0, it has [trivially] a resolution refutation. If, for some proposition letter
p, S contains both p and —p, then § has a resolution refutation. Otherwise, S is
satisfiable.)

(b) Show that if a set {A{ VAV - VAtV Ait1}US (k> 1) of clauses is un-
satisfiable, so are {A1 V A2 V A} US and {dr41} U S. (Hint: For the first half,
prove that if an interpretation / satisfies {A; V A2 V --- Vv At} U S, it also satisfies
{AMIVA V- VAV g1} US)

(c) Show that for £ > 1, the number of excess literals in {A1 vV Ao vV --- Vv At} U S and
the number of excess literals in {Ax+1} U S are both less than the number of excess
literals in {A; VA2 V -+ V A V Agg 1} U S.

(d) A resolution derivation of a clause r; from a set S of clauses is a sequence
ro,ri,r2, ..., ry of clauses where each r; is either an element of S or a resolvant
of two previous r;’s. (Thus, resolution refutation of $ is just a resolution deriva-
tion of F from S.) Show that if there is a resolution derivation of A from § and a
resolution refutation of S U {1}, then there is a resolution refutation of S.

(e) Prove that if there is a resolution refutation p of {A; V A2 V ---V A} U S, then
either (i) there is a resolution refutation of {A; VA V .-+ V A V Ag+1}US or
(ii) there is a resolution derivation of Ag41 from Ay V Ay VooV Ag V Agp1 US.
(Hint: Prove this by induction on the length p. You will have to add A4 as a
disjunct to some of the clauses in p. It is not true in general that if S = A, then
there is a resolution derivation of A from §.)

(f) Prove that resolution refutation is complete.

Predicates and Quantification

In propositional logic, our basic “objects” were entire statements, represented by proposi-
tion letters. In discussing mathematical structures, however, we want to be able go one step
“lower” to assert statements, such as x = 3 or x > y, where the meanings of x and y are

Predicates and Quantification 135

not fixed for all time. We want to allow variables (or variable symbols), such as p and ¢,
which represent elements of some nonempty universal set. These variables are not propo-
sition letters, because they do not evaluate to T or F. Rather, after an assignment of values
to the variables, such as 2 to x and 5 to y, the predicates, such as x = 3 or x > y, become
2 =3 and 2 > 5, both of which are F. We can think of similar instances in natural language
when we assert “He is tall and she is of average height.” The pronouns /e and she can be
thought of as placeholders or variables representing a range of particular men or women.

2.1.1 Predicates

A property or relationship between objects is called a predicate. A description of a predi-
cate in logic is called a formula.

A formula such as x < 3 is an atomic formula, built with the predicate <. An atomic
formula is a formula for which the terms do not involve any of the logical operations (and,
or, implication, biconditional, negation), only proposition letters and constants from the
universal set. The predicate < is binary or (2-ary); it represents a relationship between
two objects. The first object is a variable x; the second is a constant 3. If a specific value
xp is substituted into the predicate for x, it becomes xg < 3. Now, if xg = —37, thenxp < 3
evaluates to 7. If xg = 6, then x¢ < 3 evaluates to F. When a predicate involves n argu-
ments, it is said to be n-ary; we write an n-ary formula P{(x1, x3, ..., Xp).

Example 1. The following are predicates:

(a) Let P(x,y,z)denote “x +y =2"

(b) Let Q(xy, x») denote “x; — x > 0.”
(¢) Let M(x, y) denote “x is married to y.”
(d) Let E(x, y) denote “x = y.”

Once we are given a group of predicates, we may refer to them in formulas. So,
P(x,y,2), Q(x1,x2), M(x,y), and E(x, y) are all atomic formulas. The variable names
are not important, so P(xy, z, x3) and Q(y, y) are also atomic formulas. Just as in usual
notation, Q(y, y) denotes “y —y > 0.”

In normal uses of logic, the universal set U and the meanings of all predicates, such
as < or a variable P, are specified. We limit ourselves to this understanding.

2.7.2 Quantification

If we have a predicate, such as <, that is defined on two objects, then logic gives us two
ways to specify what objects we mean. One way is to specify values from the universal
set, such as 3 < 6. Another way is called quantification. It comes in two forms: universal
quantification, denoted by the symbol V; and existential guantification, denoted by the
symbol 3.

The first form is universal quantification for the predicate P, such as.

Vx (P(x)) read “Forall x, P(x)”

is defined to mean “For all values x in the universal set U, the assertion P (x) is true.”

136

CHAPTER 2 Formal Logic

The second kind of quantification is existential quantification for the predicate P, such

as
Jdx (P(x)) read “For some x, P(x)” or “There exists an x such that P(x)”

is defined to mean “For some value of x in the universal set U, the predicate P(x) is true.”

Following the Vx or 3x, there is a formula in parentheses, such as (P (x)), although we
occasionally omit the parentheses. That formula, plus the Vx or the 3x itself, is called the
scope of the quantifier. Informally, we may leave out the parentheses, writing, for example,
just Vx P(x), but that is informal. The definition of scope is defined as if we had not left the
parentheses out. A similar idea of scope occurs in most computer programming languages.

In Section 2.7, we simply want to introduce predicates, formulas, and the use of quan-
tifiers. First Order Logic deals with predicates and quantification in much the same way as
propositional logic deals with propositions. We will focus on how universal and existential
quantifiers interact with each other and how they interact with negation. The study of in-
ferences in First Order Logic and other topics that we dealt with in propositional logic will
not be covered.

Example 2. For the universal set N and the usual meanings of the symbols — and =,
determine whether

Ix(x—3=1)
is true.

Solution. We must find some x € N such that x — 3 = 1 is true. Choosing x = 4 is such
a value.]

Clearly, many values for x may make the predicate 7' in Example 2. The quantifier

Jx just says that we can definitely find one, if the predicate is 7. The quantifier does not
exclude the possibility of finding more than one value for x that makes the predicate T.

2.17.3 Restricted Quantification

It is understood that the universe U contains every object of concern to the current discus-
sion. In many applications, we want to discuss something more limited. Suppose V C U:

Vx € V(P(x)) read“Forall xinV, P(x)”

is defined to mean “For all values x in V, the assertion P(x) is true.” Then,

Ix e V(P(x))
read “For some x in V, P(x)” or “There exists an x in V such that P (x)”

is defined to mean “For some values of x in V, the assertion P(x) is true.”

Leti, j € Nsuchthati < j. Asetof j —i + 1 consecutive storage locations that can
contain the same type of values will be called an array, denoted as A[i .. j], where A
is any variable name. The contents of the individual storage locations will be denoted as
A[il, Ali +1],...; A[j]. For N € N, both A[0,..N — 1] and A[l .. N] denote an array
with N elements.

Example3. LetV = {1,2,...,30},andlet A[1..30] be an array such that for each index
i between 1 and 30, A[i] =i - i — 1. For the elements A[1], A[2],..., A[30], write a
predicate that says:

(a) Every entry in the array is nonnegative.

(b) The value A[30] is the largest value.

(c) That every element of A is nonzero.

Predicates and Quantification 137

Solution.

(a) Vi e V(A[i]1=0)
(b) Vi e V (Ali] < A[30])
(c) Vi e V(A[i]l #0) n

If V = @, it is understood that Vx € V(S) is true and that 3x € V(S) is false, no matter
what S is.

2.14 Nested Quantifiers

The formula 3x(Jy (P (x, y))) contains nested quantifiers, with one quantifier inside the
parentheses marking the scope of the other. The obvious parentheses are usually omitted,
writing “3x3y P (x, y).” Since the two quantifiers are both 3’s, you may also see “Ix, y,
P(x,y)”

It is important to pay attention to the order of the quantifiers. Suppose P (x, y) is “x
received a higher grade on the exam than y did,” and suppose U is the set of all students in
a class. To show that 3x(3y(P (x, y))), we start with the quantifier on the outside: We first
look for a student, xo € U, to be represented by x. Now, we have a formula 3y(P (xg, y)).
Next, look for an object yg € U to be represented by y. To show that the formula is true,
first pick an xg who got a higher score, and then pick a yp who got a lower score.

If we meant to choose y first, we would write Iy(3x(P(x, y))). In this case, it does
not matter in which order we make the choices. One can see that the formula is true if and
only if not all students got the same score. Just pick xg to be some student who got a higher
score than the score achieved by y. Since not all the scores are the same, it will always be
possible to make such choices.

To show with nested universal quantification that

Vx (Vy (x and y drive stick-shift cars and collect baseball cards))

is true, you must show that for all choices of x, and then for all choices of y, both x and y
drive stick-shift cars and collect baseball cards. In this case, again, the order of quantifiers
does not matter: The above is true if and only if Vy (Vx (x and y drive stick-shift cars and
collect baseball cards)) is true.

When the quantifiers switch between V and 3, the order becomes critically important.
To show that 3x (Yy (P(x, ¥))), you first pick a value for xq for x from the universal set.
Then, you must show that no matter what value yy is chosen for y, P (xp, yo) is true.

Example4. Let P(x, y) denote x + y = 17, and let U be the set of integers. Show that

(a) Vx (Ay (P(x, y))) is true.
(b) Ay (Vx (P(x, y))) is false.

Solution.

(a) First, x is specified as any integer. Now, you have to pick y to make P(x, y) true. For
example, pick y = 17 — x.

(b) To show this, you would have to pick a single yg so that for all x € U, x + yp = 17.
Since this must be true for all possible values of x, it must be true in particular for
x =0and x = 1—that is, for 0+ yop = 17 and 1 + yg = 17. Those two cannot both
be true. n

138

CHAPTER 2 Formal Logic

Generally, if 3x (Vy (P(x, y))) is true, so is Yy (Ix (P(x, y))): If the first is true, then
one can pick xg where Vy (P (xp, y)). In that case, for each individual y, one can pick that
same value xq to make P (xg, y) true, so Vy (Ix (P(x, y))) is true. The converse, however,
is false, as Example 4 in Section 2.7.4 shows.

2.1.5 Negation and Quantification

One has to be careful about how negation interacts with quantification—partly because in
ordinary human conversation, people are not always very precise.

The formula —(3x (P (x)) says that there does not exist even one x in the universal set
that makes P(x) true. This is the same as asserting that every x in the universal set makes
P false. Thus,

—(3x (P(x))) is logically equivalent to Vx (—P(x))

Analogously, —~(Vx (P(x))) says that P(x) is not true for all x in the universal set.
That is, there is at least one x for which P(x) is false. Thus,

—(¥x (P(x))) is logically equivalent to 3x (—P(x))

One important result of these rules is that we can always “push negation inward” to be
an operator on a predicate rather than on a quantified formula. Often, it becomes easier to
understand a formula after the negations are “pushed inward.” As an illustration, consider
the formulas

—(Vx Ay (P(x, ¥)))) is logically equivalent to Ax (= 3y (P(x, Y)))))
which is logically equivalent to Ix (Vy (= P(x,y)))

—=(3x Yy (P(x, ¥)))) is logically equivalent to Vx (= (Vy (P(x, ¥))))
which is logically equivalent to Vx (3y (—m P(x,¥)))

The resulting formulas with — applied only to atomic formulas and using only the connec-
tives —, Vv, and A is said to be in negation normal form.

Example 5. Find formulas in negation normal form equivalent to each of the following
formulas. (In cases (c) and (d), the intended universal set is the set of all real numbers, but
that does not affect the answers.)

(a) =Vx € N(xis prime — x2 + lis even)
b) I eQx>0Ax>=2)

(©) —3x (Vy (xy = y))

d VxVylx<y—-> Fz(x <zAzZ<Yy)))

Solution. We use < to mean “is logically equivalent to.”

(a) —(Vx € N (x is prime — x? + 1 is even))
& 3x € N—(xis prime — x2 + 1 is even)
& 3x e N—(xis nota prime Vv (x% + 1 is even))
& 3x € N(xis prime A =(x2 4+ 1is even))

Predicates and Quantification 139

If we go beyond pure logic and use English synonyms, we can further simplify that
last expression to 3x € N (x is prime A (x% + 1is odd)).

(b) —(@xeQx>0Ax3=2)
SVYreQ(—(x>0Ax3=2)
SVYreQ@H-(x>0)Vv-(x3=2)
S VreQ@x <0vax®#2)

(©) —Ix(Vy(xy = y))
& Vx (—3y (xy =y))
& Vx@y(—(xy = y))
& Vx(@x(xy # y))
(d) (Vx(Vy(x <y —> @z(x <2) Az <YN))))
S EVyxr <y —> @x((x <) A <yNNY)
S WAy—-(x <y — Az((x <2) A2 <))
< ITy(—(—(x < y) vV (Az(x <D A <Y))))
& Ixdy((x < ¥) A —@z((x < 2) A (2 <))
& IxTy((x < y) AV ((x < 2) A(z < y))))
& ITy((x <) AVzZ((x = 2) VvV (2=)

The last step used DeMorgan’s Law.

Again, we note that putting formulas into negation normal form often—although not
always—makes them more comprehensible.

2.1.6 Quantification with Conjunction and Disjunction

Predicates can be joined by the usual logical operations. Note the English translations of
the following formulas:

Formula English Translation

Ix (P(x) A Q(x)) “For some particular choice of x,
both P(x)
and Q(x) are true.”
Vx (P(x) A Q(x)) “For every choice of x,
both P(x)
and Q(x) are true.”
Ax (P(x) v Q(x)) “For some particular choice of x,
P(x)or Q(x)
(or both) is true.”
Yx (P(x) Vv Q(x)) “For every choice of x,
P(x) or Q(x) (or both) is true.”

Example 6. For the unjversal set N, isIx (x +3 =2) A (x — 2 = 1)) true?

Solution. For any x,if x +3 =2, then x must be —1. If x —2 = 1, then x = 3. So, no
choice of x makes both true. [|

140

CHAPTER 2 Formal Logic

Example 7. For the universal set N, is 3x ((x — 3 = 1) A (x > 3)) true?

Solution. Since the quantifier is 3x, there need be only one such x for the formula to be
true; 4 is such an x. n

Example 8. For the universal set N, which of the following formulas are true?

@@ I (x+3=2)v(x—2=1)
B I ((x-x—3=DV(x>3)

Solution.

(a) True; choose x = —1. Because —1 +3 =2istrue, (-1 4+3=2)v(—-1—-2=1)is

also true.
(b) Also true; choose x = 4. Then, 4 > 3 is true, so the disjunction is also true. How about
x=2,2-2-3=1. [|

Example 9. In universe N, which of the following formulas are true?

@ Yx (x> =2x+1=0) Vv (x > x))
() ¥x ((x <3) Vv (x > 3))

Solution. This solution is left as an exercise for the reader. |

In Table 2.10 we summarize the relationship between quantification and A and V.
Since all the logical operators can be expressed in terms of — and A or — and Vv (see
Exercise 1 in Section 2.9.4), this table should provide a guide to answering questions about
the relationships between other logical operators and quantification. Below, ¢ = ¢ stands
for “¢ logically implies ¥,” and ¢ < ¥ stands for “¢ is logically equivalent to ¢

Table 210 Logical Relations for Quantified Formulas
in One Variable

Ax (P(x) A Q(x)) = (@x P(x)) A Ex ()
Ax (P(x) v Q(x)) « @x P(x) v (3x 2(x))
Vx (P(x) A Q(x)) < (Vx P(x)) A (Vx Q(x))
(Vx P(x)) vV (Yx Q(x)) = Vx (P(x) V Q(x))

The formulas 3x P(x) A Iy P(y) and 3x Iy (P(x) A P(y)), at first sight, both seem
to say that there are (at least) two objects satisfying predicate P. This, however, is not true.
There is nothing in the formula saying that x % y—that is, that x and y refer to different
objects. So, both formulas say there is (at least) one object satisfying P. To say there are
two different objects satisfying P, one would have to say they’re different—for example,

Iy (PIAPY)Ax #y)

Example 10. For an array of 20 entries with integer entries, write a predicate that says
all the elements are distinct.

Solution. Let V ={1,2,...,20} represent the indexes for the entries into an array
A[1..20]. Now,

Vm eV (¥n e V ((m # n) > (Alm] # A[n]))

says that all the elements are distinct. In this case, another predicate is Vm € V (Vn €
V ((m < n) - (A[m] # A[n]))). We leave it for the reader to explain why. |

Predicates and Quantification 171

Note that in two of the lines in Table 2.10 we said “<” and that in two we said just
*=.” We leave it for the reader to find examples of the following:

(3x P(x)) A (3x Q(x)) A —3x (P(x) A Q(x))
and Vx (P(x)V Q(x)) A—=(¥Vx P(x)) vV (Vx Q(x))

2.1.7 Application: Loop Invariant Assertions

One of the most difficult aspects of computer programming is establishing whether pro-
grams produce the correct output. In principle, there is no way to establish the correctness
of all correct programs. (This was proved by Alan Turing.) Tools for establishing correct-
ness, however, do exist for many programs.

The simplest method for checking a program is to test it: Run it on some sample
values, and check whether it produces the correct answers. Testing is often an effective
method for showing that a program is incorrect, but unfortunately, one cannot normally
check all possible inputs—nor even a significant fraction of the possible inputs. Therefore,
one cannot check that a program is correct.

Another method that is often useful is to write a mathematical proof of program cor-
rectness. One of the difficulties in this case is finding tools for proving that any loops
accomplish what they are supposed to.

A somewhat similar problem is encountered in making it obvious to someone else
who is reading the program that the program works correctly. Many algorithms use tricks
that vary from not quite obvious to totally obscure. What is an easy read and short way to
present the trick and explain why the algorithm works? For example, how can one explain
what a loop is accomplishing?

One method that is often useful employs loop invariant assertions. We will explain
these in terms of a familiar algorithm, (one version of the) BubbleSort. We choose Bubble-
Sort not because it is a good sorting algorithm—for most purposes, it definitely is not—but
because it is short and easy to understand.

Algorithm: BubbleSort

INPUT: An array A[0O.. N — 1] of N integers
OUTPUT: The same array, with its elements sorted into nondecreasing order

for limit = N — 2 down to 0
for position = 0 up to limit
if (A [position] > A [position + 11])
then swap the values of A [position] and A [position + 1]

A reason this algorithm works is that after k passes through the outer loop, the largest
k elements have reached the last k positions in the array—and in the correct order as well.

142

CHAPTER 2 Formal Logic

A formula that states this property is intuitively easy to understand, but it is not so easy
to state formally. Part of the formula is that after k passes through the outer loop, the last
k elements (in positions N —k, N —k+1,..., N — 1) are in increasing order and are
larger than or equal to all elements of the array that occur in positions 0, 1,...,k — 1. We
can state more, since the elements in positions k, k +1,..., j — 1 also have values that
are less than the value of the element at position j. Thus, for any position j among the last
k positions, the value in each position i where 0 < i < j is less than or equal to the value
in position j.
Let Ind denote the set {0, 1, ..., N — 1} of legal indices for array A:

VieldvVjelnd(Q<i) Al <A =NN-=k)— (AliI1 < A[jD
For k = 0, this says that
VielndVj elnd(i < jAj>N— Ali]l < A[j])

which is a true predicate, because j > N is false, making this an implication with hypothe-
sis FALSE. When k = N — 1, we are claiming that all the elements are in increasing order.
The predicate is

VielndVjelndi < jnj=0-— A[i]l < A[j]

The reader should verify that this does mean that the elements of the array are in increasing
order. This predicate can be put into the code as a comment called a loop invariant assertion,
as seen in the Outer Loop Invariant algorithm. (We now go back to informal usage and use
both the < and the < symbol in the formula.)

Algorithm: Outer Loop Invariant

INPUT: An array A[0..N — 1] of N integers
OUTPUT: The same array, with its elements sorted into nondecreasing order

for limit = N —2 downto 0
/* loop invariant for limit loop
Vielndvj elnd((i <j A j>lmit+1) — (A[i] < A[j])
*/

for position = O up to limit
if (A[position] > A[position + 1]) then
swap the values

When limit = N — 2, j > N — 1is false, because 0 < j < N — 1. Therefore, the im-
plication is TRUE. When limit = —1 and the loop terminates, the implication says that,

Exercises 143

fori < jand j > 0, A[i] < A[j]—that is, that the elements of A are in increasing or-
der. The loop invariant here is a formula that is supposed to be true at the beginning of
each pass through the loop as well as true after the last pass, when control returns—(here
with limit = —1) to test that the loop is finished. The accepted formal language for loop
invariant assertions uses quantified formulas.

Exercises

Let U = {l, 2, 3, 4} be the universal set for Exercises 1 through 4.

1. Rewrite (Vx € U)P(x) as a conjunction that uses no quantifiers.

2. Rewrite (3x € U) P(x) as a disjunction that uses no quantifiers.

3. Rewrite =(Vx € U)P(x) as a conjunction that uses no quantifiers.

4. Rewrite —(3x) P(x) as a conjunction that uses no quantifiers.

5. For the following predicates with universal set R, state the meaning of the predicate in
a sentence. If it is false, give an example to show why. (Example: Yx(3y(x < y)) says
“for every real number, there is a bigger number.” This is true.)

(@ Yx(@y(x #0 — xy = a))

®) IyVx(x #0—> xy=1))

(© Ix(Vy(y = x)

(d) Vx@y(x + y =x))

(e) y(Vx(x +y =x))

® Yx(Vy(EFz(x <zAz <))

@ Vx(Vyx #y—-> ((x <zAz<y)Vx>zAz>Y))))
(h) Vx(Vy(Vz((x > yA Y > 2) = x > 2)))

6. For each of the following formulas write a formula ¢ (using quantifiers) expressing
the formula, find a formula in negation normal form equivalent to —¢, and express the
meaning of the negation in words.

(a) Forevery x and forevery y, x +y =y + x.

(b) Every number x has a square root. (Do not use the square root symbol; use only
multiplication.)

(c) For some y, 2x2 + 1 is always greater than x2y. (Hint: In this example, “always”
suggests a universal quantifier.)

(d) For some x and y, x < y,and x> —x > y3 — y.

(e) Forevery x and y, thereisaz where 2z = x + y.

(f) Foreveryxandy,ifx34+x—2=y3+y—2 thenx =y.

7. For each quantified formula that follows: find a universe U and predicates A and B in

which the formula is true and U, A and B in which it is false.

(@) ¥Yx(((A(x) V B(x)) A =(A(x) A B(x)))

(b) VxVy(P(x,y) = P(y,x))

(¢) Vx(P(x) = dyQ(x, y))

(d) 3x(A(x) AVyB(x,y))

(e) VxA(x) > (VxB(x) —> (Vx(A(x) — B(x))))

CHAPTER 2 Formal Logic

8.

10.

11.

For the following formulas, let the universe be R. Translate each of the following
sentences into a formula (using quantifiers):

(a) There is a smallest number.

(b) Every positive number has a square root. (Do not use the square root symbol; use
only multiplication.)

(c) Every positive number has a positive square root. (Again, do nor use the square
root symbol; use only multiplication.)

For the following formulas, let the universe be R. Translate each of the following
sentences into a formula (using quantifiers):

(a) There is no largest number.

(b) There is no smallest positive number.

(c) Between any two distinct numbers, there is a third number not equal to either of
them.

Let U be the set of all problems on a comprehensive list of problems in science. Define

four predicates over U by:

P(x): x is a mathematics problem

Q(x): x is difficult (according to some well-defined criterion: it does not matter for us
what the criterion 1s)

R(x): x is easy (according to some well-defined criterion)

S(x): x is unsolvable (if you do not know what “unsolvable” means, do not worry
about it here)

Translate into English sentences each of the following formulas:
(a) VxP(x)

(b) IxQ(x)

(€) Vx(Q(x)V R(x))

(d) Vx(S(x) = P(x))

(e) Ix(S(x) A—P(x))

) —~(Vx(=Rx) Vv S(x)))

(8) Vx(P(x) = (Qx) & —R(x)))
(h) Vx—S(x)

@) Vx(P(x) > —S(x))

0) Yx(P(x) > (R(x) Vv S(x)))
&) Ix(=Qx) A —~R((Xx))

1 3x(R(x) A S(x))

(m) Vx(Q(x) <> —~R(x))

Let the universe U be the set of all human beings living in the year 2001, and translate
the following English sentences into quantified formulas. Let P(x) stand for “x is
young,” Q(x) for “x is female,” and R(x) for “x is an athlete.”

(a) “All athletes are young.”

(b) “Not all young people are athletes.”

(c) “All young people are not athletes.” (Warning: In informal English, this sentence
has two quite different meanings. One is “more grammatically correct” than the
other, however, and that is the one we’re asking for.)

(d) “Some young people are not athletes.”

12.

13.

14.
15.

16.

17.

Exercises 145

(e) *“Some athletes are young females.”

() “All athletes are young males.”

(g) “Some athletes are female and are not young.”

(h) “Some young females are not athletes.”

(i) “All young females are athletes.”

() “Some athletes are not young.”

(k) “No young people are athletes.”

(1) “All athletes are either female or are young.”

(m) “If all athletes are female, then all athletes are young; otherwise, no athletes are
young.”

Give an example of a universal set U and predicates P and Q such that (VxP(x)) —

(Vx Q(x)) is true but Vx (P (x) — Q(x)) is false.

Translate each of the following quantified formulas into an English sentence where the

universal set is R. Label each as true or false.

(@) Yx@y(xy =x))

(b) Vy(@x(xy =x))

(©) Vx@y(xy = 1))

(d) Iy(vVx # O(xy = 1))

(e) Ix(Vy(xy = x))

® (Vx(x #0— Iy(xy =1))

Write a formula *“saying” that at least four distinct objects satisfy predicate P.

For any two integers m and n, we say m divides » if there is an integer & such that n =
mk. (Many programming languages give easy ways to say that, suchas n %m == 0
or n div m = 0.) Define Div(m, n) to be m divides n. Translate each of the following
propositions and quantified formulas into a clear English sentence. Label each as being
true or false, with the universe as the set Z.

(a) Div(5,7)

(b) Div(4, 16)

(c) Div(16,4)

(d) Div(—8,0)

(e) Ym(Yn(Div(m, n)))

® Vn(Div(l,n))

(g) Ym(Div(m, 0))

(h) Ym(Yn(Div(m, n) — Div(n, m)))

(1) Ym(¥n(¥Yp((Div(m, n) ADiv(n, p)) — Div(m, p))))

G) Ym(n((Div(m,n)A Div(n,m)) - m =n))

Find a formula in negation normal form equivalent to the negation of

AxVYyVz(P(x, y, 2)).

Find formulas in negation normal form equivalent to the negations of each of the fol-
lowing:

(@) Vx(P(x) v @(x))

(b) Vx(Vy(P(x,y) = Q(x,¥)))

(©) Vx(@yP(x,y)) = Q(x,y))

(d) Vx((@y(P(x.y)) = Q(x,y)) AJzR(x, 2)))

146

CHAPTER 2 Formal Logic

18.

19.

20.

21.

22,

(e) Ix((P(x) v Q(x)) = R(x))
) I(Px) = Q(x)) A R(x))

Find a formula in negation normal form equivalent to the negation of

Yxdy((P(x, y) A Q(x, y)) = R(x, y))

Give a universal set U and interpretations to predicates A, B, P, and Q so that each of
the following quantified formulas is false:

(a) (AxA(x) AIxB(x)) = @Ax(A(x) A B(x)))

(b) (Vx3yP(x,y)) > (@x(VyP(x,y)))

©) (Vx(P(x) > Qx))) = (GxPx)) = (Vx)Q((x))

@) Vx(—A(x)) & —~(VxA(x))

To negate an expression with a single quantifier, we can replace it with the other quanti-
fier and negate the formula inside. This generalizes to an arbitrary string of quantifiers.
For instance,

—Vx3y3dzVtP(x,y,z,1)
is logically equivalent to
IxVyVzAt (=P (x,y,2,1)

Prove this generalization by induction.
Given an array Values with n elements

Values[0], Values[1], ..., Values[n — 1]

each containing a real number, the following algorithm finds the sum of all the positive
values in Values. Write an invariant for the loop.

rollingSum =0
fori=¢,2,....,n—1
if Values[i] > 0
rollingSum = rollingSum + Values|i]
Output rollingSum

Challenge: A much more sophisticated sorting algorithm is the MergeSort algorithm.
It comes in various versions; we do one here. The algorithm involves copying the list
back and forth between two arrays, the input array A and an extra array B, so it takes
a lot of extra space.

Our version is not “optimized.” We have attempted to keep it relatively simple to
make it as easily understood as possible. Moreover, to simplify things for this exercise,
we assume that the size of the input array is a power of 2; relatively easy adjustments
would make it work for arrays of arbitrary sizes.

Chapter Review 147

Algorithm: MergeSort

INPUT: An array A [0..2Y — 1] of 2% integers
OUTPUT: The same array, with its elements sorted into nondecreasing order

fort = 1to2N¥-!
size = 2!
for position = 1t0 2V — 1
B[position] = A[position]
loy=0
while lo; < 2¥
hiy = loy + size — 1
log=hi; +1
hiy = log + size — 1
position| = lo)
positiony = loz
position; = lo)
while (position; < hi) and position, < hiz)
if B[position|] < B| position,]
then A[positions] = B[position,]
position| = position| + 1
else A[position;] = B[position,]
position, = position, + 1
positions = positions + 1
while (position, < hiy)
A[positions] = B| position,]
position| = position| + 1
positions = positionz + 1
while (position, < hiy)
A[positions] = B| position;]
position, = position, + 1
positionsy = positionz + 1
loy = log + 2 - size

Determine what each part of the program does (first experiment with some sample test
lists), and write loop invariants for each loop that clarify why the algorithm works.

Chapter Review

Propositions are the initial focus of the chapter. After defining propositions, we introduce
common operations to make formulas from propositions. The idea of a proposition being
true is introduced. We can verify whether a formula is true for a particular set of truth
values for its propositions using an expression tree. To find out if a formula is true for
all possible truth values, we use truth tables. The notions of tautologies, contradictions,

148

CHAPTER 2 Formal Logic

satisfiable propositions, and logically equivalent propositions give a fuller understanding of
the propositional logic. Both CNFs and DNFs give a method for representing any formula
using a standard format from which information is easier to determine. The last section
deals with predicates and quantification. We define predicates as natural generalizations of
propositions and formulas. The interaction of predicates and quantification is explored, as
is the interaction of quantification with the operations that are defined on propositions.

Throughout the chapter, but independent of the core material about propositional logic,
is an introduction to boolean or combinatorial circuits. First, the correspondence between
logical formulas and a boolean circuit composed of gates is introduced. After showing the
correlations between boolean algebras and combinatorial circuits, the results about boolean
algebras become a tool for simplifying circuits. Finally, CNFs and DNFs are used to find
standard representations of combinatorial circuits.

291 Terms and Theorems

21 Summary
TERMS

AND gate

base cases
biconditional
boolean circuit
boolean value
closure rules
combinatorial circuit
combinatorial network
conclusion
conditional

conjunct
conjunction

disjunct

disjunction
equivalence

THEOREMS

expression tree

Expression Tree for a
Formula

FALSE (F)

formula

gate

hypothesis

implication

inductive definition

mean

logical value

negation

NOT gate

OR gate

proposition

Principle of Induction on Formulas

23and24 Summary
TERMS

alphabetic substitution
alphabetic variant
complementation
contradiction
equivalent

exclusive or

false in

interpretation
logically equivalent
logically implies
logically valid
meaning

satisfiable

satisfies

proposition letter

propositional connective

propositional constant
(T.F)

propositional logic

semantics

subformula

syntax

TRUE (T)

truth table

well-formed formula

(wif)

semantics

Sheffer stroke
tautologically equivalent
tautologically implies
tautology

true in

unsatisfiable

Chapter Review 149

THEOREMS

First Substitution Principle Second Substitution Principle

25and26 Summary

TERMS
2-CNF excess literals resolution refutation
3-CNF k-DNF resolution rule
3-satisfiability problem k-term resolvant
clause literal sound
complete negative literal term
conjunctive normal form NP-complete
(CNF) positive literal
disjunctive normal form resolution
(DNF) resolution derivation
THEOREMS
Every Formula Is Logically Equivalent to Every Formula Is Logically Equivalent to
a Formula in CNF a Formula in DNF
ALGORITHMS
BubbleSort
MergeSort
Outer Loop Variant
2.7 Summary
TERMS
array loop invariant quantification
atomic formula loop invariant assertion scope
binary n-ary universal quantification
constant negation normal form variable
existential quantification nested quantifiers variable symbols
formula predicate

29.2 Starting to Review

1. Which of the following are propositions?

i: “The moon is visible.”
ii; “The property tax rate will increase next year.”
iii: “No one under 18 may buy cigarettes.”
1v: “Please help me with the assighment.”
(a) 1and i1ii
(b) 1andii
(c) ii and iii
(d) All of the above

150

CHAPTER 2 Formal Logic

2.

3.

4.

10.

Write in symbolic form the statement “Claudia will sail in the regatta if the crew is
ready and the weather is fair.”

Write the converse, inverse, and contrapositive of the statement “If Sally finishes her
work, she will go to the basketball game.”

What inference rule applies to the following?

Joe wrote a program in C, or George wrote a program in Java. If Joe wrote a program in
C, then the problem was solved. If George wrote a program in Java, then the problem
was solved.

(a) Contrapositive

(b) Proof by contradiction
(c) Proof by cases

(d) None of the above

. What is the truth value that will be computed by the formula represented by the

expression tree shown if I(p) =T, I(q) = F, I(r) =T, and I(s) = F in an inter-
pretation 7

CPrp-onNe -y
a(prg) o “(r-s)

~(prg) r ros

/N,

prhq

/N

p q

What is the value of the formula represented by the expression tree in Exercise 5 given
the interpretation I (p) =T, I(q) = F,I(r)=T,and I(s) =T.

. Write the following condition in an if. . . then with the negations incorporated into the

conditions themselves:

If NOT ((x <3)O0OR (y > 2)), then

. Construct a truth table for the proposition —(p A q).

Using the conjunctive normal form, identify values for which the statement

“(—(pv@) A(-pVyq)

is true.
Find the DNF for the statement

(mpA@ VYA (g V)

2.9.3 Review Questions

1.
2.
3.

Construct a truth table for the statement ~(p vV g) vV —=(p A q).
Construct a truth table for the statement =(p A g) A (p V —q).
For which truth values does the statement —(p V —¢g) have a truth value TRUE?

Chapter Review 151

4. Form a truth table for the proposition p vV =(p A q).
5. Use the substitution rule with p — g for p, and prove that the result is a tautology for

—q — (@ — p)

6. Prove the following identities for a boolean algebra:

@ (~pv@)A(pV—g)=pAgV(-pA—q)
(b) =pv@Ar)V(pv@) A(mpvr)=—pVr
© =(=(pvg@)A=(gVvr)VvigArr)=pVgq
7. Draw combinatorial circuits that realize the following formulas:

@ (pAg)V@Ar)V(pA-T)
®) ~((pAg)VP)V(PAQ)

2.9.4 Using Discrete Mathematics in Computer Science

1. We built formulas with the logical operators A, V, =, —, and <> and the constants
T and F. In designing circuits, we described gates for only three connectives: A, Vv,
and —. Computer hardware designers might want to make as few kinds of gates as
possible. Do they really need a — gate? (The answer turns out to be “no,” but how
do you know that?) Could they get along with fewer than three types of gates? A set
of logical operators is called complete if every well-formed formula of propositional
logic is equivalent to a well-formed formula using connectives from the set.

(a) Find a formula equivalent to @ — (b A ¢ A d) using only the connectives — and
A (and not the constants T and F). Find the shortest such formula; does it have
more or fewer symbols than the formulag — (b A c A d)?

(b) Show that the set {—, A} of operators is complete.

(c) Find a formula equivalent to @ — (b A ¢ A d) using only the connectives — and
— (and not the constants TRUE and FALSE). Find the shortest such formula;
does it have more or fewer symbols than the formulaga — (b A ¢ A d)?

(d) Show that the set {—, —} of operators is complete.

(e) Find a formula equivalent to @ — (b A ¢ A d) using only the connective — and
the constant FALSE. Find the shortest such formula; does it have more or fewer
symbols than the formulaa — (b A ¢ A d)?

(f) Show that the set {FALSE, —} is complete.

2. See the definition of “complete set of operators” in Exercise 1. This problem shows
that the engineers need build only one type of gate.

(a) NAND has the truth table

p | 4 || NAND(p,q)
T|T F
T|F T
F|T T
F|F T

Show that the set {NAND} is a complete set of operators.

152 CHAPTER 2 Formal Logic

(b) Find a formula equivalent to a — (b A ¢ A d) using only the connectives NAND
(and not the constants TRUE and FALSE). Find the shortest such formula; does
it have more or fewer symbols than the formulaa — (b A c A d)?

(¢) NOR has the truth table

P 1 q || NOR(p,q)
T|T F
T | F F
FlT F
F | F T

Show that the set {NOR} of operators is complete.
(d) Find a formula equivalent to a — (b A ¢ A d) using only the connectives NOR
(and not the constants TRUE and FALSE). Find the shortest such formula; does
it have more or fewer symbols than the formulaa — (b A ¢ A d)?
The NAND operator is often called the Sheffer stroke and is denoted as plg.
The NOR operator is often called the Pierce arrow and is denoted as p | g.

3. The connective if-then-else is defined by the following truth table:

~

if p thengqg else r

T T T NNN NS
NN N NS
NN TN TN
mMNTNT NN

This connective is key in binary decision diagrams (BDDs), which provide one stan-
dard way for manipulation of propositional formulas in computer programs. For ex-
ample, BDDs have been widely used by computer-chip designers in showing that the
circuits in the chips they design match the specifications for those chips. (In BDD
language, the connective is often called just ITE.)
(a) Find a formula equivalent to
ifa
then
if b then c else d
else
if e then d else ¢

using only the connectives A, Vv, and —.

Chapter Review 153

(b) Find a formula equivalent to
ifa
then
if b then c else d
else
if e then d else ¢

in CNF.

(c) Find a formula equivalent to —a using only the if-then-else connective and con-
stants 7" and F.

(d) Find a formula equivalent to (a VbV) A(—a Vv =bvd)A(—=cV —d) using
only the if-then-else connective and constants T and F.

. Find a DNF for the condition that there are an even number of 1’s in the three binary
strings p, g, and r. Draw a combinatorial network to represent the DNF. Can you
simplify the combinatorial circuit using the properties of a boolean algebra?

. Find a DNF for the condition that there are an odd number of 1’s in the three binary
strings p, ¢, and r. Draw a combinatorial network to represent the disjunctive normal
form. Can you simplify the combinatorial circuit using the properties of a boolean
algebra?

. An especially simple class of CNF formulas are those built from Horn clauses. A
Homn clause is a clause containing, at most, one positive literal. (A pure Horn clause
is a clause containing exactly one positive literal.) Horn clauses form the basis for the
computer language Prolog, which allows the programmer to input a set of requirements
(specified in formal logic) and to ask the computer to find how to satisfy them all (if
possible)—as opposed to the user’s having to write out the case analysis.

(a) Using the atomic formulas
a = “Tweety is a penguin.”
b = “Opus is a penguin.”
¢ = “Phoenix is a penguin.”
d = “Elvis lives!”

express “If Tweety is a penguin and Opus is a penguin, and Phoenix is a penguin,
then Elvis lives” as a Horn clause.

(b) Find a set of Horn clauses logically equivalent to (@ AbAc—>dVe)A(—aV
—e). Find the shortest such set of clauses.

(c) Find all satisfying truth assignments for the following set of Horn clauses:

{p1,=p1V p2,—~p1 Vp2V p3,mpi vV mp2V pa, mp3 Y —paV ps}
Now, show that the following set of Horn clauses is not satisfiable:
{p1,=p1V p2, ~p1 VY =p2V p3, 2p1 vV —p2V pa, mp3 N —pa NV ps, p3 vV —ps}
(d) Find all satisfying truth assignments for the following set of Horn clauses:

{pi, =PV P, —-P1V P2V p3, =p1V P2V pa, =p3V —psV ps,
= peV p1,—pLV —p7V pe)

154

CHAPTER 2 Formal Logic

Next, for each satisfying truth assignment /, let Ty be the set of truth variables
assigned the value TRUE by I. Compare the sets T; for the truth assignments
above by C.

Now, show that the following set of Horn clauses is satisfiable:

{p1, = 1V P2, mp1IV—p2V p3,mp1 vV op2V ps,=p3V opaVops,
= peV P17, p1 NV TPV pe, ~p1 NV T Ps, p2 Y Tpa NV T pr)

(e) Challenge: Prove that if ¢ is a Horn clause and if I and I; are interpretations
satisfying ¢, then the following interpretation I, also satisfies ¢:

In(x) = T if Il(x)' =Tand Lx)=T
F otherwise

Using this, show that p V ¢ is not logically equivalent to (the conjunction of) any
set of Horn clauses.

(f) Challenge: Write pseudocode for a relatively fast algorithm to determine whether
a set of Horn clauses is satisfiable. Include arguments to show that (i) your al-
gorithm returns the correct answer and (ii) your algorithm is reasonably fast (in
general, much faster than writing the truth table for the set of Horn clauses).

. Determine if the CNF

xXVvyvVvzvwvuV-u)A(CXVoyvVzvVvowvVuVe)A
xXV-oyv-ozvwvuV-w)ARxyY-y)

or the CNF
(PVIVUO)A(CPVIVU)A@PY-rV)A(pY-rV o)A
(pVvrvou)A(pVrv-u)A(pVrv-w)A(-pVvVryv-ov)

is satisfiable. This exercise shows that the satisfiability problem can be solved if the
satisfiability problem can be solved for a CNF. The CNF satisfiability problem was the
first N'P-complete problem.

. A first-order Horn clause is a formula such as

Vx Yy (Loves(x, y) v —EatsGarlic(x) v — EatsGarlic(y))

Inside the parentheses is a disjunction of atomic formulas (Loves(x, y)) and negated
atomic formulas (— EatsGarlic(x)). All the variables are universally quantified outside
the parentheses.

Using the predicates

Trained (x, j): x is trained to do job j.
Experienced (x, j): x is experienced at job j.
Prefers (x, ji, j2): x prefers job jj to job ja.
Hire (x, j): hire x to do job j.

State the following with sets of first-order Horn clauses:

(a) If Britney and Aaron are both trained and experienced in marketing and account-
ing, and if Britney prefers accounting to marketing and Aaron prefers marketing
to accounting, then hire Britney to do accounting.

10.

Chapter Review 155

(b) If Harry, Hermione, and Frodo are all experienced in potions and each of them
prefers potions to at least one other job, then hire them all for potions.

. Given an array Names with n elements,

Names[0], Names[1], ..., Names[n — 1]

each containing a surname (family name), the following algorithm finds the largest
name (in alphabetical order). Write an invariant for the loop.

temp = Names[0]
fori=1,2,...,n—-1
if Names[i] > temp
temp = Names]i]
Output temp

Challenge: Look up Hoare’s quicksort algorithm. Write loop invariant assertions that
make the logic of quicksort easy to understand. You may also want preconditions
and postconditions. A precondition is a formula that the programmer assumes will
be true when an algorithm is invoked (called); the programmer announces that if the
precondition is not true, then the algorithm probably will not do what it is supposed
to do. A postcondition is a formula expressing something that is supposed to be true
after the algorithm finishes—assuming the preconditions are satisfied, of course.

CHAPTER 3

Relations

Human language has many words and phrases to describe relationships between or among
objects. It may be that for two people, A and B, that A is a parent of B, that A is an
ancestor of B, that A is taller than B, or that A is in front of B. In algebra, it may be that
the value of variable x is less than the value of variable y. In geometry, it may be that one
point lies between two other points on a line. In set theory, it may be that a set X is a subset
of a set Y or that X is disjoint from Y. At a particular moment while a computer program
is running, it may be that the value of x is less than the value of y. All these notions are
special instances of a relation.

This chapter introduces the concept of a relation to formalize the familiar notion of a
relationship between or among objects. Relations provide a way of representing relation-
ships like the ones just described, so that they can be stored, studied, and reasoned about.
In this chapter, we first provide an introduction to relations, the important properties of
relations, and the fundamental operations on relations. We next deal with equivalence re-
lations, a generalization of the notion of equality, and then move on to ordering relations.
These relations generalize the ordering relations on R (<, >, <, >, =). Searching and sort-
ing operations are based on these relations. Finally, we show how the ideas in this chapter
are applied in a relational database.

m Binary Relations

Most card games are played with a standard deck of 52 cards. The deck is divided
into four groups, or suits, called Clubs (&), Diamonds (<>), Hearts (©), and Spades (#).
Each suit has 13 cards, ordered in increasing order of value: 2, 3, 4, 5, 6, 7, 8, 9, 10,
Jack, Queen, King, and Ace. The 2 card has the lowest value, and the Ace card has the
highest value. In this ordering, we say that one card has a higher value than, or is higher
than, another card if, ignoring their suits, the value of the first card occurs after the value of
the second in this ordering. To focus on the ideas presented in this chapter while keeping
matters simple, many of the examples that follow will use a deck with only six cards. This
set of cards, called SpecialDeck, consists of the 10, Jack, and Queen of Hearts as well as
the 10, Jack, and King of Clubs. The values of these cards are ordered as described. The
SpecialDeck has its elements shown in Table 3.1.

157

158 CHAPTER 3 Relations

Table 3.1
SpecialDeck of
Cards

SpecialDeck

10 of Clubs
Jack of Clubs
King of Clubs
10 of Hearts
Jack of Hearts
Queen of Hearts

Much of the information about suits and card values is irrelevant to many card games.
Often, only two properties are important: whether two cards are in the same suit, and
whether one card is higher than another. Everything else, such as the names of the suits,
the names of the cards, and perhaps even the number of cards per suit, is unimportant. For
example, a person would immediately be able to translate the rules of many games to a
deck with five suits called red, yellow, blue, green, and black, with each suit consisting of
16 cards numbered 1,2, 3, ..., 16.

How can one abstract these important properties? Notice that both properties involve
a comparison between two objects. For example, given two cards a and b, does a have
a higher value than 5?7 As a matter of convention, two elements that are related in some
special way are often represented by an ordered pair. If a is higher than b, then this could
be represented by the ordered pair (a, b). Formally, the relation HigherValue defined on
SpecialDeck is the set of ordered pairs (a, b) where the value of card a is higher than
the value of card b. This relation for SpecialDeck is shown in Table 3.2. Each ordered pair
(a, b) in the relation contributes one row to the table, with the higher-valued card appearing
first in the row and the lower-valued card second.

Table 3.2 HigherValue Relation

HigherValue

Jack of Hearts 10 of Hearts
Queen of Hearts | 10 of Hearts
Jack of Clubs 10 of Hearts
King of Clubs 10 of Hearts
Queen of Hearts | Jack of Hearts
King of Clubs Jack of Hearts
King of Clubs Queen of Hearts
Jack of Hearts 10 of Clubs
Queen of Hearts | 10 of Clubs
Jack of Clubs 10 of Clubs
King of Clubs 10 of Clubs
Queen of Hearts | Jack of Clubs
King of Clubs Jack of Clubs

Binary Relations 159
Definition 1. A binary relation is a set of ordered pairs. A binary relation on a set X is
a set of ordered pairs of elements of X.

Example 1. The relation HigherValue defined in Table 3.2 can be represented as the
following set of ordered pairs:

{(Jack of Hearts, 10 of Hearts), (Queen of Hearts, 10 of Hearts), (Jack of Clubs,
10 of Hearts), (King of Clubs, 10 of Hearts), (Queen of Hearts, Jack of Hearts),
(King of Clubs, Jack of Hearts), (King of Clubs, Queen of Hearts), (Jack of Hearts,
10 of Clubs), (Queen of Hearts, 10 of Clubs), (Jack of Clubs, 10 of Clubs),
(King of Clubs, 10 of Clubs), (Queen of Hearts, Jack of Clubs),
(King of Clubs, Jack of Clubs)}

A second important binary relation on SpecialDeck is SameSuit, which is defined as
(a, b) € SameSuit if a and b are cards in SpecialDeck that belong to the same suit. For
example, both the ordered pair (10 of Hearts, Jack of Hearts) and the ordered pair (Jack of
Hearts, 10 of Hearts) are in SameSuit, but the ordered pair (10 of Hearts, Jack of Clubs) is
not. The pairs in the relation SameSuit for SpecialDeck are listed in Table 3.3.

Table 3.3 SameSuit Relation

SameSuit
10 of Hearts 10 of Hearts 10 of Clubs 10 of Clubs
10 of Hearts Jack of Hearts 10 of Clubs Jack of Clubs
10 of Hearts Queen of Hearts || 10 of Clubs King of Clubs
Jack of Hearts 10 of Hearts Jack of Clubs | 10 of Clubs
Jack of Hearts Jack of Hearts Jack of Clubs | Jack of Clubs
Jack of Hearts Queen of Hearts {| Jack of Clubs | King of Clubs
Queen of Hearts | 10 of Hearts King of Clubs | 10 of Clubs
Queen of Hearts | Jack of Hearts King of Clubs | Jack of Clubs
Queen of Hearts | Queen of Hearts || King of Clubs | King of Clubs

A third relation defined on SpecialDeck is that of having a higher value and being
in the same suit. This relation is shown in Table 3.4. Here, an ordered pair (a, b) of cards
belongs to the relation HigherValueSameSuit if cards a and b in SpecialDeck have the same
suit and furthermore, card a has a higher value than card b.

Table3.4 HigherValueSameSuit

Relation
HigherValueSameSuit
Jack of Hearts 10 of Hearts
Queen of Hearts | 10 of Hearts
Queen of Hearts | Jack of Hearts
Jack of Clubs 10 of Clubs
King of Clubs 10 of Clubs
King of Clubs Jack of Clubs

160

CHAPTER 3 Relations

Other familiar examples of relations arise when we consider family trees. Tradition-
ally, a special notation is used, which goes roughly as follows: Marriages are shown with
= signs. The first-generation couple sits at the top of the tree. Only their direct descendents
officially belong to the tree. Marriages of descendents are indicated by an = sign and the
name of the partner. With the exception of the top couple, the children of a person in the
tree are drawn off a horizontal line that is joined to that person by a short vertical segment.
(No horizontal line is needed for an “only” child). The horizontal line for the children of
the top couple is joined to the = sign at the top, since both parents belong to the tree.
The children of the first-generation couple form the second generation, the children of the
second-generation couples form the third generation, and so on.

In Figure 3.1, George is the only child of Peter and Elaine. Peter is in the picture only
because of his marriage to Elaine. Elaine, not Peter, is a child of Mary and John. Elaine is
in the second generation, and George is in the third generation.

Mary = John
Peter = Elaine

George
Figure 3.1 Examples of family tree entries.

Although the marriage of a descendent is indicated by an = sign and the name of the
partner, no further information is given about these partners. For example, in the family tree
of Mary and John shown in Figure 3.2, even if Peter and Harold were brothers, this would
not be shown. A family tree is a rich source of information about a number of relations.

In Example 2 you will list the elements of three relations that can be formed from the
relationships shown in Figure 3.2.

Mary = John

Peter = Elaine Maude = Harold

George Elizabeth

Figure 3.2 Family tree.

Example 2. For the family tree shown in Figure 3.2, identify the elements of the relations
(a) IsMarriedTo, (b) IsParentOf, and (c) IsSameGeneration.

Solution.

(a) IsMarriedTo = {(Mary, John), (John, Mary), (Peter, Elaine),
(Elaine, Peter), (Maude, Harold), (Harold, Maude)}

A representation for the specific relation IsMarriedTo is shown in Table 3.5.

Binary Relations 161

Table 3.5 /sMarriedTo

Relation
IsMarriedTo
John Mary
Mary John

Peter Elaine
Elaine | Peter

Maude | Harold
Harold | Maude

(b) IsParentOf = {(Mary, Elaine), (John, Elaine), (Mary, Maude),
(John, Maude), (Peter, George), (Elaine, George),
(Maude, Elizabeth), (Harold, Elizabeth)}

(c) Peter and Harold do not appear in the relation IsSameGeneration, because this relation
deals with direct descendants only. In this case, the family tree has more information
than is required to define this relation:

IsSameGeneration = {(Elaine, Maude), (Maude, Elaine),
(George, Elizabeth), (Elizabeth, George), (Mary, John),
(John, Mary), (John, John), (Mary, Mary), (Elaine, Elaine),
(Maude, Maude), (George, George), (Elizabeth, Elizabeth)} [|

A specific computer application of relations appears in Section 3.10, which introduces
the concept of relational databases. A relational database consists of a number of relations.
To answer questions concerning the information contained in the relations, the user poses
a question or a query that is processed by the database system. If, for example, a user
makes a query about who is married to whom, the database system would respond with
a table such as Table 3.5. In relational database systems, the answer to any query is a
relation.

For example, let X be any set, then

ldy ={(x,y):x,y € X and x =y}

Since Idy is a set of ordered pairs of elements in X, it defines a relation on X. This re-
lation is called the identity relation, or the equality relation, and may be denoted as
=yx. The trivial relation, or void relation, or empty relation, on any set consists of .
The universal relation on a set consists of all possible ordered pairs of elements of a
set.

For any set X C R, let

Lty ={(x,y):x,y € X and x < y}
Lex = {(x,y):x,y€ X and x <y}
Gty ={(x,y):x,y € X and x > y}
Gex = {(x,y):x,y€ X and x > y}

162

CHAPTER 3 Reilations

Similar relations are defined on N and R. When the set X is clear from the context, the
subscript X will frequently be dropped. When it causes no confusion, it is convenient
to use mathematical symbols for these relations and drop the subscript. Hence, we will
sometimes refer to Id as =, to Le as <, to Lt as <, to Gt as >, and to Ge as >. Of course,
to say that (x, y) € Idx, it is customary to write x = y, and to say that (x, y) € Lry, it is
customary to write x < y. In a non-numeric setting, we can define a relation for any set X
of words in a dictionary by saying that wordl < word2 means that wordl precedes word2
in the dictionary.

Example 3. Table 3.6 shows two subsets of the relations =y and <p. Since both relations
are infinite, the entire relation obviously cannot be displayed.

Table 3.6 Two Relations on N
Idn Lty

BLWN=O
AWLWN=O
—_—0 = O O
W WNN -

If R is a binary relation on a set X, then (x, ¥) € R may also be written as x R y.

3.1.1 p-ary Relations

There is no reason to restrict attention to relations between pairs of objects. Those are
simply the most familiar examples.

Definition 2. Let X, X2, ..., X, be sets for some n € N. An n-ary relation is a set of
n-tuples contained in X x Xp X --- x X,. If X| = X2 = ---X,,, we say the n-ary rela-
tion is defined on X.

We have been careful to indicate how many sets are involved in a relation or how many
elements are related. Often the qualifier n-ary is left off and we see references to relations
for which the context makes clear how many sets are involved.

Example 4. Let the set X consist of the nine positions on a tic-tac-toe board, named py,
D2, ..., P9, as shown:

P1 | P2 | P3
P4 | P5s | Ps
P71 | b8 | P9

Operations on Binary Relations 163

For three distinct positions on the board, define the relation Betrween to consist of the or-
dered triples (p;, p;, pr) where p; is between p; and pi in some row, column, or diag-
onal on the board. So, Between contains, for example, the ordered triples (pa2, p3, p1).

(ps. p4. p6). (Ps, p1- P9), and (ps, p7, p3). Both (ps, p2, ps) and (ps. ps, p2) are also
elements of the relation. [|

Example 5. We define a ternary relation R on the set A = {1,2, 3, 4, 5, 6, 7} as follows:
such that for any ny,nz,n3 € A we have (ny,n2,n3) € R if and only if ny - ny = ns.
Find all elements of R.

Solution. 'The triples in R are

{(1,1,1),(1,2,2),(2,1,2),(1,3,3),(3,1,3),(1,4,4), (4, 1,4), (2, 2, 4),
((1,5,5),(5,.1,5),(1,6,6), (6,1, 6), (2,3,6),(3,2,6), (1,7, 7), (7,1, T)}]

A 1-ary relation is also called a unary relation (pronounced “u”-nary relation) or a
property. A unary relation on a set X is a set of 1-tuples of elements of X, but a 1-tuple of
X is just an element of X. Hence, a unary relation on a set X is a subset of X.

Example 6. Hearts names a unary relation on a deck of cards. This unary relation on the
standard 52-card deck is the set {2 of Hearts, 3 of Hearts, ..., Ace of Hearts}.

If R is an n-ary relation with n > 2, one can either write R(xq, x2,...,X,) or
(x1,x2,..., %) € R.

Theorem 1 points out that an n-ary relation on a set X is the same thing as a unary
relation on the set X”.

Theorem 1. A set R is an n-ary relation on a set X if and only if R C X”.

Operations on Binary Relations

Since relations are sets, the set operations of union, intersection, and difference are well
defined for relations. If only binary relations on a set X are considered, then X 2 can be
considered as the universal relation, and the complement X 2 _ R of a relation R can also
be formed. In this section, two other especially important operations on binary relations
are considered, namely forming the inverse and taking the composition of two relations.
The inverse operation is performed on a single binary relation; the composition operation
is performed on two binary relations.

321 Inverses

For the real numbers 3 and 5, we can write 3 < 5, but we can convey the same information
by writing 5 > 3. The two relations, < and >, are different. More generally, for any real
numbers x and y, we have x < y if and only if y > x. This is an example of two relations
being inverses of each other. In terms of the ordered pair notation,

164

CHAPTER 3 Relations

(x,y) € < ifand only if (y, x) € >

The formalization of this property is stated next.

Definition 3. Let R be a binary relation. The inverse of R, denoted R7L s
{(x,»): (y,x) € R}

Producing the inverse R~! of arelation R can be thought of as performing an operation
on R. This operation is known as taking the inverse of R, or as inverting R.

Example 7. Recall the relation IsParentOf in Example 2. Thus,

IsParentOf 1= {(Elaine, Mary), (Elaine, John), (Maude, Mary),
(Maude, John), (George, Peter), (George, Elaine),
(Elizabeth, Maude), (Elizabeth, Harold)}

The relation IsParentOf ~! expresses the fact that one person is the child of an-
other, so it is natural to denote this relation by a new name, such as IsChildOf. Hence,
using the new name for IsParentOf !, (a,b) € IsParentOf if and only if (b,a) €
IsChildOf. []

Example 8.

Gy =1{(1,0),(2,0),(2,1),(3,0),(3,1),(3,2),4,0),...}
th_]l = {0, 1),(0,2),(1,2),(0,3),(1,3),(2,3),0,4, ...}

Clearly, Gt~! is the relation Lt, since a > b if and only if b < a.]

Theorem 2. Let R and S be binary relations on a set X. Then,

@@ (R"H~1=R.
®) (RUS) =R Tus L.
(c) If S C R, then S~ € R

Proof. (a) Foranyx,y € X,

xy)e® DN ey xer!
& (x,y) €R
Hence, (R~ ! =R
(b) Forany x, y € X,
(x,y) e (RUS) ' & (y,x) e RUS

& (y,x)€R or (y,x)eSs
& (x,y) € R~ ! or (x,y) € s!
s x,y)eRTus™!

Operations on Binary Relations 165

Hence, (RUS)™! = R~1u §!
(c) This proof is left as an exercise for the reader. n

3.22 Composition

The composition of two relations produces a new relation. Some very familiar examples of
relations arise in just this way. For example, we shall soon see that the relation IsGrand-
parentOf is the composition of IsParentOf with itself.

Definition 4. Let R and S be binary relations on the set X. The composition of R and S,
denoted R o S, is defined as follows:

RoS = {(x,y) € X?: forsome z € X, (x,z) € S and (z,y) € R}

The reader may consider the notation R o S to be backward and think that S o R would
be more natural. The motivation for writing R o § will become obvious in the next chapter,
however, when we discuss the composition of functions. Note that the composition of S and
R, denoted as S o R, generally creates a different set of ordered pairs than the composition
Ro Sof Rand S.

Example 9. The family tree diagram shown in Figure 3.2 can be used to define Is-
ParentOf. Since (Mary, Elaine) € IsParentOf and (Elaine, George) € IsParentOf, (Mary,
George) € IsParentOf o IsParentOf. Working out all the possibilities for this composition
gives

IsParentOf o IsParentOf = {(Mary, George), (John, George),
(Mary, Elizabeth), (John, Elizabeth})} []

Clearly, (a, b) € IsParentOf o IsParentOf means that a is the grandparent of b. As
another example of composition, convince yourself that

IsCousinOf = IsParentOf o IsSiblingOf o IsChildOf

You should be able to show that George and Elizabeth in Figure 3.2 are cousins.
The composition of a relation R on a set X with the equality relation on X should
always gives the relation R. We prove this in Theorem 3.

Theorem 3. Let X be any set and R be any binary relation on X. Then,
R=IldxyoR=Roldy

Proof. The proofs of these equalities are similar, so only the proof that R = Idy o R will
be given. To do this proof, we show that /dxoR € R and R C Idx o R. The proof follows
Template 1.5 (Set Equality).

First, suppose that (x, y) € Idx o R. Then, by the definition of composition, there is
az € X with (x,z) € R and (z, y) € Idx. Since (z, y) € Idx, we have 7 = y. Therefore,
(x,2) = (x,y). Hence, (x, y) € R.

Second, suppose that (x, y) € R. Now, (y,y) € Idx, so (x,y) € Idx o R. |

166

CHAPTER 3 Relations

Exercises

1. For the people in the family tree (see Figure 3.2), build tables for the following rela-

tions:

(a) IsAncestorOf
(b) IsDescendentOf
(c) IsSiblingOf

(d) IsCousinOf

. Let M ={1,2,...,10}. Define a relation R on elements x, y € M such that (x,y) €

R if and only if there is a positive integer k such that x = ky. Find the elements of R.

. Find the elements in each of the following relations defined on R:

(@ (x,y) e Rifandonlyifx+1 <y
(b) (x,y) e Rifandonlyify <Qor2x <3
©) (x,v,2) € Rifandonlyifx2+y=z

. List the 16 elements of the relation Between as defined in Example 4.
. The table below gives the names of airlines and several cities that each flies to from

Chicago. The table also gives the number of miles for each flight. List all the triples
(X, Y, Z) of the ternary relation defined by those triples for which airline X flies ¥
miles to city Z.

TWA Pan Am Piedmont

Topeka 603 || Bombay 7809 || Peoria 170

Kansas City 510 || Seattle 2052 || Albany 816

Phoenix 1742 || Anaheim 2025 || Atlanta 717
. Let U ={0, 1}.

(a) Let SubsetOf = {(X,Y):X,Y C U and X C Y}. List all ordered pairs in Sub-
setOf.

(b) Let StrictSubsetOf = {(X,Y) : X, Y C U and X C Y}. List all its ordered pairs in
StrictSubsetOf.

© {(X,Y,Z2):X,Y,Z< Uand XNY = Z} is a ternary relation. List all ordered
triples in this relation.

The relations SubsetOf and StrictSubsetOf can be defined on any set of sets. We will

use these relations for other universal sets later in the text.

. Using the family tree shown in Figure 3.2, list the elements in each of the following

relations, and give these relations meaningful names.

(a) IsMarriedTo ~*

(b) IsMarriedTo o IsMarriedTo

(¢) IsParentOf o IsParentOf ~!

) = Family where Family denotes the set of people appearing in the family tree
(e) IsMarriedTo N IsMarriedTo ~!

(f) IsParentOf N IsParentOf !

. Describe the relations resulting from the inverse or composition operations. Describe

the resulting relations in words.

11.

12.

13.

14.

Special Types of Relations 167

(@) Leyo Ley

(b) Ley'

(¢) Ltgo Lty

(d) Challenge: Lty o Lty

(e) Challenge: Lty o Gty

(f) Let Ney = {(x,y) : x,y € N and x # y}. What is Negll?

Prove Theorem 2(c).

. (a) Prove for any set X that Idy = Id;(l.

(b) Find two binary relations R and S on N where R # Idy and S # Idy such that
R=R'and§=5"1L

(c) Suppose that R is a binary relation on a set X and, for every binary relation S on
X,Ro S =S. Provethat R = Idx.

Let A={1,2,3,...,10}. Let R ={(1,2), (1, 4),(1, 6), (1, 8), (1, 10), (3, 5), 3, 7),

4, 6), (6, 8), (7, 10)} be a relation on A. Let S = {(2, 4), (3, 6), (5, 7), (7,9), (8, 10),

(8,9). (8,8),(9,9), (3, 8), (4, 9)} be a second relation on A. Find:

(@) RoS

(b) SoR

Show that composition of relations is an associative operation. That is, show that if

R, S, and T are binary relations on a set X, then

Ro(SoT)=(RoS)oT

Let R, S, and T be binary relations on a set X.

(a) Prove that R C S ifand only if R~! € §~1.

(b) Provethatif R C S,then RoT CSoTandToRCToS.

© f RoT CSoT and To R C T oS for some relation T, does it follow that
RC §?

Let X = {0, 1}. Let B = P(X x X) be the set of all binary relations on X.

(a) List all the elements of B.
(b) Since elements of B are themselves relations, it makes sense to ask whether two
of those relations are inverses of each other. Let

IsInverseOf = {(R,S): R€ B and S€ B and R =S}

List all elements of IsInverseOf.
(c) Since IsInverseOf is a binary relation, it has an inverse. What is IsInverseOf —19
(d) What is IslnverseOf o IsInverseOf?

Special Types of Relations

Some very common binary relations have important special properties. Three of these spe-
cial properties, the reflexive, symmetric, and transitive properties, occur in relations such
as Id, Lt, Le, and both the SubserOf (C) and StrictSubsetOf (C) relations. Not all of these
relations have all three of these properties, however. The properties that identify and dif-
ferentiate these relations are introduced in this section.

CHAPTER 3 Relations

3.4.1 Reflexive and Irreflexive Relations

Clearly, 3 < 3 is true, but 3 < 3 is not true. This distinction between < and < is captured
in the next definition.

Definition 1. Let R be a binary relation on a set X. R is reflexive if (x, x) € R for each
x e X.

It is obvious from the definition of reflexive that IdR, the equality relation on the real
numbers R, and Leg, the less than or equal relation on R, are reflexive. It is also obvious
that Lz, the less than relation on R, is not reflexive since there is no element x € R for
which (x, x) € Ltg. That is, x < x is never true since no number can be strictly less than
itself.

The relation IsSameGeneration defined in Section 3.1 is reflexive since each person
is in the same generation as themselves.

Theorem 1. A binary relation R on a set X is reflexive if and only if Idx € R.

A picture of Idg is shown in Figure 3.3. The points (x, y) of the plane that represent
elements of Idg are darkened. The picture is just the familiar graph of the line x = y.

/10,0y

In general, for a binary relation R defined on the real numbers R, one can draw a
picture of the relation by darkening the point (x, y) in the plane if the ordered pair of real
numbers (x, y) is in R. Such a picture is called the graph of the relation R. Sometimes,
relations have graphs that consist of a single line, but in general, graphs of relations consist
of entire regions of points.

The usual convention in graphing Lep is to draw the diagonal line x = y as a darker,
heavier line to show that the line is included in the graph. One can see that Lep is reflexive
from its graph since the graph of the line x = y is a subset of the graph of Leg (see
Figure 3.4). Of course, making deductions from a graph is risky for essentially the same
reason that making deductions from a Venn diagram is risky.

Figure 3.3 Graph of idp.

©,0

Figure 34 Graph of Lep.

Special Types of Relations 169

The difference between < and < that we have discussed is formalized in Definition 2.

Definition 2. Let R be a binary relation on a set X. R is irreflexive if (x, x) & R for all
x e X.

Clearly, Ltg is an irreflexive relation since x < x is never true for any x € R. Consid-
ering relations as sets, we can characterize irreflexive relations in terms of their intersection
with an identity relation.

Theorem 2. A binary relation R on a set X is irreflexive if and only R N Idy = @.

Example 1. The usual convention in graphing Ltg (see Figure 3.5) is to draw the diag-
onal line x = y dotted to show that it is not included in the graph. Since no point on this
line is in LR, it can be concluded that Lty is irreflexive.

Figure35 L. |

The relation {(1, 1), (1, 2)} on X = {1, 2} is not reflexive, because (2, 2) ¢ R and it is
not irreflexive because (1, 1) € R.

3.42 Symmetric and Antisymmetric Relations

A principal distinction between the equality relation = on the one hand and the relations
< and < on the other is captured by the notion of symmetry.

Definition 3. Let R be a binary relation on a set X. R is symmetric if (y, x) € R when-
ever (x,y) € R.

Clearly, the relation = is a symmetric relation. Neither < nor <, however, is symmet-
ric. For example, notice it is true that 3 < 5 but not that 5 < 3, and it is true that 3 < 5 but
not that 5 < 3. Therefore, neither < nor < is a symmetric relation.

Example 2. Refer to Section 3.1 for the definitions of the relations IsMarriedTo, IsPar-
entOf, SameSuit, HigherValue, and IsSameGeneration.

(a) The relation IsMarriedTo is symmetric, and IsParentOf is not, (Mary, Elaine) € IsPar-
entOf whereas (Elaine, Mary) & IsParentOf.

(b) The relation SameSuit is symmetric, whereas HigherValue is not. (Jack of Hearts, 10
of Hearts) € HigherValue, whereas (10 of Hearts, Jack of Hearts) & HigherValue.

(c) IsSameGeneration is symmetric.

170

CHAPTER 3 Relations

One can see that a binary relation on R is symmetric if and only if its graph is sym-
metric about the diagonal line x = y. Figure 3.6 shows a symmetric relation on R.

Figure 3.6 Symmetric relation on R.

We really begin to understand the properties of relations when we understand how
different concepts express the same idea. Theorem 3 relates inverses of relations to the
property of a relation being symmetric.

Theorem 3. A relation R on a set X is symmetric if and only if R = R~!.

Proof. Let R be a symmetric relation. Then, (x, y) € R if and only if (y, x) € R, which
1s the case if and only if (x, y) € RL |

The relation shown in Figure 3.7 is not symmetric: (0, —7) is an element of the rela-
tion, whereas (—7, 0) is not.

(_77 0)

Figure 3.7 Nonsymmetric relation on R.

Special Types of Relations m

Definition 4. Let R be a binary relation on a set X. R is antisymmetric if (y, x) ¢ R
whenever (x, y) € Rand x # y.

The relation defined on {1, 2, 3} as R = {(1, 2), (2, 1), (3, 2)} is neither symmetric,
because (3, 2) € R but (2, 3) € R, nor antisymmetric, because both (1, 2) and (2, 1) are
in R.

The relations =, <, and < are all antisymmetric. A logically equivalent statement of
the definition of antisymmetric is the following: If (x, y) and (y, x) are both in R, then
y = x. To see this in terms of the logical notation introduced in Chapter 2, let p; be the
statement “(x, y) € R,” p, the statement “(y, x) € R,” and p3 the statement “x = y.” The
definition is of the form (p1 A —p3) — —p2, which is logically equivalent to the formula
(p1 A p2) = p3.

Example 3. See Section 3.1 for the examples and the definitions of the relations IsPar-
entOf and HigherValue.

(a) In the family tree example, the relation IsParentOf is antisymmetric. For example,
(Mary, Elaine) € IsParentOf, but (Elaine, Mary) ¢ IsParentOf.

(b) In the card example, HigherValue is antisymmetric. We see this as (Jack of Hearts, 10
of Hearts) € HigherValue, but (10 of Hearts, Jack of Hearts) ¢ HigherValue.

Suppose that a binary relation R is written as a table T, as in Table 3.7(a), which
repeats the information contained in Table 3.4. Now, suppose that a new table, 7', is formed
by interchanging the two columns of T. The resulting Table 3.7(b) corresponds to the
relation R™!. Theorem 3 says that R is symmetric if and only if T and 7’ have the same
rows. The order of the rows may be different, but exactly the same rows are present. Since
any n-ary relation is a set of ordered n-tuples for some n € N, the order in which the
n-tuples are written in the table does not matter.

Table 3.7 IsMarriedTo (a) and IsMarriedTo "
{b) Relations

T T’

John Mary Mary | John
Mary | John John Mary
Peter Elaine Elaine | Peter
Elaine | Peter Peter Elaine
Maude | Harold Harold | Maude
Harold | Maude Maude | Harold

(a) (b)

An examination of the two tables shows that T = T".
Example 4.

(a) For any set X, equality is a symmetric, antisymmetric, and reflexive relation
on X.

172

CHAPTER 3 Relations

(b) For any set X, the empty relation @ is a symmetric, antisymmetric, and irreflexive
relation on X. If X # 0, then the empty relation @ is not reflexive on X. If X = @, then
the empty relation @ is (vacuously) reflexive on X.

(c) Let R = {(x,y) € R?: x < y?}. R is not reflexive, irreflexive, symmetric, or antisym-
metric. R is not reflexive since (1, 1) ¢ R. R is not irreflexive since (2,2) € R. R is
not symmetric since (1, 2) € Rbut (2, 1) € R. R is not antisymmetric since (2, 3) € R
and (3,2) € R. []

Example 5. Define the relation IsAncestorOf so that x IsAncestorOf y means that x is
a parent of y, or that x is the parent of a parent of y, or that x is the parent of a parent
of a parent of y, and so on. The relation IsAncestorOf is an antisymmetric and irreflexive
relation on the set of all people.

Example 6.

(a) The relations < and < are antisymmetric relations on R. The relation < is reflexive.
The relation < is irreflexive.

(b) The relations C and C are binary relations on the subsets of a set U. Both C and C are
antisymmetric. The relation C is reflexive, and C is irreflexive.

Example 7. Let ¢ = 0.0005, and let R, be the relation
(,y) eR:x—yl<e)

R, could be interpreted as the relation approximately equal. Prove that R, is reflexive and
symmetric.

Solution. Reflexive: For all x € X, |x —x| =0 < €. Symmetric: For all x,y € R,
[x—y|l=|y—x]|.So,if [x —y|<e, then|y—x|=|x—Yy]| <e€.]

3.4.3 Transitive Relations

To introduce the next property of relations, suppose that Sue is a parent of Joe and that Tom
is a parent of Sue. We can conclude that Tom is an ancestor of Joe, but we cannot conclude
that Tom is a parent of Joe. The next property, called transitivity, is a formal way of think-
ing about how the two relations, IsParentOf and IsAncestorOf, are different. The relation
IsParentOf does not satisfy this next property whereas the relation IsAncestorOf does.

Definition 5. Let R be a binary relation on a set X. R is transitive if (x, z) € R whenever
(x,y) € Rand (y,z2) € R.

Example 8. Consider the relations in Examples 4 through 7.

(a) Equality is transitive.

(b) The relation @ is (vacuously) transitive.

(c) Over the set R, the relations < and < are transitive.

(d) The relation IsAncestorOfis transitive.

(e) The relations C and C are transitive.

(f) R¢ is not transitive.

(g) {(x,y) € R?:x < y2} is not transitive. To see this, just note that (9,5) € R and
(5,3) € R, but that (9, 3) € R. []

Special Types of Relations 173

Theorem 4. A binary relation R is transitive if and only if Ro R € R.

Proof. This just restates the definition. If there is a y such that (x, y) € Rand (v, z) € R,
then (x, z) € R. []

In Table 3.8, we summarize the propetties, their characterizations, and how we prove
a property holds for a relation R defined on a set X.

Table 3.8 Properties of Relations

Property Characterization Method of Proof
Reflexive Idy CR Letx € X. Prove (x, x) € R.
Antireflexive ldxNR=19 Let x € X. Prove (x,x) € R.
Symmetric R=R"! Let (x, y) € R. Prove (y, x) € R.
Antisymmetric | RN R™! € Idy | Suppose that (x,y) € R and (y, x) € R.
Prove x = y.
Transitive RoRCR Let (x, ¥), (v, 2) € R. Prove (x,z) € R.

344 Reflexive, Symmetric, and Transitive Closures

A question that arises for relations that do not possess a particular property, such as being
reflexive, symmetric, or transitive, is whether more elements can be added to a relation
R to produce a relation R’ that does have some desired property. One obvious way is to
take R’ to be the universal relation (check this). What we really want to know is how to
find a smallest relation R’ that contains R and has some desired property, such as trans-
itivity.

For example, how is the relation Geg (>) related to the relation Gt (>)? Clearly,
Ger = Gt U Idg. The relation Geg turns out to be the smallest reflexive relation on R
containing Gfgr. Geg is called the reflexive closure of Gtg. (The term reflexive closure
will be defined formally below.) More generally, Gey is the reflexive closure of Gty over
any set X such that X C R.

Suppose people are waiting in a ticket line. We say that person x is the person In-
FrontOf person y, expressed as x InFrontOf y, if x is the person standing immediately in
front of person y. How is the relation IsAdjacentTo related to the relation InFrontOf? A
person x is adjacent to a person y if x is the person in front of y or y is the person after x.
Said another way, x IsAdjacentTo y means that x is just in front of or just behind y. It can
be shown that IsAdjacentTo is the smallest symmetric relation containing InFrontOf. The
relation IsAdjacentTo is called the symmetric closure of InFrontOf.

Finally, in the case of transitivity, we ask how the relation IsAncestorOf is related
to the relation IsParentOf. A person x is the ancestor of a person y if x is a parent of
v, or a parent of a parent of y, or a parent of a parent of a parent of y, and so on. The
relation IsAncestorOf is the smallest transitive relation containing IsParentOf. The relation
IsAncestorOf is called the transitive closure of IsParentOf.

To characterize the reflexive, symmetric, and transitive closures of a relation, we first
define a new operation on relations.

174

CHAPTER 3 Relations

Definition 6. Let R be a binary relation on a set X. For n € N, the nth power of R,
denoted R", is defined as follows:

(@ R®={(x,x):x e X}=Idyx.
(b) Rn+l — Ro R".

Let R* = U2 R’ and R* = U2 R'.

Example 9. Let A = {a, b, ¢, d} and let R be the relation on A consisting of the pairs
(a,b), (b,a), (b,c), and (¢, d). Find R* and R*.

Solution. R® = {(a, a), (b, b), (¢, ¢), (d, d)}
R? ={(a,a), (a,c), (b, b), (b, d)}
R® ={(a,b), (b,a), (b,c), (a,d)}
R* ={(a,a), (a,0), (b, b), (b,d)}

Observe that RZ = R* and, consequently, R =R} In general, R+l — R3 and R?" =
R? for n > 1. Therefore,

R* = {(a,b), (b,a), (b,c), (c,d), (a,a), (a,c), (b,b), (b,d), (a,d)}
R* ={(c,0),d,d), (a,b), (b,a), (b,c), (c,d), (a,a),(a,c), (b, b), (b,d), (a,d)} [|

Example 10. Let R be the relation IsChildOf.

(a) The expression xR%2y means that x is a child of a child of y, so R? is the same as
IsGrandchildOf .

(b) The expression xR3y means that x is a child of a grandchild of y or, said another way,
that x is a great-grandchild of y. Hence, the relation R> could just as well be called
IsGreatGrandchildOf.

(c) R* could just as well be called IsGreatGreatGrandchildOf.

(d) Relation R is the same as IsAncestorOf.

Example 11. Let S be the relation on Z that is defined by aSb if and only if b = a + 1.

(a) Itis true that aS°b if and only if b = a.

(b) aS?b if and only if, for some integer c, it is true that c = a + 1 and b = ¢ + 1—that
is, if and only if b = a + 2.

(¢) a$3bifand only if b = a + 3.

(d) aS"b if and only if b = a + n. (Formally, this is proved by induction on n.)

(e) aSTbif and only ifa < b. For if aS*bh, then aS"b for some positive integer n.

(f) aS*bif and only if a < b.

Solution. (f) («<) Bypart(d),b=a+n,soa <b.
(=) Suppose, conversely, that a < b. Since a, b € Z, their difference b — a € Z. Since
a < b, it follows thatb —a > 0. Letn = b — a. By part (d), aS"b, so aSth. [|

In Theorem 5 we give a characterization of the smallest reflexive, symmetric, and
transitive relations containing a given relation.

Special Types of Relations 175

Theorem 5. Let R be a binary relation on a set X. Then:

(a) R U Idx is the smallest reflexive relation containing R.

(b) R U R~! is the smallest symmetric relation containing R.

(c) R™ is the smallest transitive relation containing R.

(d) R* is the smallest reflexive and transitive relation containing R.

Proof. (a) By Theorem 1, a relation S on X is reflexive if and only if Idy € S. So, S is
reflexive and contains R if and only if R U Idy C §. The smallest such S is R U Idy itself.
(b) We must prove (i) that R U R~ is symmetric and (ii) that if S is a symmetric relation
onXand R C S, then RU R™! CS.

(i) It is enough to show that (R U R‘l)_1 = R U R~ since the result then follows
from Theorem 3 in Section 3.4.2.
(RUR™H™! = p~1u (R H!
=R 'UR
=RUR!
(ii) Suppose S is a symmetric relation on X and R € S. We must show that R=! € §.

By Theorem 2 (c) in Section 3.2.1, R1cs7! and by Theorem 3 in Section
342,85 1=5.S0, Rl cs.

(c) and (d) These proofs are left as Exercises for the reader. |

Definition 7. Let R be any binary relation on a set X. R U Idy is called the reflexive
closure of R. RU R™! is called the symmetric closure of R. R is called the transitive
closure of R. R* is called the reflexive and transitive closure of R.

Example 12. Let X = {a, b, c}. Define the relation R on X as {(a, b), (b, ¢)}. Find the
reflexive, symmetric, and transitive closure of R. Also, find the reflexive and transitive
closure of R.

Solution. 'We must first find the following relations:

(a) ldx = {(a,a), (b, b), (c,)}

() R~ ={(b,a), (c, b)}

(¢) R®={(a, a), (b, b), (c,c)}, R ={(a, b), (b,c)}, R>={(a,c)},and R" =@ forn > 3.
(d) RT ={(a, b), (b,¢), (a,)} and R* = {(a, a), (b, b), (c,¢), (a, b), (b,), (a,c)}

So, the reflexive closure of R is
RUIdx = {(a, b), (b, c), (a,a), (b, D), (c, c)}
The symmetric closure of R is
RUR™ ={(@,b), (b c), (b,a), (c,b)}
The transitive closure of R is
R* ={(@.b), (b.0). (@ 0}
Finally, the reflexive and transitive closure of R is

R* ={(a,a), (b, b), (c,¢), (a,b), (b,¢), (a,c)}]

176

CHAPTER 3 Relations

Example 13. Consider the relation Supervises in some business. The relation is usually
irreflexive, that is, people do not supervise themselves. It is also antisymmetric. Finally, it is
generally not transitive. If x supervises y and y supervises z, normally x does not (directly)
supervise z. The reflexive closure of Supervises is SupervisesOrEquals. The symmetric
closure is SupervisesOrlsSupervisedBy, which is clearly an important relation in business.

Example 14. Let U be any nonempty set. Then, C is a relation on the subsets of U. The
relation C is transitive, but it is not reflexive and is not symmetric. The reflexive closure of
C is €. The symmetric closure $ of this relation has no commonly used name, but for two
subsets A and B of U, (A, B) € Sifandonlyif A C Bor B C A.

As an example of the relation described in Example 14, let U = {0, 1}. The reflexive
and symmetric closure of C on U consists of the 14 ordered pairs shown in Table 3.9.

Table 3.9 Reflexive and Symmetric Closure of c for U = {0, 1}

@, {0,1H || (0,1}, 2) @, 2)
@, {0H (0},) {0}, {Oh
@, {1h d1}, 2) {1}, {1h
0, {0,1p | (o1}, {Oh (0,1}, {0,1})
d1}, {0, 1p j do.1}, {ih

3.45 Application: Transitive Closures in Medicine and Engineering

Transitive and reflexive closures are especially important in computer science. For exam-
ple, suppose computers are connected to each other in a network, with each computer
connected directly to a small number of other computers. Information can be passed di-
rectly from one computer to another over a connection between them. The transitive and
reflexive closure of IsConnectedTo is CanAccess. This relation gives the limit of how far
information from one machine may be passed along to others. The examples that follow
show how the transitive closure idea leads to better understanding in fields as diverse as
medicine and chip testing.

Artificial Intelligence

Many artificial intelligence applications can be phrased in terms of some (simulated) per-
son making inferences based on some initial data. One kind of application is the expert
system, in which designers try to encode the knowledge that an expert would use in ap-
proaching a problem. Suppose, for example, an expert system is used to suggest to a physi-
cian certain tests that should be run. The system might say, for example, that if the patient’s
weight is more than 25 percent over the recommended level to check for high cholesterol.
(Drs. X, Y, and Z all told the designers of the expert system that is what they do, so it
must be a reasonable rule.) And if the patient eats a high-fat diet, there should be a check
for cholesterol. (Drs. X, W, and Q all said they do that.) And if there is a check of the
cholesterol level, there should also be a check for high triglycerides (suggested by several
other doctors.) If there is a test for triglycerides, there should also be a test for something
else, and so on. This series of “rules” is stored in the program called the expert system.
The doctor enters that the patient has a body weight 30 percent over his recommended
weight and this fact triggers a series of inferences: check cholesterol level; check triglyc-

Special Types of Relations 177

erides level, and so on. This is a transitive closure operation: including one test triggered
including another, which triggered including another, ..., until nothing else was triggered.

Often, the rules are rather more complicated, such as “if the patient’s weight is 15
percent over the recommended weight and the patient is diabetic, then do a cholesterol
test.” This is a more complicated sort of closure operation, but the idea is similar.

Testing Circuits
Here, we picture a combinational electric circuit:

—»_hj Arb_n/N —_I—\T

l: A 4
[R
=

O™
[v
~
.
S
Q

[STie)
VJ
~
v
-

A 2 4
S
Q
v v
~
~

—»@K ;DQ

R > Z
Ff >)R v 3_'
_ lL r

Current flows from left to right, so there are six input lines, A through F, and four
output lines, W through Z. There are 20 gates, g through z. For convenience, we picture
them all as and-gates, but the intention is that they might implement some AND gates,
some OR gates, and some NOT gates. Define two relations between lines and gates, one
“saying” that a line is an input to a gate and the other that a line is an output of a gate.
The large dots indicate that a line is split, being an input for several gates, such as A is

Input Output
A g g G
A h h H
B g i I
B i JjJ
C h k K
C i I L
D j m M
D k n N

o O

178

CHAPTER 3 Relations

input for both gates g and A. Otherwise, when two lines cross, such as the output line of
h and the output line of i, it just means that when the circuit is fabricated, these two lines
will follow this path but will not touch.

The circuit manufacturer would want to check that each gate is functioning correctly.
For example, if all the lines carry 0’s and 1’s (designers use 1 and O instead of TRUE and
FALSE), gate o might be “stuck at 07, that is, it might always output a 0, no matter what its
input is. The manufacturer would then like to have a “test vector” for that: a set of inputs
to distinguish whether gate o is stuck at 0. The first part of choosing such a test vector is
to determine which output lines could be affected if gate o is malfunctioning. In this case,
lines W, X, and Y could be affected. Line Z cannot be, however, since no output from gate
o flows, directly or indirectly, into gate z.

The relation of one line directly influencing another is Output o Input. The relation
of directly or indirectly influencing another line—through any number of intermediate
lines—is thus (Output o Input)*. The question above is to find all output lines where
(0, some output line) € (Output o Input)* o Output.

Of course, now that designers have narrowed down which lines might be affected by
a malfunction at gate o, they must go on to determine how to produce a single input that
will identify the stuck-at-0 fault. However, we cannot do that without knowing what the
individual gates are.

Exercises

1. Which of the following relations on the set of all people are reflexive? Symmetric?
Antisymmetric? Transitive? Prove your assertions.

(a) R(x,y) if y makes more money than x.

(b) R(x,y)if x and y are about the same height.
(¢) R(x,y)if x and y have an ancestor in common.
(d) R(x,y)if x and y are the same sex.

(e) R(x,y)if x and y both collect stamps.

() R(x,y)if x and y like some of the same music.

2. For each of the relations defined in Exercise 1, write out the condition that defines the
inverse relation.

3. Which of the following relations on the set of all people are reflexive? Symmetric?
Antisymmetric? Transitive? Explain why your assertions are true.

(a) R(x,y) if x and y either both like German food or both dislike German food.

(b) R(x, y)if (i) x and y either both like Italian food or both dislike it, or (ii) x and y
either both like Chinese food or both dislike it.

(c) R(x,y)if y is at least two feet taller than x.

4. For each of the relations defined in Exercise 3, write out the condition that defines the
inverse relation.

5. Which of the following relations on the set of people indicated are reflexive? Irreflex-
ive? Symmetric? Antisymmetric? Transitive?
(a) IsSisterOf on the set of all females
(b) IsBrotherOfOrEquals on the set of all males
(c) IsSiblingOf on the set of all people

10.

11.

Exercises 179

(d) IsSiblingOfOrEquals on the set of all people
(e) IsCousinOfOrEquals on the set of all people

Prove your assertions.

Since relations are sets, it is possible to define union, intersection, relative complement,
and absolute complement on pairs of relations. A natural question is which properties
of the original relations still hold for the resulting new relation. Fill in the following
table with Y /N, representing YES and NO, respectively. If the entry is N, find an
example that shows the property is not preserved under the operation. For instance,
enter a Y in the first row, second column, if the intersection of two reflexive relations
is still reflexive; otherwise, enter an N.

Relative Absolute
Union | Intersection | Complement | Complement
Reflexive
Irreflexive
Symmetric
Antisymmetric
Transitive

Let A = {a, b, ¢, d}. Define the relations R; and R> on A as
R = {(a, a), (a, D), (b, d)}
and
Ry ={(a,d), (b,), (b, d), (c, D)}
Find
@ RioR
(b) Roo Ry

(c) R?
d) R;

. Find a set A with n elements and a relation R on A such that R!, R%, ..., R" are all

distinct.

. In the example involving the family tree (see Figure 3.2);

(a) What is the transitive and reflexive closure of IsParentOf?
(b) What is the transitive and reflexive closure of IsMarriedTo?

Let X = {a, b, c,d, e}. Let Ry be the relation on X with elements {(a, b), (a, ¢), (4,
¢)}. Let Ry be the relation on X with elements {(a, b), (b, ¢), (¢, d), (d, e), (e, a)}. For
each of these relations, find the following:

(a) The smallest relation on X that contains R and is reflexive

(b) The smallest relation on X that contains R and is symmetric

(c) The smallest relation on X that contains R and is transitive

(d) The smallest relation on X that contains R and is reflexive and transitive

Let X = {1, 2, 3, 4}, and define a relation R on X as

180

CHAPTER 3 Relations

12.

13.

14.

15.

16.

17.

18.
19.

20.

R=1{(1,2),2,3), (3,4}

(a) Find the reflexive closure of R.

(b) Find the symmetric closure of R.

(¢) Find the transitive closure of R.

(d) Find the reflexive and transitive closure of R.

Let X ={1,2, 3,4, 5, 6}, and define a relation R on X as

R=1{(1,2),2,D,(23),3,4),45),5,6)}

(a) Find the reflexive closure of R.

(b) Find the symmetric closure of R.

(¢) Find the transitive closure of R.

(d) Find the reflexive and transitive closure of R.

Let A = {1, 2, 3, 4}. Find the transitive closure of the relation R defined on A as

R=1{(1,2),(2,1),2,3),3,4)}

Let R be the relation on {a, b, ¢, d, e, f; g} defined as

R ={(a,b),(b,c), (c,a),d,e), e, f), (f &)}

Find the smallest integers m and n such that 0 < m < n and R™ = R". Identify the
transitive closure of R as well as the transitive, reflexive, and symmetric closures of R.
Let X = {4, 5, 6,7, 8}, and define the relation R on X as {(4, 5), (5, 6), (6,7), (7, 8),
(8, 4)}. Find the smallest integers m and n such that R = R" where 0 < m < n.
Find the reflexive, symmetric, and transitive closures of the following relations:

(a) =onN

(b) <onN

(c) <onN

(d) R on N where R(x, y)ifandonlyify = x + 1

(¢) RonR where R(x, y)ifandonlyify = x + 1

(f) R on R where R(x, y) if and only if | x — y | < 0.0005

Show that the transitive closure of a relation R on a set X is the intersection of all
transitive binary relations R’ on X where R € R’.

Is there a reasonable notion of antisymmetric closure? Why, or why not?

Prove Theorem 5(c) as follows:

(a) Prove by induction that if R is a binary relation on a set X, then R™ o R" = R"*"
where m, n € N.

(b) Prove that R* is transitive.

(c¢) Prove by induction that if R € § and § is a transitive binary relation, then R" C §.
Conclude that RT C §.

Prove Theorem 5(d).

Equivalence Relations 13

Equivalence Relations

Equivalence relations generalize the familiar relation of equality (=). More specifically,
equivalence relations identify elements that are the same in some respect. For instance,
university students are classified by major, with two students being “related” if they have
the same major. Two students are also “related” if they are in the same class, such as the
sophomore class.

Definition 1. Let R be a binary relation on a set X. R is an equivalence relation if R is
reflexive, symmetric, and transitive.

Example 1.

(a) For any set X, the equality relation (=) is an equivalence relation on X.
(b) The relation IsSameGeneration (see Section 3.1) as defined using Figure 3.2 is an
equivalence relation.

The IsSameGeneration relation as based on Figure 3.2 is not a particularly interest-
ing equivalence relation because there are so few elements. The reader is encouraged to
construct his or her own family tree for three or four generations and see how the relation
conveys information conveniently.

Example 2. The relation SameSuir (see Section 3.1) shown in Table 3.3 is an equivalence
relation.

Solution. 1t is obvious that SameSuit is reflexive and symmetric, but is SameSuit transi-
tive? Let cards x and y be in the same suit, and let cards y and z be in the same suit. Since
y is in the same suit as z and in the same suit as x, it follows that x and z are in the same
suit. Therefore, SameSuit is transitive. u

Recall that when we divide a natural number # by a positive number p, we obtain an
integer quotient, which we will call ¢, and a remainder, which we will call r. That is, we
get an equation

n=pq+r

where ¢, r € Nand 0 <r < p — 1. For example, 7+ 3 = 2 -3+ 1, so the quotient is 2,
the remainderis 1,and 7 =3-2 + 1.
If the remainder is zero, then n = p - ¢, and we say that » is divisible by p.

Definition 2. Let p be a positive integer, and let x, y € N. We say that x is congruent to
y modulo p, and write x = y (mod p), if (x — y) is divisible by p; thatis,(x —y) =m - p
for some integer m.

With this terminology, we will prove that (mod p) is an equivalence relation for p > 1.

Example 3. Let p be any natural number greater than zero. Then, = (mod p) 1s an equiv-
alence relation on N.

Solution. Check that all the properties hold:

Reflexive: Foranyn € N,(n—n) =0=p - 0, so (n — n) is divisible by p. Therefore,
n = n(mod p).

182

CHAPTER 3 Relations

Symmetric; If n = m(mod p), then (n —m) = pk for some k € Z. So, (m —n) =

p(—k), giving m = n(mod p).

Transitive: Suppose n = m(mod p) and m = k(mod p). Show that n = k(mod p). The

hypothesis implies that (n —m) = ip and (m — k) = jp for some i, j € Z. Then, however,
n—k)=(m-m+m—-ky=ip+jp==0+jp

which gives n = k(mod p).
Since = (mod p) is reflexive, symmetric, and transitive, it is an equivalence relation.
[]

We will study this equivalence relation more carefully later. For now, the reader
might determine the elements of this relation when p =8 and the universal set is
{0,1,2,...,24,25}.

Example 4. Let U beanyset. For X, Y CU,set X ~Yif XY =X -Y)U (Y —
X) is finite. Then, ~ is an equivalence relation on the subsets of U. The relation ~ is
uninteresting if U is finite.

Solution.

Reflexive: X & X = @, which is finite, so X ~ X.

Symmetric: If X ~ Y, then X &Y is finite. Recall that
XpY=X-)Uu-X)=-X)UX-Y)=Y®X

soY ~ X.

Transitive: Suppose X ~ Y and Y ~ Z, and show X ~ Z. Itis giventhat X & Y is finite
and that Y & Z is finite. What must be shown is that X & Z is finite. Figure 3.8 shows how
XpY)~(Y®dZ)and (Y B Z) — (X DY) contribute to (X & Z).

XeY)p(YDPZL)=(XD(XY DY) D Z (&isassociative)
=XohaZz
=X®Z

Xez Xen-xye?z YeH-Xey

Figure3.8 How X @ 7 is formed.

Therefore, X @ Z is also finite, implying that X ~ Z. Since ~ is reflexive, transitive,
and symmetric, the relation ~ is an equivalence relation. n

Some relations on R that were defined earlier are not equivalence relations.

Equivalence Relations 183

Example 5.

(@) On R, define x ~ y if |[x — y| < 0.01. Then, ~ is reflexive and symmetric, but it is
not transitive.
(b) On R, the relation Gep is reflexive and transitive, but it is not symmetric.

Solution.
(a) Letx =0.0, y =0.0075, and z = 0.015 Then, x ~ y, because
lx — y] =0.0075 < 0.01
and y ~ z, because
[y —z| = 0.0075 < 0.01
However, x + z, since
lx —z] =0.015 > 0.01

(b) It is clear that x > x for all x € R and that for all x,y,z e R,if x > y and y > z,
then x > z, making the relation transitive. Since 5 > 3 but 3 # 5, the relation is not
symmetric. Therefore, Gep is reflexive and transitive, but it is not symmetric. n

3.6.1 Partitions

The relation SameSuit (see Table 3.3) is an equivalence relation on the set

SpecialDeck = {10 of Hearts, Jack of Hearts, Queen of Hearts, 10 of Clubs
Jack of Clubs, King of Clubs}

Essentially the same information can be stored in the three sets:

Heart = {10 of Hearts, Jack of Hearts, Queen of Hearts}
Cilub = {10 of Clubs, Jack of Clubs, King of Clubs}
Suits = {Heart, Club}

Suits consists of two sets. Each element of SpecialDeck is in exactly one of those sets. The
cards in the first set are exactly the cards in the same suit as the 10 of Hearts. The cards in
the second set are exactly the cards in the same suit as 10 of Clubs.

Definition 3. Let X be a nonempty set. A partition of X is a set ¥ of nonempty subsets
of X such that every element of X is in exactly one element in Y.

A partition of SpecialDeck is the set Suits. The nonempty sets in Suits are Heart and
Club. We can restate the definition as Theorem 1.

Theorem 1. Let X be a set, and let Y be a set of subsets of X. Then, Y is a partition of X
if and only if:

(a) Each element of Y is a nonempty subset of X,
(b) For any two sets u, v € Y, u N v = @ unless u = v, and
(¢) The union of all the sets in Y is X.

183

CHAPTER 3 Relations

Definition 4. Let ~ be an equivalence relation on a set X. For any x € X, let
[x]={yeX: x~y}
[x]is called the equivalence class of x.
In the example with the set SpecialDeck and equivalence relation SameSuit, we have
Heart = [10 of Hearts] = [Jack of Hearts] = [Queen of Hearts]
and
Club = [10 of Clubs] = [Jack of Clubs] = [King of Clubs]

The set Suits stores essentially the same information as the relation SameSuit. The next
two theorems make this statement precise.

Theorem 2. Let ~ be an equivalence relation on a set X. Then:

(a) Foranyx € X, x € [x].

(b) Forany x,y € X, either [x] =[y]or [x]and [y] are disjoint.
(¢) {[x]:x € X}is a partition of X.

(d) Forx,ye X, x ~yifandonlyif y € [x].

Proof. (a) Since ~ is reflexive, x ~x,sox € [x].
(b) Suppose [x] and [y] are not disjoint, and prove [x] = [y] by showing that [x] <

[yland [y] < [x]. To prove that [x] C [y], assume that r € [x], and show that

r € [y —thatis, that y ~ r.

Since [x]|N[y]# @, thereisaze [x]N[y]. Thus x ~ z, and y ~ z. Since ~ is
symmetric, z ~ x. By the transitivity of ~, since y ~ z and 7 ~ x, y ~ x. Now since
y~xand x ~r, y~r. So,r €[y],asrequired. Therefore, [x] C [y]

Analogously, [y] S [x],so[y]=[x]

(¢) It must be shown that {{ x] : x € X} is a set of nonempty subsets of X such that each

y € X isin exactly one [x]. To check that the [x]’s are nonempty, observe that x € [x].

To check that each y € X is in at least one [x], observe that y € [y]. To check that

each y € X is in at most one [x], suppose y € [x1] and y € [x2]. Then, by part (b)

[x1]1=[x2]. The classes are the same, so y is in only one equivalence class.

(d) This is immediate from the definition of equivalence classes. n

Theorem 2 says two things. First, given an equivalence relation on a set X, its set
of distinct equivalence classes form a partition of X. Second, the relation that defines two
elements to be related if they are in the same element of the partition is equal to the original
relation (part (d)).

Example 6. Let Deck = {10 of Hearts, King of Hearts, Queen of Clubs, Ace of Clubs}.
The relation SameSuit defined on Deck consists of the following ordered pairs:

(10 of Hearts, King of Hearts) (King of Hearts, 10 of Hearts)
(10 of Hearts, 10 of Hearts) (King of Hearts, King of Hearts)
(Queen of Clubs, Ace of Clubs) (Ace of Clubs, Queen of Clubs)

(Queen of Clubs, Queen of Clubs) (Ace of Clubs, Ace of Clubs)

Find the equivalence classes of this relation. Also, find the partition determined by this
equivalence relation.

Equivalence Relations 185

Solution. The equivalence classes are

[10 of Hearts] = {10 of Hearts, King of Hearts}
[King of Hearts] = {10 of Hearts, King of Hearts}
[Queen of Clubs] = {Queen of Clubs, Ace of Clubs}
[Ace of Clubs] = {Queen of Clubs, Ace of Clubs}

The distinct equivalence classes are the two sets
{10 of Hearts, King of Hearts} {Queen of Clubs, Ace of Clubs}
which form a partition of Deck |

Example 7. Recall the equivalence relation = (mod p) of Example 3 in Section 3.6. The
following are the equivalence classes of = (mod 5):

[0]={0,5,10,15,20,25,30,...}
[1]1={1,6,11,16,21,26,31,...}
[2]1=1{2,7,12,17,22,27,32,.. .}
[3]={3,8,13,18,23,28,33,...}
[4]={4,9,14,19,24,29,34, ..)

The reader should prove that these are the equivalence classes. |

In Example 8 we determine all the equivalence classes of = (mod p) for any positive
integer p.

Example 8. Let p be a positive integer. Determine the equivalence classes of = (mod p).

Solution. 'We know from Example 3 in Section 3.6 that every integer is congruent to its
remainder (mod p). Since the only possible remainders are 0, 1, ..., p — 1, we have

Nc[ojumu---uUflp—1]

Thus, there are, at most, p equivalence classes—namely, [0], [1], ..., [p — 1]. We must
show that these equivalence classes are all different.

Let 1 and r; be two different remainders, such as 0 <r; <r, < p — 1. We must
show that [r|] # [r2]. Note that r, — r; is a positive integer less that p so that rp —r|
is not divisible by p. Then, r| # ry (mod p), whence [r1] # [r2]. Therefore, the distinct
equivalence classes are [0], [1],...,[p —1]. [|

Theorem 2 says that one can go from an equivalence relation to a partition from, which
one may read off the equivalence relation. Theorem 3 says that one can go from a partition
to an equivalence relation, from which one may read off the partition.

Theorem 3. Let P be a partition of a set X. For x, y € X, define x ~ y to mean that x
and y are in the same element of the partition. Then: ’

(a) ~ 1s an equivalence relation.
(b) The equivalence classes of ~ are exactly the elements of P.

186

CHAPTER 3 Relations

Proof.

(a) First, prove that ~ is an equivalence relation.

Reflexive: Let x € X, and show that x ~ x. Since P is a partition, x is in some set
Q € P. S0, x and x are both in Q; therefore, x ~ x.

Symmetric: Let x,y € X, and assume that x ~ y. That means there is a set Q € P such
that x, y € Q. So, y and x are in Q. Therefore, y ~ x.

Transitive: Supposex ~ y and y ~ z.Since x ~ y, thereisaset Q € P suchthatx, y €
Q. Since y ~ z, z is in the same set in P as y, so z € Q. Therefore, x and z are both in Q,
giving x ~ z.
(b)
[xl={yeX:x~y}

= {x € X : x, y are both in the same element of P}

= element of P to which x belongs u
Example 9. Let Deck = {10 of Hearts, King of Hearts, Queen of Clubs, Ace of Clubs}.
The set

P = {{10 of Hearts, King of Hearts}, {Queen of Clubs, Ace of Clubs}}

is a partition of Deck. Define a relation ~ on Deck such that for x, y € Deck, x ~ y if and
only if x and y are in the same element of P. The elements of the relation are

(10 of Hearts, King of Hearts) (King of Hearts, 10 of Hearts)
(10 of Hearts, 10 of Hearts) (King of Hearts, King of Hearts)
(Queen of Clubs, Ace of Clubs) (Ace of Clubs, Queen of Clubs)

(Queen of Clubs, Queen of Clubs) (Ace of Clubs, Ace of Clubs)

By Theorem 3 in this section, this relation is an equivalence relation for which the distinct
equivalence classes are precisely the elements of P. |

36.2 Comparing Equivalence Relations

Consider a standard deck of 52 cards, called 52Cards. The suits are traditionally marked in
two colors: Clubs and Spades are black; Diamonds and Hearts are red. The relation Same-
Suit, consisting of all pairs of cards that are in the same suit, and the relation SameColor,
consisting of all pairs of cards that are the same color, are both equivalence relations. The
equivalence class of the 2 of Diamonds in SameSuit is

[2 of Diamonds] = {2 of Diamonds, 3 of Diamonds, ..., Ace of Diamonds}

The equivalence class of the 2 of Diamonds in SameColor contains all the Diamonds and
all the Hearts. Figure 3.9, on page 187, is a Venn diagram showing the equivalence classes
of the two relations.

Each equivalence class of SameSuit is contained within a single equivalence class of
SameColor.

Definition 5. Let R; and R, be equivalence relations on a set X. R refines R» if, for
each x € X, the equivalence class of x in R; is a subset of the equivalence class of x in R3.

Equivalence Relations 187

v g s =0
v o AT »n
I N e

Figure 3.9 Equivalence classes of SameSuit (dashed lines) and SameColor (solid lines).

In the previous example, SameSuit refines SameColor. Also, SameSuit refines Same-
Suit. Now, consider the relation SameValue, which is defined as consisting of all pairs of
cards with the same value. The equivalence class of the 2 of Diamonds is

{2 of Diamonds, 2 of Clubs, 2 of Hearts, 2 of Spades}

This equivalence relation is shown in Figure 3.10 as a set of disjoint equivalence classes.

Clubs Diamonds Hearts Spades

| Enlnialiu S it Y Rndundiuniios S0 Ml

r T | 't 't
2 312 412 4y 2 41
il 1 4 Il 1
b 3 ¢4 3 v 3 o3)
. a4 Vi a4 VT, a4 T, a4 1
I-) o | B | - 1L
s 1T 5 15 1 s 1§
[1 [| [| [| 1
1:61:6 16 11 6
n 7 ¢+ 7 ;¢ 7 (4 1
L8 Ty 8 1, 8 [, 8 | SameValue
b o T+ o T1T o9 T5 o 1
I; T :; :;10:
IIOEIIO.I10.| [1
|:J AT T
[o ;1 0 1 0 {1 0 §
Lk T, kK ¥y kK 1 K T
b A T 57 A T0T A F1 A TF
| Rt M | SNSRI S SE——

SameSuit

Figure 3.10 Equivalence classes SameSuit (vertical) and SameValue (horizontal).

The equivalence relation of the 2 of Diamonds under SameValue is not a subset of the
equivalence class of the 2 of Diamonds under SameSuit. Hence, SameValue does not refine
SameSuit. Also, SameSuit does not refine SameValue.

Theorem 4. Let R| and R, be equivalence relations on the same set X. R| refines R; if
and only if each equivalence class of R; is a union of equivalence classes of R;.

Proof. This proof is left as an exercise for the reader.]

188

3.7

CHAPTER 3 Relations

Application: UNION-FIND

The UNION-FIND algorithm has a set of elements X and a relation R defined on X as
its input. The UNION-FIND algorithm starts with a partition of X in which each element
is a set consisting of a single element of X. Each related pair of elements is processed as
follows: If a related pair of elements are in different elements of the partition, those two
sets of the partition are joined, forming a new partition of X with fewer elements. If the
two elements are already in the same element of the partition, nothing is done.

As an example of how the algorithm operates, Table 3.10 shows a set with six elements
that has a relation consisting of the pairs (0, 2), (1, 4), (2, 5), (3, 6), (0, 4), and (1, 2). The
final partition has two elements, {0, 1, 2, 4, 5} and (3, 6}.

Table 3.10 UNION-FIND Algorithm

New Related Pair Current Partition Defined by the Equivalence Relation
v {0}, {1}, {2}, {3}, {4}, {5}, {6}

Process O R 2 0 and 2 are in different elements of the partition
Form new partition {0, 2}, {1}, {3}, {4}, {5}, (6}

Process 1 R4 1 and 4 are in different elements of the partition
Form new partition {0, 2}, {1, 4}, {3}, {5}, {6}

Process 2R 5 2 and 5 are in different elements of the partition
Form new partition {0, 2, 5}, {1, 4}, {3}, {6}

Process 3R 6 3 and 6 are in different elements of the partition
Form new partition {0, 2, 5}, {1, 4}, {3, 6}

Process 0 R 4 0 and 4 are in different elements of the partition
Form new partition {0, 1, 2, 4, 5}, {3, 6}

Process 1 R2 1 and 2 are in the same element of the partition
Leave partition asis {0, 1, 2, 4, 5}, (3, 6}

In computer science, this problem is of great interest, because it is an integral pro-
cessing step in many algorithms. As an example, consider using this algorithm to find
associations among a set of authors for a personal collection of journal articles about a
single topic. The problem is to determine which of these authors have worked together.
By starting with each author in a set by himself or herself, the articles will tell how to
join pairs or sets of authors into bigger sets because they have worked together. The final
outcome would be a partition of the authors such that two authors are in the same element
of the partition if and only if they had worked together. The problem of determining an
effective data structure for managing the information being processed is a major topic in
data structures.

Exercises

1. Identify the equivalence classes of N for the following relations:

(a) (mod 4)
(b) = (mod 6)

11.

12.

Exercises 189

Determine which of the following five relations defined on Z are equivalence relations:

(@ {(a,b)eZ xZ:(a>0andb > 0)or(a <0and b < 0)}

(b) {(a,b) e ZxZ:(@a>0andb > 0)or (a < 0and b < 0)}

() {(a,b)eZxZ:|a—b| <10}

(d) {(a,b)eZxZ:(a=<0andb>0)or(a <0andb <0)}

(e) {(a,b) eZ xZ:(a>0andb > 0)or(a <0and b <0)}

Find the elements in the relation “have the same remainder when divided by 8 if the

relation is defined on {1, 2, 3..., 24, 25}. Also, find the distinct equivalence classes
of this equivalence relation.

. Let POPULATION be the set of all people. Let R be the binary relation on POPU-

LATION such that (x, y) € R if x is an older brother of y or x = y. Is R reflexive?
Symmetric? Antisymmetric? Transitive? An equivalence relation?

. Define a binary relation R on R as {(x, y) € R x R : x and y are both positive, both

negative, or both 0}. Prove that R is an equivalence relation. What are its equivalence
classes?

. Define a binary relation R on R as {(x, y) € R x R : sin(x) = sin(y)}. Prove that R

is an equivalence relation. What are its equivalence classes?

. Let A ={a, b, ¢, d}. For each of the following partitions of A, list all the pairs of

elements that form the corresponding equivalence relations:

() {{a,b,c}, {d}}
(b) {{a}, {b}, {c}, {d}}
(©) () {{a,b, c,d}}

. Let A = {a, b, ¢, d}. For each of the following partitions of A, determine the elements

of the corresponding equivalence relation:

(@ Pr={{a,c}, {b,d}}

(b) P, = {{a}, (b, ¢}, {d}}

(¢) P3y={{a, b}, {c,d}}

(d) Ps={{a,b,c}, {d}}

Do any of these partitions refine any of the others?

Prove Theorem 1.
In the example 52Cards, find a simple description for each of the following:

(a) SameSuit N SameValue
(b) (SameSuit U SameValue)*

(a) Draw a Venn diagram showing the equivalence classes over N of = (mod 5), =
(mod 10), and = (mod 15). Which of these equivalence relations refine another
one of these equivalence relations?

(b) Letk,m € N. We say kis afactorof m if m = j - k for some j such that j € N
and 0 < j < m. What is the relationship between whether = (mod k) refines =
(mod m) and whether k is a factor of m or m is a factor of k? Prove your answer.

Let R and S be equivalence relations on a set X.

(a) Show that R N § is an equivalence relation.

(b) Show by example that R U S need not be an equivalence relation.

(¢) Show that (R U S)*, the reflexive and transitive closure of R U S, is the smallest
equivalence relation containing both R and S.

190

CHAPTER 3 Relations

13.
14.

15.

16.

Prove Theorem 4.
There is an old, fallacious proof that if a relation is both symmetric and transitive, it is
reflexive. We give this “proof” below. What is the error?

Suppose R is a symmetric and transitive relation on a set X. Pick an x € X.
We need to show x R x. So, take any y where x R y. By symmetry, it follows
that y R x. By transitivity, it follows that x R x.

For a relation R on a set X, let R* denote the reflexive and transitive closure of R.

(a)

(b)
(a)

(b)

For any relation R on a set X, define a relation ~ on X as follows: x ~ y if and
only if x R* y and y R* x. Prove that ~ is an equivalence relation.

Let x; ~ x7 and y; ~ y;. Show that x| R* y if and only if x3 R* ys.
For k, ny, ny, mi, my € N, show that if
n1 = na(modk)
and
mi = my(modk)
then
ni+mi = ny +my(modk)
and
ny « my=ny - my(mod k)
Part (a) says that if we take two equivalence classes [m] and [n], then we can

unambiguously define [m]+[n]and [m] - [n]. Pick any m| € [m] and any
ny € [n], and define

[m]+[n]l=[m;+n(]
and
[m] - [n]l=[mg - n(]

The definition is unambiguous since it doesn’t matter which m| and n; we
pick. Find the addition and multiplication tables for the equivalence classes of
= (mod4) and = (mod 5). (Hint: For both = (mod4) and = (mod 5), your an-
swer should include

[0]+[0]=[0], [0]+[L]=[1],[0] - [0]=10]
and
[1] - [1]=[1]
but, for = (mod 4),
[2]1+[2]1=10]

whereas, that will be false for = (mod 5).)

Ordering Relations 19

Ordering Relations

In this section, we discuss two very important classes of relations, the partial orderings and
the linear orderings. Partial orderings generalize the relation is a subset of (<), and linear
orderings generalize the relation less than (<).

3.8.1 Partial Orderings

A typical example of a partial order, other than IsASubsetOf, is the relation IsADescen-
dantOf. The fact that this latter relation is a partial order contributes to the difficulty in
completing a person’s genealogy. One of the difficulties involved in tracing a genealogy is
that a line of descendants often dies out, and the search then has to find another branch of
the family. The end of a line of descendants will be special elements in a partial order.

Definition 1. Let R be a binary relation on a nonempty set X. R is a partial ordering if
R is a reflexive, transitive, antisymmetric relation.

The following are standard examples of partial orderings.

Example 1. IfU is aset, then C is a partial ordering on the subsets of U . This was proved
in Example 6(b) in Section 3.4.2 and in Example 8(e) in Section 3.4.3.

Example 2. In Figure 3.11, there is a representation of the eight subsets of
U=1{0,1,2)

Each subset is obviously a subset of itself, so the relation is reflexive. The lines going
upward indicate the rest of the subset relation. Since there is a line from {1} to {0, 1}, {1}
is shown to be a subset of {0, 1}. Since there is a line from @ to {1} and another from {1} to
{0, 1}, @ is shown to be a subset of {0, 1}. (Thus, reflexivity, antisymmetry, and transitivity
are all assumed in the way the drawing is interpreted.)

Figure 3.11 Subsets of {0, 1, 2}.

Figure 3.12 pictures the eight subsets of {0, 1, 2, 3} having an odd number of elements.
These elements also form a partial order with respect to the relation € . By the same
argument, 2 is also a partial ordering on any set of sets. You just need to turn the picture
upside down to reverse the direction—that is, {0, 1, 2} D {0}.

192

CHAPTER 3 Reiations

{0,1,2} {0, 1,3} {0, 2,3} {1,2,3}

W
{0} {1} {2} {3}

Figure 3.12 Odd subsets of {0, 1, 2, 3}.

Example 3.

(a) The relation < is a partial ordering on N. This follows from Example 6(a) in Section
3.4.2 and Example 8(c) in Section 3.4.3. By the same argument, > is a partial ordering
on N.

(b) The relation < is not a partial ordering, since it is transitive and antisymmetric but is
not reflexive. In fact, it is irreflexive. Irreflexive relations whose reflexive closures are
partial orderings are called strict partial orderings. So, < is a strict partial ordering.

(c) On any set X, the relation = is a partial ordering. This result follows from Example
4(a) in section 3.4.2 and Example 8(a) in Section 3.4.3. [|

Example 4. Figure 3.13 shows a subset of the family tree given in Figure 3.2.

Elaine Maude

George Elizabeth

Figure 3.13 Subset of family tree.

Let R be the reflexive closure of the relation “ancestor of”” as defined by this subset of the
family tree. Then, R is a partial ordering. The elements of the partial order are

{(Elaine, George), (Maude, Elizabeth), (Elaine, Elaine), (George, George),
(Maude, Maude), (Elizabeth, Elizabeth))} ||
Example 5.
(a) Let
R={(x,y):x,yeNand y > x and y — x is even}

Then, R is a partial ordering on N. (See Exercise 5 in Section 3.9.)
(b) Let | denote the relation divides on N. That is, x | y if, for some z e N, y=x . z.
Then, the relation | is a partial ordering on N.

As another, less familiar example of a partial order, we use the relation divides on the
set

{0,1,2,3,...,11, 12}

to define a partial order by the relation x | y if and only if y = k - x for some integer k.
Figure 3.14 shows how these elements are related by | .

Ordering Relations

Figure 3.14 Divides for {0,1,2,..., 12}.

Example 6. Let X be a collection of finite sets taken from some universal set U. Let

R={U,V):U,VeXand|U|<|V|}
Then, R is reflexive and transitive, but it is not antisymmetric.

Solution. Observe that if U = {0, 1, 2}, then

IO, 1} R {1, 2}
and

{1, 2} R {0, 1}
but

{0, 1} # {1, 2}

Therefore, R need not be antisymmetric.

Example 7. Let X be a collection of finite sets. Let
R={U,V):U,VeX and ((U| < |V]|or U=V)}

193

The relation R with X = P ({0, 1, 2}) is shown in Figure 3.15. The lines between levels in

the figure represent the fact that the two sets are related. R is a partial ordering.

Figure 3.15 R on P({0,1,2}).

194

CHAPTER 3 Relations

Solution. We must show that R is reflexive, antisymmetric, and transitive.
Reflexive: Let U,V C X. If U = V, then (U, V) € R by definition of R.

Antisymmetric: Let (U, V) € R, and suppose U # V. Then, |U | < |V |,s0| V| £|U|.
Thus, (V,U) ¢ R.

Transitive: Let U, V, W C X. Let (U, V) € R and (V, W) € R. Show that (U, W) € R.
There are four cases, depending on why (U, V) € R and why (V, W) € R.

Casel: U=V,andV = W.Then, U = W,soU RW.
Case2: U=V,and |V | < |W|.Then, |U|=|V | < |W]|,s0 (U, W)€ R.
Case3: |U| < |V |[,and V = W. This proof is analogous to the proof for Case 2.

Cased: |\U| < |V |,and |V | < | W|. Since < is a transitive relationon N, |U | < | W |.
Hence, (U, W) € R.

Since R is reflexive, antisymmetric, and transitive, R is a partial order.]

38.2 Linear Orderings

The relation less than (<) on the integers has the property that for any n and m with m # n,
either n < m or m < n. This property is not true for the relation of set inclusion (<). The
set X = {0, 1, 2, 3} has subsets x = {0, 2} and y = {0, 1, 3} for which neither is a subset
of the other. Relations other than ones defined on a number system sometimes, however,
satisfy this property, which makes it an important property of ordering relations.

Definition 2. Let R be a binary relation on a set X. R is a linear ordering, or total
ordering, on X if R is a transitive relation that satisfies the law of trichotomy: For every
x,y € X, exactly one of the following conditions holds: i) x Ry, (ii) x = y, or (ii1) y R x.

Example 8. The following are linear orderings:

(a) < is a linear ordering on R. The name linear ordering suggests points on a line, and
R is the standard mathematical model of a line. Condition (i1) is never true for this
relation!

(b) < is alinear ordering on N.

(c) Let M be the set of kings and queens of England since 1850. For X, Y € M,set X RY
if X ruled before Y. Then, R is a linear ordering on M.

The relation < on R is not a linear ordering, because for any x € R, both x = x and
x < x hold. The law of trichotomy requires that exactly one of the three properties hold.

Example 9. (Lexicographical or Dictionary Ordering) The alphabetical (dictionary)
ordering of words is the basis for being able to sort sets of words in increasing or decreasing
order. For example, let English be the set of words in the latest edition of the Oxford English
Dictionary, and let < be their alphabetical ordering, in which the letters of the alphabet are
ordered from a to z, with blank being less than a. For this example, we will assume that
all words in the dictionary begin with lowercase letters. (With computers, lowercase and
uppercase letters have different representations.) Describe how two words are compared
using this ordering.

Ordering Relations 195

Solution. Given two words, we will say that the one occurring first in the dictionary is
less than (<) the other. For example,

elephant < tiger
aardvark < ant

and
0z < ozymandias

The first letters of elephant and tiger determine that elephant is less than tiger. In the
second pair of words, the first two letters in the same position that are different are a and n,
which occur in the second letter position. In the third pair of words, the first two letters that
are different in the same position are y and blank. The rule can be thought of most easily
as follows: Think of a word as an infinite string of symbols where all but the first finitely
many are blank. Now, to compare two words, look for the leftmost position at which the
two words contain different letters. For example,

aardvark 0z
! !
ant ozymandias

The smaller word of the pair is defined to be the one with the “smaller” symbol in the
position where the two words first differ. What the rule says is that you should look up
both words in a “dictionary” and then designate the first of the two words you come to,
starting from the front of the dictionary, as the smaller word. The described ordering gives
a linear ordering of all the words of a dictionary.]

Extended ASCII Code

The storage of uppercase and lowercase letters of the alphabet in a computer often is done
by assigning an 8-bit binary code to each. A common computer code is the extended ASCII
code. Special characters and numerals as well as control codes are also assigned codes, but
the focus here is on the idea of what is happening. To be able to sort words, the code for “A”
must be easily recognized as smaller than the code for “B,” “C,” and so on. The extended
ASCII code for “A” is 01000001; the code for “B’ is 01000010. Using the lexicographical
ordering on the bit positions starting at the left, the code for “A” is clearly smaller than the
code for “B”:

N +
01000001< 01000010
“A” < “B’?

The complete extended ASCII code assigns 8-bit binary strings to each letter of the alpha-
bet so that

“A” < “B” < “Cn < e < “X” < “Yn < “Zn

196

CHAPTER 3 Relations

383 Comparable Elements

Definition 3. Let R be a partial or linear ordering on a set X. Elements x, y € X are said
to be comparable under R if x R y or y R x (or both) holds.

Example 10. For X = {0, 1, 2, 3} partially ordered by the relation set inclusion P(X),
then, {0, 1} and {0, 1, 2} are comparable, but {0, 2, 3} and {0, 1} are not.

Observe that if R is a linear ordering on a set X with x, y € X and x # y, then x and
y are comparable by the law of trichotomy. Observe also that if R and S are linear or partial
orders such that R C S, then if x and y are comparable in R, they are also comparable in S.

Theorem 1.

(a) If R is a linear ordering of a set X, then R U Idy is a partial ordering of X.
(b) If R is a partial ordering of X, then R — Idx is a linear ordering of X if and only if,
for any x, y € X, the elements x and y are comparable under R.

Proof. (a) This proof is left as an exercise for the reader.

(b) (=) First, suppose R — Idy is alinear ordering. Let x, y € X. It is necessary to show
that x and y are comparable under R. If x # y, then x and y are comparable in R — Idx
and, hence, in R by the observation before the theorem. If x = y, then (x, y) = (x, x) € R,
because Idx C R.

(&) Letx, y € X. Note that since R is antisymmetric,

(x,y)e R—Idx = (y,x) ¢ R

Transitive: Let (x,y), (y,2) € R —Idx. Then, (x, z) € R, because R is transitive. Fur-
thermore, x # z since (y, z) € R, whereas since R is antisymmetric, (y, x) € R. There-
fore, (x,z) € R — Idy.

Trichotomy: We must show exactly one of (i) (x,y) € R — Idy, (ii) x = y, or (iii)
(y, x) € R — Idx holds. We see that at most one of these can hold from the antisymmetric
property of R and the obvious fact that

(R-Udx)ynldy =9

To see that at least one of these holds, let x, y € X with x # y. Since x and y are compa-
rable under R, we have (x, y) € R or (y, x) € R. Since x # y, either (x, y) € R — Idx or
(y,x) € R - Ildy. []

Theorem 1 shows that there are two differences between partial and linear orderings:

1. Partial orderings are reflexive, whereas linear orderings are irreflexive.
2. Any two unequal elements of a linearly ordered set are comparable. This need not be
true with partial orderings.

3.8.4 Optimal Elements in Orderings

The next property to investigate in an ordering relation is whether an ordering contains an
element that is optimal in the sense that it is “larger” or “smaller” than any element to
which it is comparable. This element may not be unique; for example, {{1}, {1, 3}, {2}}
under the relation C has both {1, 3} and {2} as “larger” than any element(s) to which they
are comparable. The properties of interest are more formally defined here.

Ordering Relations 197

Definition 4. Let R be a partial ordering or a linear ordering on a set X. For x, y € X, if
x Ry and x # y, then x is below y. We say x is above y if y is below x.

Example 11. Let X = {1, 2, 3, 4} be a set. P(X) together with C is a partial order. {1}
is below {1, 2}. {1, 2} is below {1, 2, 3, 4}. {2, 3} is above both {2} and {3}. {1, 2, 3, 4} is
above each element of P (X) distinct from itself.

Observe that the relations “above” and “below” are transitive.
Definition 5. Let R be a partial or a linear ordering on a set X. Let x € X.

(a) x is a minimal element of X if there is no y € X such that y is below x.
(b) x is the minimum element of X if x is below every other element of X.
(c) x is a maximal element of X if there is no y € X such that y is above x.
(d) x is the maximum element of X if x is above every other element of X.

In contexts where it is not clear what ordering is being discussed, write R-minimal,
R-minimum, R-maximal, and R-maximum to clarify that the ordering relation is R.

Consider the ordering shown in Figure 3.16. In this ordering, A is the maximum ele-
ment and the only maximal element. D, E, and F are all minimal elements. There is no
minimum element.

/\
/\/\

Figure 3.16 A partial ordering P.

Turning the order in Figure 3.16 upside down produces the order shown in Figure
3.17. In this ordering, A is the minimum element, and D, E, and F are maximal elements.
There is no maximum element.

\/\/
\/

Figure 317 Partial ordering P upside down.

Theorem 2. Let R be a partial ordering on X, and letx, y € X.

(a) If both x and y are minimum elements, then x = y. This justifies speaking of the
minimum element.

(b) If x is the minimum element of X, then x is the unique minimum element of X.

(c) If R is a linear ordering on X, then x is minimal if and only if x is the minimum
element.

(d) An element x € X is R-minimal if and only if x is R~!-maximal, and x is the
R-minimum element if and only if x is the R™!-maximum element.

(e) The analogous results to parts (a) through (d) are true, with minimum replaced with
maximum and minimal with maximal.

198

CHAPTER 3 Relations

Proof. Proofs of (a) through (e) are left as exercises for the reader. []

For infinite sets like Z, there is no minimum, maximum, minimal, or maximal element.
Every finite partially ordered set has at least one minimal element and at least one maximal
element. Every finite linearly ordered set has exactly one minimum element and exactly
one maximum element. This result (for minimal elements and minimums) is proved in
Theorem 3.

Theorem 3. Let R be a partial ordering on a finite set X, and let x € X.

(a) Either x is minimal or there is a minimal element y € X below x.
(b) If x is the only minimal element of X, then x is the minimum element.
(c) If R is a linear ordering, then there 1s a minimum element in X.

Proof. (a) Letz; € X.If z; is not minimal, there is some z3 € X that is below z1. If z5 is
not minimal, we can find a z3 below z;. Continue in this fashion. (See Figure 3.18.) Since
X has only finitely many elements, the process must terminate after, at most, | X| steps,
finding an element z; for which & < | X | and for which there is no element of X below z.
Then, zx is a minimal element below 7.

2]

elements
22 below z,

z elements
3 below z,

Figure 3.18 Elements below x and z.

(b) Let zg € X be the only minimal element, and let z € X. By part (a), there is some
minimal element below z. That minimal element must be zq itself, because zg is the
only minimal element. So, zg is the minimum element.

(c) By part (a), there is a minimal element of X. By Theorem 2(c), that element is the
minimum element.]

Of course, exactly analogous results hold for maximal and maximum elements in finite
sets. The reader should construct examples to show that these results do not necessarily
hold if the set is infinite.

385 Application: Finding a Minimal Element

The proof of Theorem 3(a) suggests an algorithm that can be used for finding a minimal
element of a finite set where R is a partial or linear ordering,

Ordering Relations 199

Algorithm: Finding a Minimal Element

INPUT: A finite set X = {x1, x2, ..., x,,} with an ordering relation R on X
OUTPUT: An R-minimal element of X

y=x
fori =2tondo
if (x; Ry holds) then
Yy =X
print y

Example 12. Find a minimal element in the partial order shown:

3
5
1 2
4
Solution.
Data Values
x1 =95
X2 = 3
x3=4
X4 = 1
X5 = 2

Tracing the Execution

fori =2
ifx, Ry meansif3RS
R does not hold for 3 and 5

fori =3
ifx3Ry meansif4RS
y=4

fori =4
ifx4Ry meansifl R4
R does not hold for 1 and 4

fori =5
ifxs Ry meansif2R5
R does not hold for 2 and 5

Print final value: y = 4 |

200

CHAPTER 3 Relations

3.8.6 Application: Embedding a Partial Order

One fairly typical application of partial orderings is to schedule a set T' of tasks. Usually, a
set of tasks includes requirements that certain tasks be completed before others begin. If it
is possible to do the tasks so that all the constraints are satisfied, these requirements may be
treated as a partial ordering R on the set of tasks where, for x, y € T, we have (x, y) € R
if and only if x must be completed before y may be begun.

Schedules to do these tasks, on the other hand, are often linear orders, since normally,
only one task can be done at a time. Hence, there is a problem of finding a linear ordering
S of T so that, if x Ry and x # y, then x Sy. This clearly amounts to finding a linear
ordering S so that R — Id7 < S. For the partial ordering shown in Figure 3.17, the linear
ordering S could consist of the pairs {(A, B), (B, D), (D, (), (C, E), (E, F)} together
with the pairs needed to make the relation transitive. Another linear order that would satisfy
the condition consists of the pairs {(A, C), (C, B), (B, F), (F, E), (E, D)} together with
the other pairs needed to make the relation transitive. The process of finding a linear order
associated with a partial order is called embedding a partial order in a linear order.

Example 13. Construct a schedule for logging on to a computer and both checking email
and modifying a text file. Checking email includes opening the mailer and both replying
to a new message and creating a new message to another person. Modifying the text file
involves opening a text editor, loading a file, editing the first paragraph of the file, inserting
a separate file at the end of the file, and saving the modified file. The user is allowed to
move back and forth between the mailer and the text editor for separate tasks.

Solution. First, draw a diagram representing the dependency among various activities:

Logon
Op en Open Text
Mailer & € Editor
¢ Open File
Reply Send New
M.
5 Modify €2 Insert
Ext. File
File
Save
Modified
File

Partial order

Next, find a linear order that embeds this partial order. One result is shown here:

Exercises 201

a \ ®a Logon
o ® ¢ Load Text Editor
f ® f Open File
\Ih ® /i Insert Ext. File
be b Open Mailer

¢ / B c Reply

g » ¢ Modify File

de b d Send New Msg.

ive ® i Save Modified File
Linear order]

In Chapter 6, we will examine and analyze an algorithm called Topological Sort that

carries out the embedding of a partial order in a linear order.

m Exercises

1.

2.

(a) Draw the diagram to represent the | (divides) partial order on {1, 2, 3, 4, 5, 6}.

(b) List all the maximal, maximum, minimal, and minimum elements.

(a) Draw a diagram to represent the | (divides) partial order on {0, 1, 2, 3, 4,5, 6, 7,
8,9,10, 11},

(b) Identify all minimal, minimum, maximal, and maximum elements in the diagram.

. (a) Draw a diagram to represent the | (divides) partial order on the set {1, 2, 3,4, 5, 6,

7,8,9,10, 11}.
(b) Identify all minimal, minimum, maximal, and maximum elements in the diagram.
Draw a diagram to represent the | (divides) partial order on the following:

(a) {1, 11}

() {1,3,7,21}

© {1,2,3,4,6,9, 12, 18, 36}
@) {1,2,4,8, 16, 32, 64}

. Prove that Examples 5(a) and (b) are partial orderings.

Let
X =1{-5-4,-3,-2,-1,0,1,2,3,4,5)

For x,y € X, set x Ry if x? < y? or x = y. Show that R is a partial ordering on X.
Draw a diagram of R.

. (a) Explain why the relation “is older than or the same age” is a partial order.

(b) Explain why the relation “is older than” is not a linear order.

202

CHAPTER 3 Relations

8.

10.
11.

12.
13.

14.

15.

16.

Construct the partial order represented by the family tree shown here. The relation is
“is a descendant of.”

Mary = John

Peter = Elaine Maude = Harold

George Elizabeth

. For the set of all people, prove that the relation “weighs no more than” is not a partial

order.

For the set of all people, prove that the relation “weighs less than” is not a linear order.

(a) Forx,y e N, define x |,y y if, forsome z e N,z 0,z # 1,z - x =y. Wesay
x is a proper divisor of y. Is | .,y a linear ordering on N?

(b) In the real numbers R, define x |,,r y if, forsome z e R,z #0,z# 1,z - x =
y.Is | pg @ linear ordering on R?

Prove Theorem 1(a).

For the partial orders shown in Figures 3.11, 3.12, 3.14, and 3.15, identify all minimal,

minimum, maximum, and maximal elements.

Suppose A, B, C, D, E, and F are tasks that must be performed with the precedence

shown:

N\
NN\

For example, £ must be completed before either B or C can be performed, but
D, E, and F can be completed in any order relative to one another. Let T =
{A, B,C, D, E, F}, and define the partial order R on T as represented by the dia-
gram. Find a linear order S on T where R — Idr C S.

Challenge: Find a partial ordering with exactly one minimal element but where that
element is not a minimum element.

Prove Theorem 2. (Hint: The proof of part (e) should be quite short.)

Relational Databases: An Introduction

A database is a shared collection of interrelated data designed to meet the varied infor-
mation needs of an organization. To describe many interrelationships among many types
of objects, there needs to be a good way to represent these interrelationships. The diagram
of Figure 3.2 is a clear illustration of a family tree, but it uses certain specific facts about
family relationships——for example, that each person has exactly two parents. It would be
much harder to represent more complicated relationships using the same type of diagram.

Relational Databases: An Introduction 203

A database system provides a framework for representing complex relationships. In
this section, we will discuss one model for a database system called a relational database
system. The reason we call this model a relational database system will become clear as we
work through an example. To simplify the discussion, we will present simplified versions
of the database operations.

3.10.1 Storing Information in Relations

To introduce some of the features of a relational database system, we consider the rela-
tional representation of a familiar problem: How can we keep track of student registrations
in classes and teaching assignments of instructors. This section shows how a relational
database system could be used.

The first requirement is to store the information about which students have registered
for which classes at a university. In this example, John von Neumann, Emmy Noether, and
Herman Hollerith are all taking English 101, section 3. George Boole, René Descartes,
and Winston Churchill are taking English 101, section 4. John von Neumann and Emmy
Noether are also taking English 103, section 1. George Boole and Winston Churchill are
also taking Mathematics 101, section 1. Finally, René Descartes and Herman Hollerith are
also taking Computer Science 103, section 3. This information is collected in Table 3.11.

Table 3.11 Registration Relation

Registration
Student Department Course | Section
John von Neumann | English 101 3
Emmy Noether English 101 3
Herman Hollerith English 101 3
George Boole English 101 4
René Descartes English 101 4
Winston Churchill | English 101 4
John von Neumann | English 103 1
Emmy Noether English 103 1
George Boole Mathematics 101 1
Winston Churchill | Mathematics 101 1
René Descartes Computer Science 103 3
Herman Hollerith Computer Science 103 3

In a relational database, the n-tuples in an n-ary relation are simply called tuples.
The relations themselves are called tables. Each column in a table is an attribute, and the
values that appear in that column are referred to as values of that attribute.

In this example, many other 4-tuples (or quadruples) could be in the Registration
relation, such as (George Boole, English 103, 4) or (Herman Hollerith, Mathematics, 103,
3). A 4-tuple is in the relation only if the student is registered for that section of that course.

Now, suppose a second relation is defined that records the professors for the various
courses. It is possible to make a 5-ary relation that stores all the information in Registra-
tion plus the name of the professor for each course. However, the information about who

204

CHAPTER 3 Relations

is teaching a course is often used for purposes independent of determining who is regis-
tered for the course. It therefore is better to store the new information in a separate table.
The information about the professors is contained in the relation TeachingAssignments,
which is shown in Table 3.12. The value of the relational database will be seen when we
explain how information from various tables can be combined to answer questions. In this
case, we might want to use the two tables Registration and TeachingAssignments to list the
professors of a particular student.

Table 312 TeachingAssignments Relation

TeachingAssignments

Department Course Section Professor
English 101 3 Geoffrey Chaucer
English 101 4 William Morris
English 103 1 Thomas Jefferson
Mathematics 101 1 David Hilbert
Mathematics 101 1 Leonardo of Pisa
Computer Science | 103 3 Alan Turing

Some information from Registration is repeated in TeachingAssignments. One prob-
lem in designing the relations in a relational database systems is to manage the needed
redundancy in a set of tables.

Each row in the table TeachingAssignments is a 4-tuple, and the relation is the set of
4-tuples that record the teaching assignments for each course. Note that David Hilbert and
Leonardo of Pisa are probably team-teaching Mathematics 101, section 1.

Finally, because the total teaching program in each department is the responsibility of
a department chair, a relation that gives this information is needed. This relation consists
of a set of tuples of length two, or ordered pairs, as seen in Table 3.13.

Table 3.13 DepartmentChair Relation

DepartmentChair
Department Chair
English Francis Bacon

Mathematics Carl Gauss
Computer Science | Alan Turing

A set of relations, such as the three shown in this example, are the data used by a
relational database system.

3.10.2 Relational Algebra

In designing the data for a database system, three things are important. First, how are the
data and relationships stored? Second, how can the data be modified? Third, can informa-
tion be extracted? As already noted, the data and relationships are stored in tables. Methods
to modify the data will not be discussed here; a course devoted to file processing will spend
much time dealing with just the problems you face in implementing a database system.

Relational Databases: An Introduction 205

Relational databases have standard operations that act on relations. A request to extract
data from the database is called a query. Queries use standard operations to create their
output. The standard set of operations used is called the relational algebra. Three of the
operations of the relational algebra are described in the examples that follow.

First Operation: Selection

Given a relation such as Registration, some users may be interested in only some of the
values of an attribute. As an example, for an attribute such as Department, and a set of
possible values for that attribute, such as {Mathematics, Computer Science}, form a new
relation by selecting only the tuples with a value of Department that is in {Mathematics,
Computer Science}.

Table 3.14 repeats the relation Registration so that you can easily compare this relation
to the one that will be generated by this operation.

Table 3.14 Registration Relation

Registration
Student Department Course | Section
John von Neumann | English 101 3
Emmy Noether English 101 3
Herman Hollerith English 101 3
George Boole English 101 4
René Descartes English 101 4
Winston Churchill } English 101 4
John von Neumann | English 103 1
Emmy Noether English 103 1
George Boole Mathematics 101 1
Winston Churchill | Mathematics 101 1
René Descartes Computer Science 103 3
Herman Hollerith Computer Science 103 3

The result of this selection operation is the relation R’, which is shown in Table 3.15.

Table 3.15 R Relation

- R
Student Department Course | Section
George Boole Mathematics 101 1
Winston Churchill | Mathematics 101 1
René Descartes Computer Science 103 3
Herman Hollerith | Computer Science 103 3

Suppose a user wants to make a selection query of a database. A selection query returns
a table with just the tuples that satisfy some condition, like students taking mathematics
courses. The database contains relations Rp, Ra, ..., R,. To specify a selection query, the
user inputs three things: the name of the relation from which the selection is to be made

206

CHAPTER 3 Relations

(that is, some R;), the (name of the) attribute on which the selection is to be made, and a
finite set of possible values for that attribute. Then, the database system outputs all tuples
in that relation with a value for the attribute that is in that finite set.

There is also a second form that we shall use in the exercises: The user may input the
name of the relation, the names of two attributes, and = or <. If the user inputs Teaching-
Assignments, Section, Course, and <, then the user is asking for all scheduled courses
(for which teachers have been assigned) where the section number is less than the course
number.

What we have given here is a much more limited than the standard database definition
of selection. We have adopted this definition to keep the exposition simple.

Second Operation: Projection

For any table in a relational database, it often happens that a query is only interested in one
attribute. For example, in the relation R’ in Table 3.14, suppose that you want to know the
names of the students. The only attribute of interest is Student. The attributes Department,
Course, and Section all may be important in other contexts, but for now, only the Student
entries are needed. The operation that reduces a relation to a new relation consisting of
some of the attributes and the entries for those attributes is called projection.

The second operation, or projection, is now used to find a relation that consists of
some of the attributes of an existing relation. A relation, such as Registration, and a subset
of its attributes, such as {Student, Department,} form the projection R of the relation onto
those attributes as follows: First, delete the attributes not in {Student, Department} from
each tuple of the relation Registration. The resulting relation R is shown in Table 3.16.

Table 3.16 R’ Relation with Duplicates

Rt
Student Department
John von Neumann | English «
Emmy Noether English
Herman Hollerith English
George Boole English
René Descartes English

Winston Churchill | English
John von Neumann | English «

Emmy Noether English

George Boole Mathematics
Winston Churchill | Mathematics
René Descartes Computer Science

Herman Hollerith Computer Science

In Table 3.16, you see that the tuples (John von Neumann, English) and (Emmy
Noether, English) occur twice. Since a relation is a set, it makes no sense to say twice
that a tuple is an element of a set. So, the final step in forming a projection is to eliminate
duplicate entries from the table R to form the relation Registration’ shown in Table 3.17.

The projection of Registration tells which students are taking classes in which depart-
ments.

Relational Databases: An Introduction 207

Table 3.17 Registration’ Relation

Registration’
Student Department

John von Neumann | English

Emmy Noether English

Herman Hollerith English

George Boole English

René Descartes English

Winston Churchill { English

George Boole Mathematics
Winston Churchill | Mathematics
René Descartes Computer Science
Herman Hollerith Computer Science

Example 1. Projection is actually a common operation in areas other than databases.
Look at graphing relations on RR?, and consider the relation

C={(x,»eR:(x~22+(r-22=1)

The graph of C is a circle in the plane with center (2, 2) and radius 1. Figure 3.19 shows
the graph of C and its projection onto the x-axis.

2,3
; ,3)
2] @,2) (3,2
|
! |
1 | |
LoD
! |
S I S i
1 3

Figure 3.19 The projection of the circle (x — 2)2 + (y — 2)2 = 1 onto the x-axis.

Two values or points on the circle are projected onto each element in the open interval
(1,3).

Third Operation: Join

Consider two relations, such as Registration and TeachingAssignments. Recall it was ar-
gued that since they really store different information, they need to be two separate tables.
Nevertheless, some people using the system will want to know the combined information—
that is, which students are taking which classes (departments, course numbers, and section
numbers) taught by which professors. The join of the two relations puts all the information
together. The relation that is needed, called JoinedRelation, is shown in Table 3.18. The

208

CHAPTER 3 Relations

question is how to arrive at this table starting with the tables Registration and TeachingAs-
signments.

Table 3.18 JoinedRelation

JoinedRelation

Student Department Course | Section Professor
John von Neumann | English 101 3 Geoffrey Chaucer
Emmy Noether English 101 3 Geoffrey Chaucer
Herman Hollerith | English 101 3 Geoffrey Chaucer
George Boole English 101 4 William Motris
René Descartes English 101 4 William Morris
Winston Churchill | English 101 4 William Morris
John von Neumann | English 103 1 Thomas Jefferson
Emmy Noether English 103 1 Thomas Jefferson
George Boole Mathematics 101 1 David Hilbert
Winston Churchill | Mathematics 101 1 David Hilbert
George Boole Mathematics 101 1 Leonardo of Pisa
Winston Churchill | Mathematics 101 1 Leonardo of Pisa
René Descartes Computer Science 103 3 Alan Turing
Herman Hollerith Computer Science 103 3 Alan Turing

After defining the join of two relations and giving a small example, we will present an
algorithm that could be used to actually find the join of two relations.

The formation of the join of two relations is a three-step process. In the first
step, we take two relations, R with attributes A, Aj, A3z, ..., A and S with attributes
By, By, B3, ..., B,, and form the database Cartesian product. The database Cartesian
product R x § is a relation with attributes Ay, Az, ..., Ay, By, B2, ..., By, and its tuples
are

{(a,a2,....am, b1, b2, ..., by) 1 (a1, ...,am) € R and (b, by, ..., by) € S}

Note that the database definition of the term Cartesian product differs slightly from the
set theoretic notion. The set theory definition results in 2-tuples, whereas here, all the
coordinates are kept without extra parentheses.

The second step of the process involves forming the equijoin of R and S on attributes
A; and B; by selecting all tuples from R x S where the values of attributes A; and B; are
the same. To form the equijoin on several pairs of attributes, A;, Bj,, Ai,, Bj,, ..., Ay, Bj,
perform k selections; that is, select tuples whose values on A;; and Bj, are the same, whose
values on A;, and B;, are the same, and so on. Often, the names of attributes A; and B; will
in practice be the same. In that case, we may say we are taking the join on attribute A;.

Note that in the equijoin, the attributes A; and B; contain the same informa-
tion. The third step of the join eliminates the second of the duplicated columns: The
join of R and S on attributes A; and B; is the projection of the equijoin on at-
tributes Ay, ..., Am, By, ..., Bj—1, Bj11, ..., By. The join on several attribute pairs omits
(“projects out”) the second attribute from each pair.

The natural join of relations R and S, written R >« S, is the join of R and S on all
attribute pairs with the same name.

Relational Databases: An Introduction

Example 2. Define the relations R and S as shown:

R
Name | Class | Average
Joe 2004 | 3.14
Sue 2004 | 2.97
Mary | 2005 | 3.76

Form the join of R and S on Name.

Solution.

S
Name Major
Joe Mathematics
Sue Computer Science
Mary | Sociology

First, form the database Cartesian product R x S.

Database Cartesian Product of R x S
Name | Class | Average | Name Major
Joe 2004 | 3.14 Joe Mathematics
Joe 2004 | 3.14 Sue Computer Science
Joe 2004 | 3.14 Mary | Sociology
Sue 2004 | 2.97 Joe Mathematics
Sue 2004 | 2.97 Sue Computer Science
Sue 2004 | 2.97 Mary | Sociology
Mary | 2005 | 3.76 Joe Mathematics
Mary | 2005 | 3.76 Sue Computer Science
Mary | 2005 | 3.76 Mary | Sociology

209

Now, form the equijoin: Extract the subset of R x § for which the entries for Name are

equal, giving R’.

RxS
Name | Class | Average | Name Major
Joe 2004 | 3.14 Joe Mathematics
Sue 2004 | 2.97 Sue Computer Science
Mary | 2005 | 3.76 Mary | Sociology

Finally, project R x S on {Name, Class, Average, Name, Major} — {Name} to form the
join of R and § on Name.

RxS
Name | Class | Average Major
Joe 2004 | 3.14 Mathematics
Sue 2004 | 2.97 Computer Science
Mary | 2005 | 3.76 Sociology

One of the problems with database queries involves the complexity of finding the join
of two relations. A join on more than a single attribute can be defined. The first example
had three common attributes. The algorithm for finding the join makes the complexity of

this operation cle

arer.

210

CHAPTER 3 Relations

Algorithm: Join Two Relations

INPUT: Relations R and § with common attributes By, Ba, ..., B;
OUTPUT: Relation J that is the join of Rand S on By, Bz, ..., B;
J=0

for each tuple x € R do

Select all tuples y € § whose values on By, ..., B;
are all the same as x’s

for each such tuple y do
Form a tuple z by concatenating x with y

Eliminate the duplicate entries for attributes
Bi, By, ..., Bj, creating a tuple 7/
J=JU{}

Example 3. Use relational algebra, applied to the relations Registration and Teaching-
Assignments, to find a list of all professors who have either René Descartes or Winston
Churchill as students.

Solution. First, form the natural join of Registration and TeachingAssignments. Then,
select all tuples in the joined relation with student René Descartes or Winston Churchill.
The result is shown in Table 3.19.

Table 3.19 Step1Join

Step1Join
Student Department Course | Section Professor
René Descartes English 101 4 William Morris
Winston Churchill | English 101 4 William Morris
Winston Churchill | Mathematics 101 1 David Hilbert
Winston Churchill | Mathematics 101 1 Leonardo of Pisa
René Descartes Computer Science | 103 3 Alan Turing

Finally, project the Step{Join relation onto the attribute set {Professor}, and remove
any duplicate entries. The resulting relation is shown in Table 3.20.

The relation Professor answers the question of which professors have either Winston
Churchill or René Descartes as a student, u

311
1

Exercises 1

Table 3.20
Projection

Professor

William Morris
David Hilbert
Leonardo of Pisa
Alan Turing

ercises

. What operations can you apply to the sample relations in Section 3.10.1 to get the

following relations?

(a) Professors and the departments in which they teach courses.

(b) Students and professors from whom they take courses.

(c) Professors and the chairs of the departments in which they teach courses.

(d) Pairs of departments that currently provide courses with the same number. So,
having {English, Mathematics} in the relation would assert that both departments
have courses with a number such as 101.

. Use the operations of relational algebra and the sample relations in Section 3.10 to

extract the following information:

(a) The students taking English courses.

(b) The students taking classes from Geoffrey Chaucer or Thomas Jefferson.

(c¢) The professors teaching courses in departments chaired by Carl Gauss or Alan
Turing.

(d) The students taking classes from professors who teach some class in a department
chaired by Carl Gauss or Alan Turing.

. Add to the course scheduling database a relation showing which courses are prerequi-

sites for which other courses. Create some sample entries to illustrate the relations.

. (a) Rewrite the two relations Registration and TeachingAssignments as binary relations

between people on the one hand and triples (Department, Course Number, Section
Number) on the other. Does this relation make more sense?

(b) Using this approach, why could you not do Exercise 1(d)? Suggest a meaningful
extra relation that would allow you to do Exercise 1(d).

. What simple operation on relations could you add to make it easy to list the number

of students in classes taught by Alan Turing? (Note: This problem asks you to design
a new type of query. Accordingly, it has no right or wrong answers, but some answers
will be simpler than others.)

Exercises 6 through 12 ask questions about the database shown in the three relations

Students, Grades, and Catalog:

212

CHAPTER 3 Relations

Students
SocSecNo Name Major Class Year
247617832 | Smith, John Mathematics 2005
477677251 | Brown, Mae English 2006
149867253 | Cyr, Pete Mathematics 2005
316719842 | Williams, Sue | English 2004
Grades

SocSecNo | CourseCode | Grade

316719842 | Math211 A
247617832 | Engll03 B
149867253 | Math214 A
149867253 | Engl103 A
316719842 | Math318 B
316719842 | Engl224 A
Catalog
CourseCode | Department | Credits
Math211 Mathematics 4
Engl103 English 3
Math214 Mathematics 3
Math318 Mathematics 4
Engl224 English 3

6. Find the join of Grades and Catalog.

7. Find the join of Students and Grades.

8. Find the join of Students, Grades, and Catalog.

9. Find all students who received an A in a course.

0. Find the department and number of credits for any course in which a student received
an A.

11. Find all second-year students who received an A.

12. Find the departments in which a student received an A in one of that department’s

courses.

Chapter Review

The idea of a relation gives a format for studying mathematical and nonmathematical re-
lationships. Forming the composition of relations and defining the inverse of a relation
are fundamental operations on relations. The common properties of relations such as =,
<, and C are abstracted to define what it means for a relation to be reflexive, irreflexive,
symmetric, antisymmetric, and transitive. Finding the reflexive, symmetric, or transitive
closure of a relation identifies the smallest relation containing a given relation with a given

Chapter Review 213

property. Focusing on reflexive, symmetric, and transitive relations leads to equivalence
relations and partitions. Focusing on antisymmetric and transitive relations leads to par-
tial and total orders. When discussing ordering relations, it is important to understand the
notion of comparable elements. Special comparable elements include minimal, minimum,
maximal, and maximum elements. Finally, the chapter deals with relations in the context
of the operations that are used by a relational database.

Applications in this chapter include lexicographical or dictionary ordering, finding a
minimal element, and embedding a partial order in a total order. The examples dealing with
relational databases point out the operations that are used for processing queries in such a

database.

3.121 Summary

31and3.2 Summary

TERMS

binary relation
composition
deck of 52 cards
empty relation
equality relation
family tree
identity relation
inverse
irreflexiv

n-ary relation

34 Summary

TERMS
antisymmetric
graph
irreflexive

nth power of R
Rt

R*

reflexive

THEOREMS

A relation R on a set X is reflexive if and
only ifIDy C R.

A relation R on a set X is irreflexive if and
onlyif RNIldy = ¢.

A relation R on a set X is symmetric if and
onlyif R = R~L.

A relation R on a set X is transitive if and
onlyif Ro R C R.

n-tuples

property

query

relations

ternary relation
trivial relation
unary relation
universal relation
void relation

reflexive closure

reflexive and transitive closure
symmetric

symmetric closure

transitive

transitive closure

The reflexive closure of a relation R on a
set X is R U IDy.

The symmetric closure of a relation R on a
set Xis RUR™L.

The transitive closure of a relation R on a
set X is Rt.

The reflexive and transitive closure of a
relation R on a set X is R*.

214

CHAPTER 3 Relations

3.6 Summary

TERMS

congruent

divisible by
equivalence class
equivalence relation
partition

THEOREMS

Let P be a partition of a set X. Forx -

quotient
refines
remainder

x =7y (mod p)

y € X, define x ~ y to mean that x and y are in the

same element of the partition. Then, ~ is an equivalence relation. The equivalence classes

of ~ are exactly the elements of P.

38 Summary
TERMS

above

ASCII code

below

comparable

dictionary ordering
divides

embedding

law of trichotomy
lexicographical ordering
linear ordering

ALGORITHMS

Finding a Minimal Element

310 Summary

TERMS

attribute
cartesian product
database
equijoin

join

natural join
projection
quadruples

ALGORITHM

Join Two Relations

maximal

maximum

minimal

minimum

optimal

partial ordering
strict partial ordering
total ordering

query

relational algebra
relational database
selection

table

tuples

value

Chapter Review 215

3.12.2 Starting to Review

1.

Let A = {1, 2, 3, 4}. Define a relation R of A as R = {(1, 3), (4, 2), (2, 4), (2, 3),
(3, 1)}. Which of the following properties does this relation not possess?

(a) Reflexive
(b) Symmetric
(¢) Transitive
(d) All of the above

Which of the following relations defined on X = {1, 2, 3} is an equivalence relation?

(@ {(1,2),(2,2), (3, 3}

®) {(1,1),(2,2),(2,2),(2, 1), (3,3),(1, 1)}

(© {(1,1),(1,2),(1,3),(2,2),(2,1),(3,3), 3, 1)}
(d) All of the above

. Let R be a relation on a set S. R is circular if, for x, y, z € S, whenever x R y and

¥ R z, it follows that z R x. Which of the properties do a reflexive and circular relation
possess?

(a) Irreflexive

(b) Transitive

(c) Antisymmetric
(d) None of the above

. Which of the following relations defined on X = {1, 2, 3} is a partial order?

(@ {(1,1),(2,2),(3,3)}

(b) {(1,2),(1,2),(2,2),(3,3)}

(© {(1,1),(2,1),2,2),(1,3),(3,3)}
(d) All of the above

. Given the following graph of a partial order R on X ={1, 2, 3, 4, 5}, list all the ordered

pairs (x, y) such that x R y.

. Let R be a partial order on a set X, and let x € X. The element x is a minimal element

in R if:
(@) x <yforally € X.
(b) x < yforall y € X such that y # x and y is comparable to x.

(¢) x < yforall y such that y € X and y is comparable to x.
(d) None of the above.

216

CHAPTER 3 Relations

7.

10.

Prove that {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6,6), (1, 5), (2, 4), (2, 6), (4, 6), (6, 4),
(6, 2), (4, 2), (5, 1)} is an equivalence relation. Find the distinct equivalence classes
for this equivalence relation.

. IfA={1,2,3,4, 5} and R is the equivalence relation on A that induces the partition

A={1,2}U{3,4}U {5}

what is R?
What are the minimal and maximal elements in the following diagram of a partial
order?

«Q
[Ay

¢ ®f

.

What is the difference between a maximal element and a maximum element in a partial
order on a set X?

3.12.3 Review Questions

1.

Prove or find a counterexample to the following conjectures about relations Ry and R;.

(a) If Ry and R, are reflexive, then R| o R, is reflexive.

(b) If R; and R, are irreflexive, then R| o R; is irreflexive.

(c) If Ry and R; are symmetric, then R o R is symmetric.

(d) If Ry and R; are antisymmetric, then R o R; is antisymmetric.
(e) If Ry and R» are transitive, then R] o R is transitive.

For x, y € Z, define the relation R asx Ry if andonlyif x + yis odd. Is R Reflexive?
Symmetric? Transitive? Prove, or give a counterexample.

. Let R be a relation defined on {a, b, c, d} such that

R = {(a,a), (b,), (c,a),(d.d), (a,]), (b,d), (a,d)}

Find the symmetric closure of R.

. Find the transitive closure of the relation R = {(1, 2), (2, 3), (3, 4), (4, 1)}. Show R!

for all values of i that give new elements of the transitive closure.

. Define the relation R on R x R such that for any (x, y), (4, v) € R x R, we have

(x, ¥) R (u, v) if and only if y = v. Prove that R is an equivalence relation.

Let R be a binary relation on the set of all strings of 0’s and 1’s such that R = {(x, y) :
strings x and y contain the same number of 0’s}. Is R Reflexive? Symmetric? Anti-
symmetric? Transitive? An equivalence relation?

The oddness or evenness of an integer is called its parity. Prove that the relation “have
the same parity” is an equivalence relation. Find the distinct equivalence classes of this
equivalence relation.

. Four friends—Bill, Chuck, Maria, and Susie—are seated around a table. Define a re-

lation ARRANGE to contain a pair (Arrl, Arr2) of seating arrangements for these four
people around a round table if Arr]1 can be obtained from Arr2 by shifting each person

10.

11.

12.

Chapter Review 217

the same number of places 1o the right or to the left. Prove that this relation is an equiv-
alence relation. How many equivalence classes are there, and what are the members
of each equivalence class? Can you conjecture how many equivalence classes there
would be if there were n friends?

. Let R be a reflexive relation on a set A. R is an equivalence relation if and only if

(a, b), (a, c) € R implies that (b, ¢) € R.

Let T be arelation on A, and let R be a reflexive and transitive relation on A. Prove that
T is an equivalence relation on A provided (a, b) € T if and only if (a, b), (b, a) € R.
Let R; be a partial order on S and R; a partial orderon T'. For (s1, #1), (s2,2) € S x T,
define (51, #1) R3 (52, &) if and only if s; R 52 and #; R; t;. Prove that Rj is a partial
order.

Let X = {1, 2, 3, 4}, and let P(X) be the power set of X. Let P(X) be partially ordered
by set inclusion. Find an embedding of this partial ordering into a total ordering.

3.124 Using Discrete Mathematics in Computer Science

Definition. An upper bound of two elements in a partial order is an element that is
greater than both of the elements. A least upper bound is an upper bound that is smaller
than any other upper bound. A lower bound of two elements in a partial order is an element
that is less than both of the elements. A greatest lower bound is a lower bound that is
larger than any other lower bound.

1.

2.

Find the least upper bound and the greatest lower bound of each pair of elements in the
partial order represented by the following diagram:

h
f g
e
d
b c
a

Find the least upper bound and the greatest lower bound of each pair of elements in the
partial order represented by the following diagram:

f g
e
d
b c
a

218

CHAPTER 3 Relations

3. Define the relation D on N so that n D m if and only if n | m. An upper bound of two

natural numbers in D is a natural number that both divide. The smallest such natural
number is called the least upper bound and is denoted as [ub(,). For example, 6 is the
least upper bound of 2 and 3. A lower bound of two natural numbers in D is a natural
number that divides both numbers. The largest such natural number is called the greatest
lower bound and is denoted as glb(,). For example, the greatest lower bound of 4 and
6 is 2. Find:

(a) lub(13,29)
(b) lub(12, 60)
(c) glb(37,12)
(d) glb(48, 60)

. In drawing computer images of scenes, one must be able to tell which objects hide or

partially hide, other objects from view. Imagine a scene in two dimensions consisting
of a set L of line segments of various lengths drawn parallel to the x-axis. The line seg-
ments may intersect. For each of the following relations R on set L, is R antisymmetric?
Transitive?

(a) R(£,m) if there is at least one point on segment £ that can look parallel to the y-axis
and see a point on m (a line of sight may have zero length).
(b) R(£, m) if no point of £ can look parallel to the y-axis and see any point of m.

. Carry out a selection sort (defined in Section 1.7.1) on the words able, cane, bell, after,

stick, and belt. Explain how lexicographical ordering is used for each comparison.

. LetT ={A, B,C, D, E, F}, and define the partial order R on T as represented by the

following diagram:

N

NN

(a) Identify all maximal, maximum, minimal, and minimum elements of the partial
order represented by the diagram.
(b) Find a linear order on T where R — Idr C S.

. (a) Prove that logical equivalence is an equivalence relation on the set of all formulas

of propositional logic.

(b) Show that as long as we have infinitely many proposition letters, there are infinitely
many equivalence classes. (Hint: Once you see the idea, this is pretty trivial.)

(c) Show that for logical equivalence on the set of all formulas in which the only propo-
sition letters are p1, p3, ..., pn, there are 22" equivalence classes.

Functions

In the study of mathematics, functions provide an important unifying concept. Functions
are also familiar in computer science as components of programs that formalize the rela-
tionship between the input and the output for a computation. The problem of designing a
combinatorial circuit often starts by defining a function that describes the behavior of the
circuit for each possible input. Using functions to describe the behavior of a circuit, we
can use techniques of Sections 2.5.2 and 2.5.4 to draw the combinatorial circuit with the
same behavior. Since functions are special kinds of sets or relations, we will study them
here using the ideas introduced in Chapters 1 and 3.

First, we define both functions and several fundamental properties of functions. Next,
we deal with operations on functions, and basic properties of functions resulting from the
operations introduced are explored. We explain special properties of functions, such as how
many objects are related to a single object by a given function. Examples of functions with
each property are given to help understand and differentiate among the properties that func-
tions may possess. We discuss the Pigeon-Hole Principle and the Generalized Pigeon-Hole
Principle, the applications of which include such different ideas as proving that rational
numbers have a repeating decimal expansion and that two students in a small class will
have a birthday on the same day of the week. Finally, we show how functions provide a
way to formalize the notion of counting, and we see how to count the number of elements
in both finite and infinite sets. In the context of counting rational and real numbers, Can-
tor’s first and second diagonal arguments are introduced. These diagonal arguments come
up in many computer science contexts, especially in the theory of computation and the
analysis of algorithm complexity.

Basic Definitions

Intuitively, a function is a black box into which we put objects and out of which come
other objects. A function must satisfy two rules. First, if an object is put in, then something
must come out. Second, for each object input, there is only one possible output. If the same
object is put in several times, then the same output must come out each time. No matter
how many times one asks on what day Julius Caesar was born, the answer is always the
same.

219

220

CHAPTER 4 Functions

Figure 4.1 shows a picture to keep in mind when thinking about functions.
X

AN

F

l

F(x)

Figure 4.1 Function.

Example 1.

(a) Visualize a classroom in which every student is seated at a chair. A function called
SeatOf, outputs the chair at which a student is sitting for each student in the class.

(b) One may specify a function even though one does not have enough information
whether in some or in all cases, to calculate its values. Let BirthDate be the func-
tion that accepts as input any person whose name appears in the current edition of the
Encyclopedia Britannica and that outputs that person’s birth date. No one knows the
true birth date of Euclid, but Euclid, like every other person, did have a birth date. So,
the function BirthDate still makes perfectly good sense. [|

Example 2.

(a) Let Zero be the function that accepts as input any real number r and that always
outputs 0. A function may be quite simple!

(b) Let X be any set. Let Idx be the function that accepts as input any x in X and that
outputs the same x. Idy is called the identity function on X.

(c) The function Floor accepts any real number as input and outputs the integer formed
by truncating the fractional part of the number input. For example, Floor(3.14159) =
(3.14159] = 3.

(d) The function Ceiling accepts any real number as input and outputs the smallest in-
teger greater than or equal to the number input. For example, Ceiling(3.14159) =
[3.141597 = 4. This function is also referred to as the greatest integer function. W

The output of a function may be more complex to determine.

Example 3. Let the function ParentsOf accept a person as input and output the ordered
pair

(person’s mother, person’s father)
Example 4.

(a) By contrast with Example 3, there is no function ParentOf that picks out a person’s
parent. Such a rule is not a function, since there are two parents, from which one must
be chosen as output.

(b) There is no function ChildOf that picks out a person’s child. One reason this may not
be a function is that some people have no children and, consequently, no object can be

Basic Definitions 2

output. Some people also have more than one child from which to choose, and in this
case, the function would not know which child to output. However, there is a function
ChildrenOf that assigns to each person the set of that person’s children. If a person has
no children, the output of ChildrenOf is the empty set (9).

We now define informally some basic vocabulary that will be more carefully defined
later. We will illustrate these terms with the function SearOf from Example 1.

The domain of a function is the set of all things that may be input to produce some
output. The domain is usually apparent from the definition of the function. For example,
the domain of SearOf is the set of all students in the classroom.

The range of a function is the set of all things that are output. The range of SearOf is
the set of all occupied chairs in the classroom. Once one knows the domain of a function,
one can determine the range by applying the function to each element of the domain.

The codomain of a function is the set of all values that are potential outputs. In in-
formal descriptions, codomains are often not specified. For example, it is perhaps most
reasonable to infer that the codomain of the function SeatOf is the set of all chairs in the
classroom, but it is also plausible to infer that the codomain is the set of all occupied chairs.
The codomain often cannot be determined from the description of the function alone; it
must be inferred from the rest of the discussion. In less formal treatments, the codomain
will often be implicitly defined. For example, in many mathematics courses, the codomain
of most functions is implicitly R. In other cases, as a convenience, the codomain is simply
assumed to be equal to the range.

Everything so far has been intuitively expressed in terms of a black box. A formal
definition of the term function is needed. Traditionally, there have been two ways to define
this term. The first is to consider a function to be a rule. The second is to consider a function
to be a specific kind of set. We will discuss the idea of a function as a rule first, since it is
familiar from both computer programming and mathematics courses. After dealing with a
function as a rule, we will discuss the idea of a function as a set. (We will give our formal
definition in terms of sets.)

411 Functions as Rules

The notion of a function as a rule is familiar to anyone involved in computer programming.
A function subprogram can be viewed as a series of instructions that tell how to calculate
an output from some input.

Example 5. The following rules define functions:

(a) Let H be the function with domain and codomain equal to N that outputs n/2 for even
inputs and 3n + 1 for odd inputs.
(b) Forn € N, compute Fact(n) = n! as follows:

input N

Fact =1

while N > 0
Fact = Fact+ N
N=N-1

print Fact

CHAPTER 4 Functions

It is important to realize that the code itself s not the function. Rather, the code is just
one way to implement the rule that defines the function. The function is just the relationship
between input and output. Consequently, many different rules may give rise to the same
function.

Example 6. The following two algorithms compute the same function:

(a) For any n € N, output cos(n -).
(b) Forany n € N, output (—1)".

The formal definition of equality of functions is given in Section 4.1.5. We will leave it to
the reader to verify that rules (a) and (b) define the same function.

Example 7. Show that the following rule does not define a function: Let F be the rule
with domain and codomain equal to N that outputs n* — 3n for each n input.

Solution. F(1) is not defined (since —2 is not in the codomain), so F is not a
function. n

4.1.2 Functions as Sets

We can use the notion of a relation to define a function by allowing the elements that are
related to belong to different sets. With this notion of a relation, a function is a special kind
of binary relation. For sets X and Y, any subset of X x Y that “obeys” the following two
rules is a function:

1. Each input corresponds to some output.
2. Each input corresponds to only one output.

The set X is the domain of the function. The set Y is the codomain of the function. The
idea is that a relation consists of the set of ordered pairs for which every element of X is
the first element of exactly one pair.

Definition 1. Let X and Y be sets. A function F with domain X and codomain Y is
a subset of X x Y such that, for each x € X, there is exactly one y € Y with (x, y) € F.
F is also called a function from X to Y. A function F from X to Y is often denoted by
F:X—>Y.

From this point on, rather than identifying the domain and the codomain of a function
as sets, we will assume that the notation F : X — Y implies this.

Example 8.

(a) Suppose a class consists of three students. Jean sits at the second chair in the first row,
Michele sits at the sixth chair in the fourth row, and Paul sits at the 37th chair in the
53rd row. For this class, the function SeatOf is the set

{(Jean, Row1Seat2), (Michele, Row4Seat6), (Paul, Row53Seat37)}
(b) Let

DayOfWeek = {Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday, Sunday}

Basic Definitions 223

There is an obvious function:

NextDay: DayOfWeek — DayOfWeek

Monday Tuesday
Tuesday Wednesday
Wednesday Thursday
Thursday Friday
Friday Saturday
Saturday Sunday
Sunday Monday

The binary relation defined by this function consists of the following ordered pairs:

{(Monday, Tuesday), (Tuesday, Wednesday), (Wednesday, Thursday),
(Thursday, Friday), (Friday, Saturday), (Saturday, Sunday),
(Sunday, Monday)}
Example 9. The factorial function Fact from Example 5(b) is the set
{(0,D,(1,D,(2,2),(3,6), 4, 24), (5,120), ..., (n,nl), ...}

We now introduce a common vocabulary for functions.

Definition 2. Let F : X — Y be a function, and let (x, y) € F. Then, y is the image of
x under F, denoted by y = F(x). We also say that x is mapped to y by F. The range of
F is the set

range(F) = {F(x) : x € X}
For y € Y, the preimage of y under F, denoted as F ~1(), is the set
Flo)={xeX: F(x) =)
For Y’ C Y, the preimage of Y’ under F, denoted as F~1(Y"), is the set
Flyy={xeX:Fx)eY'}
We refer to X as domain(F) and Y as codomain(F).

Example 10. For the function F :{1,2,3,4,5} - {a,b,c,d, e} defined as F(1) =
a, FQ)=b, FR)=b, F(4) =d, and F(5) = c, identify domain(F), codomain(F),
range(F), F~1(a), F~'({a, b, c}), and F~!(e).

Solution. domain(F) =1{1,2,3,4,5}); codomain(F) =1{a,b.c,d,e}; range(F) =
{a,b,c.d}; F~Y(a) = {1}; F~'({a, b, ¢}) = {1,2,3,5); F1(e) = 0. [|

You may find the range of a function referred to as the image of the function. In
Example 4.1a, the range of function SeatOf is the set of all chairs in the room that have
someone sitting on them. For another example, the addition function + on Z maps the
ordered pair (3, 5) to 8. The domain of + is Z X Z, and the codomain is Z. If F : X2y,
then F is called a binary function from X2 to Y. Addition as well as the other familiar
arithmetic operations defined on the integers are binary functions from Z? to Z.

224

CHAPTER 4 Functions

41.3 Recursively Defined Functions

When a function F is defined by a formula, we can find the value of F at any element
of its domain without knowing its value at any other element of its domain. For example,
consider the function ¥ : N — N defined by the rule F(n) = 3n 4+ 2. We can compute
directly that F(100) = 3100 + 2 = 302 or that F(3112) = 33112 4+ 2 = 9338.

Functions, however, are not necessarily defined in such a straightforward manner. Con-
sider the function G : N — N defined as G(0) = 2 and, forn > 0, G(n) = G(n — 1) + 3.
Then, G(1) = G(0) + 3 = 2 + 3 = 5. The following computation shows how G (5) would
be determined:

GO =G4 +3
=G3)+343
=G2Q)+3+3+3
=G +3+3+3+3
=GO)+3+3+3+34+3
=2+4+3.5
=17

If we now wanted G (3112), we would first need to compute G(1), G(2), ..., G(3111).In
this situation, we say that G is defined recursively or is given by a recursive definition.

As you might suspect from the computation of G(5), the two functions F and G are
actually the same; that is, F(n) = G(n) forevery n € N. In Section 1.10.1, F was described
as a closed form for G.

Example 11.

(a) The function F : N — N defined as F'(r) = 3" can be defined recursively as F(0) = 1
and Fn) =3.-F(n—1)forn > 1.

(b) The sum of the first k of n elements ay, az, . . . , a, can be defined directly as SUM (k) =
a; +az + -+ a, where 1 <k < n. Recursively, the same function can be defined as
S()=a;and Stk) =Stk — 1) + ax fork > 1.

(c) The sum of the first » terms of a geometric series a + ac + ac* + ac® + -+ - + ac"!
can be defined as gs(0) = a and gs(k) = gs(k — 1) + ac* fork > 1.

(d) The harmonic sequence that consists of the terms 1,1/2,1/3,...,1/n, ... can have
the sum of its first k terms defined as the function H(1) = 1and H(k) = H(k — 1) +
1/k fork > 1.

We introduced the Fibonacci sequence in Section 1.7.3. This sequence of values
(1,1,2,3,5,8,13,...) was defined recursively; that is, no direct formula was given for
finding the nth element of the Fibonacci sequence. Unlike the functions in Example 8, two
terms are given as initial conditions for termination conditions in defining the nth element
of the Fibonacci sequence successively in terms of smaller Fibonacci numbers. The defini-
tion of the Fibonacci sequence is F(0) =1, F(1) = l,and F(n) = F(n — 1) + F(n — 2)
for n > 2. The first five terms of the Fibonacci sequence are found as follows:

Basic Definitions 225

FO)=1
F()=1
FQ=F()+FO) =1+1=2
F@) =FQ+Fl)=24+1=3
F@=F3)+FQ2)=3+2=5

A recursively defined function may involve any number of initial values in determining
a next value.

Example 12. Find the first six values of the function defined on N given by F(0) = 2,
F(1)=3,F2)=5,and Fn) =2F(n—1)+3F(n —2)+ F(n — 3) forn > 3.

Solution.
FQ)=2FQ)+3F)+ F0)=10+94+2=21

F4)=2F3)+3FQ) + F(1) =42+ 15+3 =60
F(5) =2F@) +3F(3)+ F(2) = 120 + 63 + 5 = 188 »

4.1.4 Graphs of Functions

Since functions are relations, they have graphs. Figure 4.2 shows part of the graph of the
function Floor.

y
1 o points not included
1s — in the line
+1 o——
+ t 9 t X
-3 -2 -1 1 2 3
Ot —1
Oo— F =2
o— =3

Figure 4.2 Graph of Floor.

Let G be the graph of a function with domain X € R x R. G is the graph of a function
if whenever xp € X, the vertical line x = xg intersects G in exactly one point. We call this
test the vertical line test for a function. Figure 4.3, on page 226, shows a subset of R x R
that is not a function, since the vertical line x = 1 cuts the graph in two places.

When a function has a “small” set as its domain and a “small” set as its codomain,
such as the function F : {0, 1,2} — {3, 5, 7} defined as F(0) = F(1) =5and F(2) =7,

226

CHAPTER 4 Functions

~

©3F 1021

> X
(-3,0) 1 3,0

(Ov —-3)

Figure 4.3 Graph of a relation that is not a function.

we often represent such functions by a diagram such as that shown on Figure 4.4. The
lines joining an element on the left in Figure 4.4 with an element on the right represent
the association between elements of the domain and elements of the codomain that we
interpret as the rule for F. For example, we interpret the line between 0 and 5 as meaning

F0) =5.

F:{0,1,2}) — {3,5,7}

Figure 4.4 Representation of a function.

The elements of the domain and of the codomain can be listed in any order. Sometimes,
a picture of this sort makes functions defined on N easier to understand. This representation
can also be used for some “large” sets.

415 Equality of Functions

Since functions are defined as subsets of a product of two sets—that is, as sets of ordered
pairs—two functions are equal when they are equal as sets.

Definition 3. Let F, G : X — Y be two functions. The functions F and G are equal if
and only if they contain the same ordered pairs.

Example 13. Let Sqry be the function from N to N defined by the rule Sqry(n) = n.
Let Sqrg be the function from R to R defined by the rule Sqrg (r) = r?. Then, Sqry and
Sqrr are not the same function, since (1.1, 1.21) € Sqrg but (1.1, 1.21) & Sgry.

Basic Definitions 227

Theorem 1. Let F and G be functions such that F = G. Then,
domain(F) = domain(G)
range(F) = range(G)
and, for each x € domain(F), F(x) = G(x).

Some authors would insist that for two functions to be equal, their codomains must
also be the same. We do not insist on that condition for the equality of two functions.

Boolean Functions and Combinatorial Networks

A boolean function of n boolean variables is a function of the form
B:{0,1} x{0,1} x --- x {0, 1} — {0, 1}

The domain of B contains 2" elements. A value of either O or 1 is assigned to each entry
of the 2" ordered n-tuples. An example of a boolean function on three boolean variables is
shown in Table 4.1.

Table 4.1 Boolean
Function of Three

Variables
piq|r| Fp.g,r)
111141 1
110 0
110]1 1
11010 1
011 1
0(14}0 1
001 0
0({0]0 1

This function might represent a set of switches that react in an appropriate way or a
set of conditions that must be satisfied so that some action can be taken. It is useful to
be able to represent functions as in Table 4.1, but the real problem is often to embed this
function in a combinatorial network. We saw in Chapter 2, while discussing disjunctive
normal forms and conjunctive normal forms, how we can draw the combinatorial circuit
given one of these normal forms. In this case, we need to see how to represent a function
in terms of one of these normal forms.

For the function in Table 4.1, a disjunctive normal form is

F(p,q,r)=(pAgAr)V(pA—gAr)V(pA—gA-—r)
V(mpAGAR)NV(opAGATT) NV (ZpA—g A-r)

Consequently, the combinatorial circuit is the circuit shown in Figure 4.5.

CHAPTER 4 Functions

/

r >

p——— Aaghr
q N q p"7q
r , >

p——— .
q p/\ql\ r

q
r So—L|

prgnrn
v(pr-gArr)

[— v (p A =g
—__——5 v(—|p/\q/\r)

v(mprgnr)

q >

r ——————»|

p_D(’l_\:p/\q/\r
./

v(oprgrr)

q
r

Dot

-

p_Do_lt_\:pl\ql\ﬂr
-

p

b Pe=g “pAgAaT
g —Po—1»

r So—Lp

Figure 45 Combinatorial circuit for Fip, g, r).

Notice in Figure 4.5 that there are several inputs for a gate. This is as much for conve-
nience as for anything else, since we can obviously write a gate with three inputs as a set

of gates with two inputs each, as shown in Figure 4.6.

P —>
q —|
- ,

P —

q——»

r

: p/\q/\r

‘quw:wqm

Figure 46 Combinatorial circuit for multiple inputs.

4.1.6 Restrictions of Functions

It is easy to write an algorithm to compute Sgrg (x) = x? for x € R. By merely asserting
that only natural numbers should be used as input, one can make the same algorithm specify
Sqry, a function from N to N. This is an example of restricting a function to a smaller

domain. As usual, the formal definition is set theoretic.

Definition 4. Let A, B, and C be sets such that B € A. Let F : A — C be a function.
The restriction of F to B, denoted F | g, is a function from B to C defined as the set

Flg={(x,y)€ F:x € B}

Figure 4.7 shows two examples of restrictions of the function Sqrp.

Basic Definitions 229

y y y
15 4% o 4 o
1251
i 3+ 3
751 2t 2
l
254 I * ! °
t t t = x —— t t =X + T t > X
4 2 2 4 2 -1 1 2 -2 -l 1 2
Sarg Sqrplr—2,20 Sqrgl-2,-1,0,1,2)

Figure 4.7 Restrictions of Sgrg. A. Sgrg B. Sarrl[—2.27 C. Sarrl(—2,-1.0,1,2)-

4.1.7 Partial Functions

Think of a computer program as computing or specifying a function from the input of the
program to its output. The input to the function is whatever string of characters is input to
the program. The output is whatever string of characters has been output by the program
after it has finished execution. Anyone who has programmed a computer realizes that many
programs, on some input data, go into infinite loops and, by the definition above, would
produce no output at all. In that case, the program is not computing a function of the input,
since the definition of a function requires that there be one output for every one input. What
a program computes is really what is called a partial function of its input. On each input,
the program, if it produces any output at all, produces only one possible output. Thus, a
partial function can be thought of as a black box into which for each input there is at most
one possible output.

Another sort of partial function is the following: Suppose the amount of postage to
be paid is specified in Table 4.2 (where the range (3-4] kg is understood to mean that the
parcel weighs more than 3 kg but less than or equal to 4 kg). This table gives postage costs
only as a partial function of the weight of the package, since the postage amount is not
specified for anything weighing more than 16 kg.

Table 4.2 Postage Costs

Weight Postage
(0-11kg $1.00
(1-2]1kg $1.98
(2-3] kg $2.56
(3-4]kg $3.11
(4-5] kg $3.99
(5-8] kg $5.00
(8-12] kg $7.00
(12-16] kg $9.00

230

CHAPTER 4 Functions

The two examples we have given of partial functions actually reflect rather different
ways in which partial functions arise. In the postage example, the function was partial
because no rule was given for calculating the postage for items weighing more than 16 kg.
At some later time, someone may come back and extend the rule, perhaps by specifying
that items weighing (16-20] kg cost $10.89. In the computer program example, however, a
rule was given for all possible input data, but that rule failed to output anything for certain
values. The notion of a partial function gives a formal way to consider all programs—
even ones that crash or go into infinite loops. Partial functions are particularly important in
the theoretical study of computability—that is, in the study of which functions and partial
functions are computable by programs, where there is assumed to be no restriction on
computer memory or on computation time. There is no satisfactory way in this subject to
restrict attention only to functions.

Definition 5. A partial function F with domain of definition X and codomain Y is a
subset of X x Y such that for each x € X, there is, at most, one y with (x, y) € F. Such
an F is also called a partial function F from X to Y. When it is understood that F is partial,
the notation F : X — Y is also used (but when the notation F : X — Y is used without
any other comment, F is a function). The domain of a partial function F : X — Y is the set

{x e X: forsome yeV, (x,y) € F}

If x € X is not in the domain of definition for F, then F(x) is undefined. Other terms,
such as range and preimage, are defined exactly as for functions.

When F is a partial function, the implication is not that there is necessarily any x in
its domain of definition where F(x) is undefined, only that there might be. Hence, every
function is a partial function. When discussing both functions and partial functions that are
not functions, functions are often referred to as total functions to emphasize the difference.

Example 14. In Example 1(a) SeatOf was presented as a (total) function. It might be
slightly more realistic to present it as a partial function, however, since some people in the
room might not be sitting in seats. For example, they might be standing or sitting on the
floor. Asking what is the seat of a standing person should get no answer.

Example 15. The following are examples of partial functions:

(a) Subtraction (—) on N is a partial function. Its domain of definition is N2, and its
codomain is N. For i < j, i — j is not defined on N, so the domain of subtrac-
tion is

{(i, j)eN?:i> j)

The range of (—) is N. To show that an arbitrary n € N is in range(—), note that
n=n-—0.

(b) Division on R is a partial function. Its domain of definition is R?2, its codomain is R,
but its domain is

{(x,y) eR?:y # 0}

Its range is R. Why?

Basic Definitions 231

(c) For x e R, let Sgrt(x) be the non-negative square root of x. Then, Sqrt is a partial
function, since Sqrt(x) is undefined for x < 0. The domain of definition of Sgrt is R,
and its codomain is R. The range of Sgrt is [0, 00).

Let G be a subset of R. G is the graph of a partial function if, whenever xy € X,
the vertical line x = xp intersects G in at most one point. We call this the vertical line
test for a partial function. Figure 4.8 shows a subset of R x R that is not a function,
because the vertical line x = —1 does not cross the graph. Sqrt is a partial function,
since no vertical line defined by an element of its domain crosses the graph more than
once.

2 2 4 6 8

v
=

Figure 4.8 Graph of partial function Sgrt.

Whether a partial function is a total function depends on what the domain of definition
is defined to be. For example, it was noted that Sgrt is a partial function from R to R. If we
declare the domain of definition to be just the set [0, 0o), then Sgrt is a total function.

41.8 1-1and Onto Functions

Several special types of functions have turned out to be especially important. For exam-
ple, the intuitive notion of counting will be formalized using the properties of functions
introduced in this section.

Definition 6. Let F : X — Y be a function. F is I-1 if, for each y € Y, there is, at most,
one x € X such that F(x) = y.

Example 16.

(a) Let F : R — R be a function defined as F(x) = 2x. F is I-1.
(b) Let G : N — N be a function defined as G(n) = 2n2 4+ 1. G is not 1-1.

Solution.

(a) Since F(x1) = F(x2) means 2x; = 2x», it follows that x; = x3 and F is I-1.
(b) Since G(2) = G(-2), the function G is not I-1. [}

232

CHAPTER 4 Functions

The function SeatOf (from Example 1(a) in Section 4.1) is -1 if and only if exactly
zero Or one person is sitting at each chair (and every student is seated at exactly one chair).

Figure 49 7-7 Function SeatOf.

Figure 4.9 shows a I-1 SeatOf function, and Figure 4.10 shows a similar function,
SeatOf |, that is not I-1.

Figure 410 Function SeatOf,.

The function H (x) = x2 is not I—I. This is shown in Figure 4.11. Let G be the graph of
a function with codomain ¥ € R. G is the graph of a /-] function if, whenever yp € Y,
the line y = yp intersects G in, at most, one point. We call this the horizontal line test for
1-] functions.

y

r 3

10 1

8 L

6 +4
4

(=2,4) 2,4
2 +
} t > X
-2 2

Figure 4.11 H(x) = x2.

The horizontal line y = 4 crosses the graph in Figure 4.11 at more than one point.
Therefore, G is not I—I. On the other hand, the function F(x) = x>, as shown in Figure
4.12, on next page, is /-1, since each horizontal line crosses the graph in at most one point.

Definition 7. Let F : X — Y be a function. F is onto if, for each y € Y, there is at least
one x € X such that F(x) = y.

Another way to think of the definition of onto is that a function F : X — Y is onto if
and only if range(F) = codomain(F). Whether a function is onto or not depends on what
the codomain is defined to be. For example, the function Sgrt : [0, c0) — R is not onto.
However, if Sqrt is defined to be Sqrt : [0, 00) — [0, 00), then Sgrt is onto.

Basic Definitions

Figure 4.12 F(x) = x3.

The function SearOf,, as shown in Figure 4.13, maps the set of students in the class-
room onto the set of chairs in the classroom if every chair is occupied.

Figure 413 SeatOfs.

233

The function SearOf 5, as shown in Figure 4.14, is not, onto since one or more chairs
remain unoccupied. In this case, two chairs are unoccupied.

Figure 4.14 SeatOfs.

The function G(x) = x2, as shown in Figure 4.15, is not onto.

Figure 4.15

234

CHAPTER 4 Functions

The horizontal line test for /-/ functions can be easily modified to check whether a func-
tion is onto by simply requiring that each horizontal line defined by a member of the
codomain meet the graph of the function at least once. In Figure 4.15, the horizontal line
y = —6 does not intersect the graph of G at any point. This property of the graph of the
function corresponds to the fact that there is no number x such that G(x) = —6. Therefore,
G is not onto. On the other hand, the function F(x) = x3, as shown in Figure 4.16, is onto,
since each horizontal line crosses the graph in at least one point.

Figure 416 F(x) = x°.

Functions that are both /-7 and onto play a special role in counting the elements of
a set. Because functions of this class have so many applications, they have been given a
special name.

Definition 8. Let F : X — Y be a function. F is a I-1 correspondence if F is both /-1
and onto.

For example, the function SeatOf is a 1-1 correspondence if and only if each chair has
exactly one student sitting at it. The function F : R — R defined by F(x) = x3, as shown
in Figure 4.16, is also a /—I correspondence. The function G (x) = x2, as shown in Figure
4.15, is neither /-1 nor onto.

The function shown in Figure 4.17 is onto but not /—/.

y
10
7.5
5
25

—~t , . —x

-2 2 4 6 g 10

-2.5
-5
Figure 417 A function that is onto 75

but not 7-7.

Basic Definitions 235

The function exp : R — R defined as exp(x) = ¢* and shown in Figure 4.18 is -]
but not onto.

—
»

-~
=)
t

Figure 4.18 expix).

The functions defined here have been constructed to show that the two properties 11
and onto are independent of each other. Two properties of a mathematical object are inde-
pendent if objects exist that can have exactly one of the properties, both of the properties,
or neither of the properties. For /-1 and onto functions, the four functions shown in Figures
4.15 through 4.18 demonstrate that the properties /—/ and onto are independent.

Commonly used synonyms exist for the properties of functions defined in Definitions
6, 7, and 8. A /-1 function is also called an injective function, or an injection. An onto
function is called a surjective function, or a surjection. A /-/ correspondence is called a
bijective function, or a bijection. Also, a /-I correspondence is often referred to simply
as a I-1 and onto function.

Applicatio_n: Hashing Functions

When you put a bank card into an ATM and enter your pin number, your bank account
records must be found so that your transaction can be authorized. This is an example of in-
formation in symbolic or numeric form (the information on the magnetic stripe on the ATM
card) being used to determine a location on some storage device (the physical location of
your records). A function that can take information as input and find a storage address as
an output is called a hashing function. For simplicity, at this point we will assume that a
hashing function is 7/—1.

Example 17. Define a hashing function that uses 63 storage locations as a four-stage
process with surnames as input. The first step is to replace the letters of the surname with
integers according to the following rule: A — 1, B - 2,C — 3,...,Y — 25, Z — 26.
The second step is to multiply the letter value by 2/ where i is the letter’s position in the
word, with the leftmost character being in position 1. The third step is to add the values
that represent the letters of the surname. The final step is to divide this sum by 63. The
hashing value is the remainder of this division. For example, Robb has a value of 144
and a hashing value of 18. You should imagine that the information needed for Robb is in

236

CHAPTER 4 Functions

storage location 18. Carry out this hashing procedure for Smith, Jones, Brown, Zento, and
Ruster.

Solution.

Steps 1 through 3 Step4 Hash Value
Smith = 19:2+13.22 +9.23+20.2% +8.25 =738 =11-63+45—> 45
Jones — 10-2+15-22 +14.23 4+ 5.24 +19.25 =880 =13.63+61—> 61
Brown —> 2-2 +18-22 +15.23 +23.24 +14-25 = 1012 =16-63+4 — 4
Zento — 26-2+5-22+14.23+20.24 +15.25 =984 =15-63+39—~ 39

Ruster — 18-2 +21:22 +19.23 +20.24 +5.25 + 18.20 = 1904 =30-63 + 14 —» 14

Each of these names can be located among a set of 63 storage locations, numbered 0, 1,
2, ..., 62, by using their hash value as the location to access. |

If any two names give rise to the same hash value, then an auxiliary rule, called a
collision resolution strategy, is used to make sure that each piece of information has its
own storage location that can be determined from the information alone and the given
collision resolution strategy.

How many students in your class can have their names hashed this way without gen-
erating a collision? (If your class has more than 63 students, simply change the function to
find the remainder when you divide by some number at least as large as the size of your
class.)

Application: Encryption and Decryption

In this age of electronic messaging, it is often important that only the intended receiver
of an electronic message can read it. If the security of a transmission is a problem, the
message can still be made secure if the original message has been encoded or encrypted
so that the symbols seen make no sense unless you know how to decrypt the message, that
is, return the encrypted message back to its original form. Here, we present an example of
the process of encoding and decoding a message. The method used is very simple and not
as powerful or secure as modern methods, but the example points out how an encryption
scheme interacts with a message, a user, and a receiver. The difficult problem today is
to find an encoding scheme that cannot be compromised through a brute force search by
a computer. More complex ideas from number theory lie at the heart of the best current
encryption methods. The encoding scheme presented uses a bijection from the symbol set
used in writing the message to the same symbol set. The sender of the message must use
the bijection to transform the message into a form that is not recognizable, and the receiver
must use the inverse of the coding function to decrypt the message received to return it into
plain text.

A very simple encoding scheme is to associate each letter of the alphabet (we
will only deal with uppercase letters) with two digits as follows: A — 00, B —
01, C->02,...,X - 23, Y - 24, and Z — 25. Define a function F (lettervalue) =
a(lettervalue) + b (mod 26), where a and b are integers and @ has no factor in common
with 26 and the sum is reduced modulo 26. For example, if a = 3 and b = 5, then

F(X) =3(23) 4+ 5 (mod 26) = 74 (mod 26) = 22 (mod 26)

A message such as

Basic Definitions

LEAVINGTODAY =1104002108130619 14030024

is transmitted as

F(11) F4) F(0) F(21) F(8) F(13) F(6) F(19) F(14) F(3) F(0) F(29)

The computation is shown in Table 4.3.

Table 43 Encryption Computation

F0) =3(0) +5(mod 26) =5
F(4) =34) + 5(mod 26) = 17
F(8) =3(8) + 5(mod 26) =3
F(13) =3(13) + 5(mod 26) = 18
F(19) = 3(19) + 5 (mod 26) = 10

F(3) = 3(3) + 5 (mod 26) = 14
F(6) = 3(6) + 5 (mod 26) = 23

F(11) = 3(11) 4 5 (mod 26) = 12
F(14) = 3(14) + 5 (mod 26) = 21
F(21) = 3(21) + 5 (mod 26) = 16

F(24) = 3(24) 4 5 (mod 26) = 25

The message that is sent is
121705160318231021140525
The message is transformed into the following string of symbols:
MRFQODSXKVOFZ

The problem for the receiver is to know the inverse function and then apply it to
each of these two digit pairs to see the original message. The inverse for F(letter) =
3(lettervalue) + 5 (mod 26) is a function of the same form—that is, G (lettervalue) =
a(lettervalue) + b (mod 26) where a and b are determined as follows:

G o F(lettervalue) = a(3 - lettervalue + 5) + b = lettervalue(mod 26)

We solve
3a = 1(mod 26) and 5a + b = 0(mod 26)

to get a =9 and b = 7. The inverse is G (lettervalue) = 9(lettervalue) + 7(mod 26). We
now compose these two functions to decrypt the message as shown:

GoF(LYG o F(E)G o F(A)G o F(V)G o F(I) G o F(N)G o F(G) G o
F(T)G o F(0)G o F(D)G o F(A)G o F(Y)
= G(12) G(17) G(05) G(16) G(03) G(18) G(23) G(10) G(21) G(14)G(05) G(25)
= 1104002108 1306 19 1403 00 24
=LEAVINGTODAY

419 Increasing and Decreasing Functions

The reader has probably already encountered increasing and decreasing functions in a
mathematics course. It is common to speak of a function as being increasing or decreasing
on an interval. The function defined on R,

F(x)=x?— 6x+12

238 CHAPTER 4 Functions

is decreasing on (—oo, 3] and increasing on {3, co). (You can see this from the graph of the
function.) The definition of the terms increasing and decreasing uses the familiar orderings
less than and less than or equal on R.

Definition 9. Let X, Y € R, and let F : X — Y be a function.

(a) F is increasing if for, all x1, x € X, x| < xp implies F(x1) < F(x2).
(b) F is strictly increasing if, for all x1, x5 € X, x1 < xp implies F(x1) < F(x2).
(c) F is decreasing if, for all x|, x3 € X, x| < xp implies F(x1) > F(x3).
(d) F is strictly decreasing if, for all x|, x5 € X, x; < x implies F(x1) > F(x3).

Example 18. The following functions are increasing:

(a) The function F : R — R where F(x) = x3is strictly increasing (see Figure 4.19).

y

A

0.6

v
=

Figure 413 F(x) = x3.

(b) The function Floor : R — N is increasing but not strictly increasing (see Figure 4.20).

y
Il o points not included
Lo 0 in the line
T+1 o——
— g + t t +—> x
-3 -2 -1 1 2 3
Ot —1
o— F—2
— T2

Figure 420 Floor.

Theorem 2. Suppose X C R and F : X — R is a strictly increasing function. Then,
Fisl-1.

Exercises 239

Proof. This proof is left as an exercise for the reader. []

Of course, the definitions of the terms strictly increasing and strictly decreasing do
not involve anything special about R, just that it has the relations < and <. Consequently,
a similar definition could be made for any linearly ordered, or even any partially ordered,
domain and codomain.

Exercises

1. Which of the following are functions? If not, why not?

(a) X is the set of students in the discrete mathematics class. For x € X, define g(x)
to be the youngest cousin of x.
(b) X is the set of senators serving in 1998. For x € X, define g(x) to be the number
of terms a senator has held.

(¢) Forx € R, define g(x) = |x/| x| |.

2. Let X=1{0,1,...,6,7} and Y ={8,10,12,...,20,22}. Define F:X — Y as
F(x) = 2x + 8. List the ordered pairs of the relation that define this function.

3. What are the domain and range of the addition function on the real numbers? On
Multiplication? Subtraction? Division?

4. Find the first six terms of the sequence with the elements defined as F (0) = 5, F(1) =
10,and F(n) = F(n—1) —2F(n — 2) forn > 2.

5. Find the first six terms of the sequence with the elements defined as F(0) = 1, F(1) =
3, FQ)=5,and Fn)=3Fn—1)+2F#n —2)—3F(n — 3) forn > 3.

6. Find both a function defined by a formula and a recursively defined function for the
following sequences:
(@ 1,3,5,7,9,11,13, ...
() 1,1,3,3,5,5,7,7, ...
@) 0,2,4,6,8, ...
(d) 1,2,4,8, 16, ...

7. Which of the following represent a partial function? A (total) function?

1 a 1 a 1 ea 1 a
3 c 3 c 3 ocC 3e—ec
4 e od 4

4 e—ed od 4 o—eod
i i i iv

8. Let X = {a, b}.
(a) There are nine partial functions F : X — X. List them.
(b) There are four functions F : X — X. List them.
(c) Listall /-7 functions F : X — X.
(d) List all onto functions F : X — X.
9. Let X ={-1,0,1,2} and Y = {—4, —2,0, 2}. Define the function F : X — Y as
F(x) = x2 — x. Prove that F is neither /-1 nor onto.

240

CHAPTER 4 Functions

10.
11.

12.

13.
14.

15.

16.

17.
18.

19.

List all /-1 and onto functions from {1, 2, 3} to itself.
Let A be a set with three elements and B be a set with two elements.

(a) How many different functions are there with domain A and codomain B?

(b) How many different functions are there with domain B and codomain A?

(¢) How many different /-I functions are there with domain A and codomain B?

(d) How many different /-1 functions are there with domain B and codomain A?

Determine which of the following functions are onto:

(@) F;:R — Rwhere Fj(x) =x%—1.

(b) F>: R — Z where Fp(x) = [x] ([x] is the “ceiling” of x).

(c) F3:7Z — Z where F3(x) = x3.

(d) Fs:R — R where Fy(x) = x3.

(e) For the linear ordering < on R, list all the increasing functions among parts (a)
through (d).

(f) For the ordering < on R, list all the strictly increasing functions among parts (a)
through (d).

Which of the functions in Exercise 12 are 1—1? Prove each of your answers.

Two months are equivalent if their 13th day must fall on the same day of the week in

every (nonleap) year.

(a) Show that the 13th day of the 12 months occur on seven different days of the week.
(b) Conclude that there must be at least one Friday the 13th in each year.

(c) Show that there are at most three Friday the 13th’s in any year.

(d) Show that the result is also true for leap years.

(Hint: Number the days of the year from 1 (January 1) to 365 (December 31), and then

show that the days representing the 13th days of these months occur on seven different

days of the week.)

Let A ={l, 2, 3, 4} and B = {a, b, c¢}. Define a function F : A — B as F(l) =a,

F(2) = b, F(3) = ¢, and F(4) = c. List the ordered pairs of the equivalence relation

R defined on A as x Ry if and only if F(x) = F(y). List the elements of the partition

of A determined by this equivalence relation.

Let Fo,1,2) be the set of all functions with domain and codomain equal to {0, 1, 2}. For

each of the following relations, prove that the relation is an equivalence relation. Also,

find the distinct equivalence classes of each equivalence relation. Let F, G € Fio,1,2;.

(@) F R G if and only if range(F) = range(G).

(b) F R G if and only if max(F) = max(G).

(¢) FRG ifandonlyif F(0)+ F(1)+ F(2) = G(0) + G(1) + G(2). For this prob-
lem, two functions are related if the sum of their images, seen as an operation in
the natural numbers and not in the function space, are equal.

Find two functions F, G : R — R where F # G but F |[0,1) = G |[0,1).
Let F : R — R with F(x) = x2. The following is a function from R to R :
ldg |[2,00) U Zero|02) U Fl(-c0,0)

Write an algorithm to compute this function.
Let A, B, and C be sets, and let F : A — C be a function. If B C A, prove that
Flp=Fn(@B x ().

Exercises 24

20. Prove that the function F : Z — Z defined as F(n) = n + 6 is a bijection.
21. For each of the following functions, prove that the function is /- or find an appropri-
ate pair of points to show that the function is not 7-1:

(@ F:Z—>Z
F(n) = n? forn >0
T]1-n? forn<o0

b F:R->R
_Jx+1 forxeQ
Fio) = {Zx forx ¢ Q

) F:R>R
_f3x+2 forxeQ
Fx) = {x3 forx ¢ Q

d F:Z->7Z
n+1 fornodd
Fn) = {n3 for n even

22. (a) Find functions from R to R that are:
1. strictly decreasing
ii. decreasing but not strictly decreasing
iii. neither increasing nor decreasing
iv. both increasing and decreasing
(b) Show that no F : R — R is both increasing and strictly decreasing.
(c) Find a subset X C R and a function F : X — X where F is both strictly increas-
ing and strictly decreasing.
23. Construct functions with the following properties:
(a) F :N — N such that range(F) = N and, for each n € N, there exist exactly two
solutions for the equation F(x) = n.

(b) F : N — Nsuchthat, foreachn € N, there are exactly n solutions for the equation
F(x) =n.

242

CHAPTER 4 Functions

24,
25.

26.

27.

28.

29.

30.

31

32.

Prove Theorem 3.

Using the numbering scheme for the letters of the alphabet as given in Section 4.1.8,
encrypt the message DISCRETE MATH IS GREAT using the function F(letter) =
17 (letter value) + 9(mod 26). List the letters of the encrypted message. Find the in-
verse function, and decrypt the message. (Hint: 23 - 17 = 1(mod 26).)

Using the numbering scheme for the letters of the alphabet given in Section 4.1.8,
encrypt the message DISCRETE MATH IS GREAT using the function F (letter) =
(11 (letter value) + 13) mod 26. List the letters of the encrypted message. Find the in-
verse function, and decrypt the message. (Hint: 19- 11 = 1(mod 26).)

For the American history fan: Consider the list of U.S. presidents up through Harry
Truman. Define the following “function” on all presidents before Harry Truman: The
successor of X is the person who followed X as president. Why is successor not a
function?

Define a function F : N — N such that F(n) =n — 10 if n > 100 and F(n) =

F(F(n+ 11))if n < 100.

(a) Show that F(99) = 91.

(b) Prove that F(n) = 91 for all n such that 0 < n < 100.

Let A, B, and C besets,andlet F : A — C and G : B — C be functions.

(a) What condition must F and G satisfy for F UG to be a function from A U B
to C?

(b) Give conditions on A and B such that F U G is a function for every F : A — C
and G: B — C.

Let F be a function, and let C, D € domain(F).

(a) Prove that range(F |cnp) < range(F |c) Nrange(F |p).
(b) Show by example that equality need not hold in part (a).

If looked at appropriately, the definition of a function as a set of ordered pairs and the

intuitive notion that a function is something given by a rule are equivalent. Develop

that equivalence here. Assume that F has a finite domain {0, 1,2,...,n — 1} and a

finite codomain {0, 1,2, ...,m — 1}.

(a) Suppose F is a function given as a set of ordered pairs. For an input x1, give a rule
for calculating F(x1). Use F (or its graph) in your rule.

(b) Suppose the function F is given by a rule. Express F as a set of ordered pairs.

Find a combinatorial circuit for each of the following boolean functions:

(@

[p \ g || F(p,q)

Operations on Functions 243

(b)
plg|r| Fip,gr)
1|11 1
1110 1
1101 0
1100 0
0|11 0
0|1/|0 1
0|0]|1 0
0/0|o0 1
(©)
plg|r | Fip,gr)
1|11 0
1{1]0 1
1101 1
1(0]o0 0
0|11 1
0|1/0 1
0/0]1 1
0jo]o 0

Operations on Functions

Since functions and partial functions are special types of binary relations, all operations
defined on binary relations can be applied to functions. The most interesting operations,
however, are composition and inversion.

4.3.1 Composition of Functions

The definition of the composition of functions is exactly the same as that of the composition
of relations. We merely restate it here using the vocabulary of functions.

244

CHAPTER 4 Functions
Definition 1. Letboth F: X — Y and G : Y — Z be partial functions. The composi-
tion of G and F is
GoF={(x,z2)eXxZ: forsomeyeY, y=F(x)andz= G(y)}

Thus, (G o F)(x) = G(F(x)).

It turns out that the composition of two functions is always a function.
Example 1. Start with the SeatOf function for a class:

SeatOf = {(Jean, Seat2), (Michele, Seat5), (Paul, Seat3)}

Assume that just before the class started, workers finished repainting the desks in the fol-
lowing colors:

ColorOfSeat = {(Seat], red), (Seat2, red), (Seat3, green), (Seat4, green), (Seat5, red)}
The definition of ColorOfSeat o SeatOf is
{(x, z) : forsome y, y = SeatOf(x) and z = ColorOfSeat(y)}

Now, unravel that definition. Start with x = Jean. Since SeatOf is a function, there is ex-
actly one object y = SeatOf (Jean), which is Seat2. Figure 4.21 shows this procedure.

Jean SeatOf (Jean) = Seat 2
Figure 421 Jean and SeatOf{Jean).
Since ColorOfSeat is a function, there is exactly one object z = ColorOfSeat(Seat2), which

is red. This object can also be referred to as ColorOfSeat(SearOf(Jean)). Figure 4.22 shows
this procedure.

SeatOf(Jean) =Seat 2 ColorOfSeatOf(Jean) = Red

Figure 4.22 Jean, SeatOf(Jean) and ColorOfSeat(SeatOf(Jean)).
The same sort of analysis holds also for ColorOfSeat (SearOf (Michele)) and ColorOf-
Seat(SeatOf(Paul)). The function is given as
ColorOf o SeatOf = {(Jean, red), (Michele, red), (Paul, green)}

In general, composition of functions is a function. The operation can even be stated
for partial functions.

Operations on Functions 245

Theorem 1. Let X, Y, and Z be sets. Let both F: X — Y and G : Y — Z be partial
functions. Then, G o F is a partial function from X to Z. Moreover, for every x € X, the
following hold:

(a) If F(x) is undefined, then (G o F)(x) is undefined.

(b) If F(x) is defined but G (F(x)) is undefined, then (G o F)(x) is undefined.

(c) If F(x) and G(F (x)) are defined, then (G o F)(x) is also defined, and (G o F)(x) =
G(F(x)).

The proof of Theorem 1 is omitted, since it is just a formalization of the discussion in
the example above. One important corollary to Theorem 1 is used all the time. This corol-
lary says that the composition of functions is an associative operation, just like addition
and multiplication with real numbers as well as union and intersection of sets.

Corollary 1: Let F: X > Y, G:Y — Z, and H : Z — W be functions. Then, F o
(GoH)=(FoG)oH.

Corollary 4.1 follows from Theorem 3 by reducing both F o (G o H)(x) and (F o
G) o H(x) to F(G(H(x)).

For functions F and G, one often defines G o F(x) to be G(F(x)). Since we have
already defined the operation o on relations in Section 3.2.2, we only had to show that
(G o F)(x) is the same as G(F(x)).

Example 2 shows that the composition of functions is not a commutative operation.

Example 2. Let G: N — Nand H : N — N be given by the rules G(n) = n?+ 1 and
H(@n)=2".Then, (Ho G): N — N,and foralln € N, we have (H o G)(n) = onP+l, By
contrast, (G o H)(n) = 22" + 1.

Earlier, we studied /-7 and onto functions. It is now natural to ask whether the com-
position of -1 functions is /-1 or whether the composition of onto functions is onto. We
answer these questions in Theorem 2.

Theorem 2. LetF: X — Y and G : Y — Z be functions.

(a) If F and G are both I-1,then G o F is 1-1.

(b) If F and G are both onto, then G o F is onto.

(c) If F and G are I-I correspondences, then G o F'is a -1 correspondence.
(d) If Go Fis I-1,then F is 1-1.

(e) If G o F is onto, G is onto.

Proof. These proofs are left as exercises for the reader.]

4.3.2 Inverses of Functions

Recall the definition of the inverse of a relation given in Section 3.2.1. For any relation R
defined on a set X,

R"1={(y,x)€XxX:(x,y)eR}

Since functions are relations, they also have inverses.

246

CHAPTER 4 Functions
Definition 2. Let F = {(x,y) € X x Y : F(x) = y} be a function. The inverse of F,
denoted by F~!, is the relation

Fl={(nx) eYxX:Fx)=y)

Example 3. Consider a business where each employee has an employee number and no
two employees have the same number. The function

EmpINoOf : Employees — EmplNos

and its inverse, EmpINoOf !, are pictured below in Figure 4.23.

Employees Employee
N Erplbto0f Records
s \ 31852

EmpiMoOf

43,765
EmplWith

i

EmpIMoOf 37,895

EmplWith

EmpIMoQf 45,722

|

EmplWith

i
PR

\

Figure 423 Employee functions.

The function EmplWith, as shown in Figure 4,23, would normally be a partial function
since employee numbers are very rarely a set of consecutive integers. The gaps between
employee numbers would represent values for which the function is not defined.

Example 4. Define two functions, Succ and Pred, from Z to Z. Let Succ(z) = z + 1 and
Pred(z) = z — 1. We can show that Pred~! = Succ.

Solution.
Pred ={(z,z—1):z €Z}
And

Succ = {(z,z+ 1) :z€Z}
={(z1 = 1,z1):z1 € Z} (substitutez; =z+ 1)
={(z—1,2):z€Z} (substitute z for z;—since z is no longer in use,
it can be reused)
= Pred™! [|

Operations on Functions 247

The inverse of a function F is not always a function or a partial function. If, however,
F is 1-1 or a 1-1 correspondence, then we have Theorem 3.

Theorem 3. Let F : X — Y be a function.

(a) F~!is a function from Y to X if and only if F is a /-1 correspondence.
(b) F~!is a partial function from Y to X if and only if F is 1-1.
(c) If Fisa I-I correspondence, then F~! : Y — X isa I-I correspondence.

Proof.

(a) This proof is left as an exercise for the reader.
(b) F~lis a partial function
< for each y € Y, there is at most one x € X with (y, x) € F~!
& for each y € Y there is at most one x € X with (x,y) € F
& Fis 1-1.
(c) This proof is left as an exercise for the reader.]

A function whose inverse is a function is also referred to as being invertible.
Theorem 4. Let X beaset,andlet F : X — Y be a /-1 and onto function.

(a) F~ 1o F = Hly
(b) FoF1=1Idy

Proof.

(a) First, observe that F~! o F is a -1 correspondence. This follows from three facts:
(i) F is given as a I-1 correspondence; (ii) by Theorem 3(c) we have F~!is a I-I corre-
spondence; and (ii1) by Theorem 2(c) F 1o Fisal-l correspondence.

Now, let x € X. Since F is a total function, there is a y € Y such that (x, y) € F. By
the definition of an inverse, we have (y,x) € F -1 By the definition of composition of
functions (see Section 4.3.1), it follows that (x,x) € F~1 o F. Thatis, Idy € F~lo F.

To show that F~!o F C Idy, let (x,x’) € F~!o F. Since we have just seen that
(x,x) € F~lo F and we observed that F~! o F is -1, we must have x’ = x: that is,
(x,x") € Idx. Therefore, F~! o F C Idy.

(b) By Theorem 3, F~! is I-I and onto. It follows from part (a) that (F~1)~1 o (F~1) =
Idy . By Theorem 2 in Section 3.2.1 it follows that F o F~! = (F~!)~! o F. Now, by part
(@), (F~YH)~lo F = Idy. [|

Very informally, Theorem 4 can be summarized as saying that if F —1 is a function at
all, then F~! “undoes” what F “does.”

Example 5. The function exp(x) = ¢* where e, the real number 2.718281828459 ...,
is called the exponential function base e, which is also called exp. The function exp :
R — (0, 00) is strictly increasing, /-1, and onto. Its inverse is called the natural logarithm
function, designated In. Hence, y = In(x) is true if and only if x = exp(y) is true. It is also
easy to show that In is strictly increasing.

248

CHAPTER 4 Functions

4.3.3 Other Operations on Functions

The reader is familiar with operations on polynomial functions. Consider polynomial
functions F, G : R = R where F(x) = x? and G(x) = 2x + 1. Then, (F + G)(x) is de-
fined as

(F+G)x) = Fx)+Gx) =x>+2x + 1

This is a very different sort of operation on functions in that it uses the operation + on
R, whereas composition and inversion operations make no reference to operations on the
codomain of the function.

Definition 3. Let F, G : X — R be functions. The following are functions:

(F+G): X—-R

x—> F(x)+ G(x)
(F-G): X—>R

x— F(x):-Gx)
| Fi: X—->R

x = |Fx)|

Define the following partial function:
(F/G): X - Rbytherule (F/G)(x) = F(x)/G(x)
The function F/G is total if and only if G(x) # O forall x € X.

Of course, the same definitions make sense if the codomain is Q, Z, or N. In general,
any operation on the codomain may be used to define an operation on functions.

Definitions such as Definition 3 create some very ambiguous notation. For x, a real
number, x~! denotes 1/x. So, F~!(x) should denote 1/F(x). The symbol F~!, how-
ever, also means the inverse function, which is not at all the same thing. The symbol F -1
usually—but not always—denotes the inverse function. In this book, we shall use F~! only
to denote the inverse function.

Sequences and Subsequences

This section introduces functions defined on N and its subsets that we commonly refer to
as sequences. Subsequences are formed by using the operation of composition of functions
on subsets of N,

Intuitively, a sequence is a list of objects in order, such as

red, orange, yellow, green, blue, indigo, violet

where red is first, followed by orange, ..., followed by violet. Other sequences are the
prime numbers listed in increasing order:

2,3,5,7,11,13,17,19,23,29,31,37, ...
or the natural numbers in increasing order:

0,1,2,3,4,5,6,7,8,9,10,11, 12, ...

Sequences and Subsequences 249

Definition 3. An infinite sequence of elements of a set X is a function F : N — X.
A function F : {0,1,2,...,n — 1} = X for some n € N is a finite sequence of elements
of X of length n. The expression sequence of elements of X means a finite sequence of
elements of X or an infinite sequence of elements of X.

In computer programming, finite sequences are often called lists. Infinite sequences
are often called streams and sometimes also lists. Often, if F is a finite sequence of ele-
ments, then its elements are denoted not as

F(0),F(1),...,F(n—1)

but, rather, as
’a anxly---»-xn——l

Similarly, an infinite sequence is usually written as

X0y X1y eves Xnyonns

An infinite sequence of real numbers is a function from N to R. For example,

0 1 2 n
X0=—, X]=—, Xo0=—,..., X = Y.
0=T1 MT 273 " F

is an infinite sequence of real numbers.
For any X C R, a sequence F of elements of X is increasing if, thought of as a
function from N to X, F is increasing. Thus, the sequence
0 1 2 n
xXp = I, X1 = 5, Xy = 5,...,xn = m,
is increasing. The terms increasing, decreasing, strictly increasing, and strictly decreas-
ing apply to sequences in the same way.

Example 6.

(a) The elements of a sequence need not be different. For example, 0, 0, 0,0, ... is a se-
quence. Formally, this sequence is given by the function Zero : N — N defined by the
rule Zero(n) = 0.

(b) Let F:N — Z be defined by the rule F(n) = (—1)". Then, F is the sequence
1,-1,1,—-1,1,—1, ...

(¢) Let Fact(n) = n!. Then, Fact defines the sequence

1,1,2,6, 24,120,720, ...

An important notion associated with sequences is the notion of a subsequence. Intu-
itively, a subsequence is just a subset of a sequence, with the elements of the subsequence
occurring in the same order as they do in the sequence.

Example 7. For the sequence of factorials
1, 1,2, 6,24, 120,720, 5040, 40,320, . ..

the following are subsequences:

(a) @; the subsequence of length 0

(b) 1,6, 120, 5040, . .. ; every other factorial, starting with the second one
© 1,1,2,6,24, 120, 720, 5040, 40,320, . . .; the entire sequence

(d) 1 the first element alone

(e) 2,6, 40,320; another finite subsequence

250

CHAPTER 4 Functions

What, more precisely, is a subsequence? Think of an infinite sequence:
X0, X1, X2, X3, X4, X5, X6y + v ..
Pick out a subset of the subscripts, such as subscripts
1,2,4,8,16,32,...

and then list the corresponding elements of the sequence in the same order as used in the
original sequence:

X1, X2, X4, xg, x16, X32y 0.
The chosen subscripts themselves form a sequence:
ip=1,i1=2,ip=4,i3=8,i4=16,i5 =32, ...
So, the subsequence is
Xigs Xiys Xigs Xigs Xigy Xigy o v oo

(See Exercise 13 in Section 4.5 for missing details.) The important point is that the elements
are listed in the same order as in the original sequence; that is,

p<iip<ip<iz<ig<ig<---
is itself a strictly increasing sequence.

Definition 9. Let F be a sequence, and let S be a strictly increasing sequence of elements
of the domain of F. Then, F o S is a subsequence of F.
The proof that Definition 8 formalizes the previous discussion is left as an exercise.

Example 8. In the definition of a subsequence, the sequence S was required to be strictly
increasing. The sequence of elements in a sequence F are not required to be increasing; as
a result, the subsequence of elements determined by F o S need not be strictly increasing.
For example, let F : N — R where F(n) = (—1)"/(n + 1). So, F is the sequence

11 1
’ 2!37 41

(a) If S is the sequence 0, 2, 4, . .. of even natural numbers, then F o S is the subsequence
consisting of every other element of the sequence F, starting with the first element:

11
11 I
35
which is decreasing.
(b) If S is the sequence 1,3, 5, ... of odd natural numbers, then F o S is the sequence
consisting of every other element of the sequence F, starting with the second element:
I 1 1
27 4 6

which is increasing.

Exercises 251

m Exercises

1. Let X=1{1,2,3,4) and ¥ =1{5,6,7,8,9}. Let F=1{(1,5),(2,7), 4,9, 3, 8).
Show that F is a function from X to Y. Find F~1, and list its elements. Is F~! a
function? Why, or why not?

2. Let S ={(0,8),(1,10), (2, 12), (3, 14), 4, 16), (5, 18), (6, 20), (7,22)}.Is S a function?
Why, or why not? Find ™1, and list its elements. Is S~1 a function? Why, or why not?
Identify the domain of §~1.

3. Let X ={1,2,3,4}. Let F : X — R be a function defined as the set of ordered pairs
{(1,2),(2,3),(3,4), 4,5)}. Let G : R — R be the function defined as G(x) = xZ.
Whatis G o F?

4. Let F : R — R be defined as F(x) = 2x + 8. Let G : R — R be defined as G(y) =
(y — 8)/2. Prove that F o G = Idp and G o F = Idp.

5. Define the functions F, G, and H as indicated in the following diagrams:

] «e——eq a e——e¢ e o—er

2 (77 b o\of f o——es
3 (14 c ——0g g ——et

4 od d/od h/

F G H

Find the following:
@ GoF
(b) Ho(Go F)
© (HoG)oF

6. Let X = {0, 1,2} € R. List all eight strictly increasing sequences of elements of X.
The ordering is < on R. List all subsequences of the sequence x, y, z.

7. Let A=1{1,2,3,4}. Let the functions F, G, and H be given with domain and
codomain A defined as

F()=3, FQ)=2, F(3) =2, and F(4) = 4
G)=1, G2 =3, G3) =4, andG(4) =2
H) =2, HQ2) =4, H(3) =1, and H(4) =3

Find the following:
(@ FoG
(b) Ho F
(c) GoH
(d FoGoH
8. Let A be a rule for defining a function F : N — N such that F is /-7 and onto. Show
how to construct a rule for defining F~1.
9. Forsets X,Y,and Z,let F : X — Y and G : Y — Z be 1-1 correspondences. Prove
that (Go F)"! = F 1o G

252

CHAPTER 4 Functions

10.

11

12.

13.

14.

15.

16.

17.

18.

Find the first six terms of the sequences defined for n > 0 as:
(a) H(n)=n?(n+1)?/4

(b) G(n) =2" —1

() F(n) = (=DH"2" — 3"

Find the first six terms of the sequences defined as:

(@ HO)=0and Hn) = H(n—1) +n3forn > 1

(b) G(0)=0andG(n) =2G(n—1)+1forn>1

©) FO)=2and Fn) =3Fn—-1)—n+3forn>1

Find a recursively defined function that gives the terms of the following sequences:

(a) 2,5,8,11,14, ...
(b) 3,6,12,24,48, ...

The formal definition of a sequence was in terms of a function F, with domain either
Nor{0,1,...,n—1}.Ifrn =0,then {0, 1, ..., n — 1} = @.) The formal definition of
a subsequence involves a sequence F and a strictly increasing sequence S of elements
of the domain of F. Since S is a sequence, S is, formally, another function as above.
In parts (a) through (e) of Example 7, identify the functions S and F o S as sets of
ordered pairs.

Prove the following:

(a) Theorem 2(a)
(b) Theorem 2(b)
(¢) Theorem 2(d)
(d) Theorem 2(e)

Prove the following:

(a) Theorem 3(a)
(b) Theorem 3(c)

Let A and B be nonempty sets, and let ' : A — B be a function. Prove that the fol-
lowing are equivalent:

(a) Fis onto.

(b) There is a function G : B — A suchthat F o G = Idg.

(c) For any set C and for functions H : B - Cand Hy : B — C,if HHo F = Hy 0
F, then Hy = H,.

Let A and B be nonempty sets, and let F : A — B be a function. Prove that the fol-

lowing are equivalent:

(a) FislI-1.

(b) Thereisafunction G : B — Asuchthat Go F =1Idy.

(c) For any set C and for functions H) : C - Aand H, : C — A,if FoHi=Fo
H,, then H) = H>.

Let A and B be sets with A|, A, € A,and let F : A — B. Let F(A;) denote {F(x) :
x € A;} fori =1, 2. Show that:

(@) If A] € A,, then F(A]) € F(A2).

(by F(A1UAy) = F(A1) U F(A2).

() F(A1NA2) S F(A1)NF(Ap).

19.

20.

21.

22

23.

24.

The Pigeon-Hole Principle 253

(d F(A)) — F(A2) € F(A — A2).

(e) A; C F~I(F(A)).

(f) Find an example in which A] C A but F(A() = F(Aj).
(g) Find an example in which A; # F~1(F(A))).

Let A be any nonempty set, and let F 4 be the set of all functions from A to R.

(@) Whyis F4+ G e Fyforall F,G € Fy.

(b) Prove (F+G)+ H=F+ (G+ H)forall F,G, H € Fy4.

(¢) Let Zero € F 4 be defined by Zero(a) = Oforalla € A. Provethat Zero + F = F
forall F € F4. _

(d) For F € F4, define F by F(a) = —F(a) for each a € A. Prove that F + F =
Zero = F + F forall F € Fu.

Let F4 be defined as in Exercise 19. For each F, G € F4, define F-G(a) =

F(a)-G(a).

(a) Whyis F-G € Faforall F,G € Fu?

(b) Provethat F-G =G -F forall F,G € F 4.

(c) Provethat (F-G)-H=F-(G-H)forall F,G, H € F4.

(d) Prove that the function U : A — R defined by U(a) =1 for all a € A satisfies
U-F=F=F-.Uforall F € Fy4.

(¢) Provethat (F+G)-H=F-H+4+G-Hforall F,G, H € F4 with F + G de-
fined as in Exercise 19.

(f) Provethere are F, G € F 4 such that F # Zero and G # Zerobut F - G = Zero.

(a) Let F : A — B be afunction. Prove that F is onto if and only if F -1(B)) # @ for
each nonempty subset B; of B.

(b) Let F : A — B be a function. Prove that F is onto if and only if F(F"1 (By)) =
B forall By C B.

Let X be a set, and let Fy be the set of all /-1 functions from X onto X. We have two
operations on functions in Fx : o and ~1. Prove the following statements called group
axioms. (If the results are already proved in the book, note where to find the proofs.)

(@) Forall F,G e Fx,FoG e F.

(b) Forall E G, He Fx, (F oG)o H = F o (G o H) (Associative Law).

(c) Forall F € Fx , Foldx = Idx o F = F. (Identity Axiom).

(d) For all F € Fy, there exists an F~lsuchthat Fo F~! = F~lo F = Idy (In-
verse Axiom).

An operation ® on a set Y is commutative if forall y,z €Y, y®z=2z® y. For X

and Fy as defined in Exercise 22, prove that o need not be commutative on Fyx.

Let F: A — B be a function. Define G : P(B) » P(A) by G(B1) = F~1(B1).

Prove that G is I-I if and only if F is onto.

The Pigeon-Hole Principle

After a February town meeting in rural New England, the 200 people attending entered the
parking garage to get their cars and drive home. (Assume that no one was walking home
in the typical winter weather.) An observer counted 65 cars exiting the parking garage.

254

CHAPTER 4 Functions

What can we conclude about the function that maps people to the cars in which they are
riding? Is it /-1? Is it onto? How far is it from being /—/? From being onto? A similar
question could be how many of the students in your class have a birthday on the same day
of the week this year. The results of this section will help you answer these and similar
questions as well as see applications of the results presented in other contexts.

For the remainder of this chapter, we will discuss only total functions.

46.1 kto1 Functions

The first step in answering the questions posed at the beginning of this section is to deter-
mine if more than one element in a function’s domain must be mapped to a single element
in the function’s range.

Definition 1. Let F : X — Y be a function. Let k e N. Fisk to 1 if, foreach y € Y,
there are at most k different x’s in X with F(x) = y. Alternatively, foreach y € ¥,

[fxeX: Fx) =y}l <k
Example 1.
(a) Let F:{0,1,2,3} — {a, b, c, d} be a function defined as

0 oa
1 b
B
3 od
F
(b) Let F:{0,1, 2,3} — {a, b, ¢} be a function defined as
0 ea
1 b
2 c
3 od
F

It may seem strange that a /—/ function is 58 to 1, but it certainly is by the definition.
If k elements are mapped to a given element, the function is not m to 1 for any m < k but,
rather, is m to 1 for any m > k. Definition 1 gives a way to talk about the more important
fact that is the smallest integer for which some element in the codomain has k preimages.

Fis2-1.

F is 3—1. F is neither 2-1 nor 1-1.

Theorem 1. let F: X — Y is ktol, and let | Y | be finite, with | Y | = n. Then, X is
finite, and | X | < k - n.

Proof. For each of the n elements of Y, there are at most k elements of X mapped to each
element of Y. So, only & - n elements can be mapped to all the elements of Y. However,

The Pigeon-Hole Principle 255

every element of X is mapped to some element of Y, so there are at most k - n elements
in X.]

46.2 Proofs of the Pigeon-Hole Principle

Consider again the New England town meeting example. If at most one person left in each
car, then at most 65 people left the garage. This notion is formalized in the contrapositive
to Theorem 1, which is used more often than the theorem itself. The contrapositive is so
important that we state it separately, in two variants. The contrapositive has two names: the
Pigeon-Hole Principle and the Dirichlet Drawer Principle. A more colorful description
of this principle is often given in terms of pigeons and nesting holes. Suppose m pigeons
are placed into n nesting holes where m > n. Then, (at least) one nesting hole contains (at
least) two pigeons.

Theorem 2. (Generalized Pigeon-Hole Principle) Let F : X — Y be onto where
| X| =mand |Y | = n. Then, there is a y € Y that is the image of at least

I n

Proof. Suppose no y is the image of more than [%] — 1 elements of X. Then, the total
number of elements in X is at most

men([2]-1) <n((Z)+1-1) =

This contradiction proves the result. |

The formulation of the Generalized Pigeon-Hole Principle involved the ceiling func-
tion. It can also be stated using the floor function since for m > n > 0, we have

m m—1
BRI
n n
Example 2. Suppose a class has 89 students. How many students (at least) must have a
birthday in the same month.

Solution. Use the Generalized Pigeon-Hole Principle, and calculate
897
Z1l=8
E
The same answer can be found by computing

89 -1
— | +1=8
% .

Theorem 3. (Pigeon-Hole Principle) Let X and Y be sets, and let F : X — Y where
X and Y are finite and | X | > | Y |. There is a y € Y that is the image of at least two
elements of X.

256

CHAPTER 4 Functions

Proof. By Theorem 2, if m = | X | and n = |Y | with m > n, then m > n + 1, which

implies
m n+1
— > > 2
lrn—_lr n —_ [|

Theorem 3 gives a condition that ensures a function is not /-7 when X and Y are finite
sets.

Example 3. The setting for this example is a room containing 367 people.

(a) At least two of these people have the same birthday.

(b) At least 31 of these people were born in the same month (though possibly in different
years).

(c) Provided no one is more then 121 years old, at least four of these people are the same
age (number of years).

Proof.

(a) Let X be the set of people. Let Y be the set of the 366 possible birthdays. Let
BirthDay : X — Y map each person to his or her birthday. Then, by the Pigeon-Hole Prin-
ciple (Theorem 3), BirthDay is not 1-1.

(b) Let X be the set of people, and let Y be the set of the 12 months. Let

BirthMonth - X — Y

be the mapping that takes a person as input and gives the month containing that per-
son’s birthday as output. By the Generalized Pigeon-Hole Principle (Theorem 4.2), at least
[(367 — 1)/12] + 1 = 30 + 1 people will have the same birth month.

(c) This proof is left as an exercise for the reader. n

Theorem 4 deals with the question of how far a function is from having a single image
for each element of the domain by guaranteeing that some element will have many images.
Theorem 5 is related to the idea that a function is I—1.

Theorem 4. Let F: X — Y where X and Y are finite. Let k e Nand | X| > k-|Y|.
Then, F isnotk to 1.

Theorem 5. Let F: X — Y where X and Y are finite with | X | = | Y |. Then, F is 1-1
if and only if F is onto.

Proof.

(=>) Prove the contrapositive: If F is not onto, then F is not I-1. If F is not onto, then
there is a y € Y that is not in the range of F. So, F is also a function from X to ¥ — {y}.
1Y —{y}| <Y] =]X]|, so by the Pigeon-Hole Principle, F is not I-1.

(&) Prove the contrapositive: If F is not 1-1, then F is not onto. Suppose F is not -1,
and let n = | X |. There are at least two elements of X with the same image. Pick two, and
call them x; and x,. Let the remaining elements of X be x3, x4, . .., x,. Now, count the
elements in

range(F) = {F(x) : x € X} = {F(x1), F(x2), F(x3), ..., F(x,)}

The Pigeon-Hole Principle 257

Since F(x1) = F(x2), F(x1) and F(x) account for one element in range(F). The elements
F(x3), F(x4), ..., F(xn)

account for at most # — 2 more. That leaves at most # — 1 elements in range(F). Since Y
has n elements, range(F) is not all of Y, so F is not onto. [|

Theorem 6. Let X and Y be sets and X be finite. Let F : X — Y be /-7 and onto. Then,
Y isfinite,and | X | = | Y |.

As an example of applying Theorem 6, suppose a professor enters a classroom that she
knows contains 55 chairs. Now, suppose the professor can see that all students are seated,
no chairs are empty, and no chair has two people sitting in it. If the professor wants to
know how many students are seated in the room, it is not necessary to count them. Let
the function SearOf map each student to the chair that student occupies. The professor has
observed that SearOf is -1 and onto. Therefore, the number of students equals the number
of chairs: 55.

4.6.3 Application: Decimal Expansion of Rational Numbers

We will present several examples and prove several theorems that are applications of the
Pigeon-Hole Principle. These results are interesting in their own right, but they also give
insight regarding possible applications of the Pigeon-Hole Principle.

The first application concerns converting fractions to decimals or, in more formal lan-
guage, expressing rational numbers as decimals. A rational number of the form

0.didy - - -dudidit1 -+ - dndidiy1---dp -
with the digits d;d;+ - - - d,, repeating is denoted as
0.didy---di1didi11 - - dy

The following are examples of the conversion of a fraction to a decimal with the special
notation for the repeated digits:

ILO —0.1=0.10000---00-- =0.10
102 _
% — 4.08 = 4.08000---00- - - = 4.080
1 —
S =0333333::33+- =03
2 _
- =0.181818 1818+ =01

The decimal expansions of 1/10 and 102/25 are finite or terminating. All but a fi-
nite number of their decimal digits are 0. The decimal expansions of 1/3 and 2/11 are
nonterminating or infinite. All these decimal expansions are repeating: After a certain
point, the decimal expansion can be generated by repeating a block of digits infinitely many
times. The decimal expansions of 1/10 and 102/25 have repeating 0’s. The expansion of
1/3 has repeating 3s. The expansions of 2/11 has the two digits, 18, repeating. There are
some rationals that have two repeating decimal expansions, such as 1.0000- - - and 0.9. (See
Exercise 14 in Section 4.5.)

258 CHAPTER 4 Functions

Study the example for finding the decimal expansion of the rational number 3/7, as
shown in Figure 4.24, to gain an insight regarding how the formal proof that follows will
proceed.

.4285714. ..
7)3.0000000. ..
28

Figure 424 Long division to calculate decimal expansion of 3/7.

The decimal expansion of 3/7 can be seen to repeat. After the sixth decimal place
has been calculated, the remainder is 3, and the rest of the division process corresponds
to dividing 7 into 0.000003. That is the same process as dividing 7 into 3, except that it is
shifted six decimal places to the right. Therefore, exactly the same sequence of quotients
and remainders will be generated as before, causing the sequence to repeat.

The ideas shown in these examples will now be incorporated into the general result
about the existence of repeating decimal expansions for rational numbers.

Theorem 7. A real number is rational if and only if it has a repeating decimal expansion.

Proof.

(=) Suppose a real number r is rational. Show that it has a repeating decimal expansion.
First, express r as the fraction j/k where 0 < j < k. Now, consider the long division of k
into j. (For an illustration, look again at the computation of the decimal expansion of 3/7
in Figure 4.24.) The first division produces one digit (the tenths digit) of the quotient and
a remainder r, < k. The remainder is contained in {0, 1, ..., k — 1}. To prepare for the
next division, concatenate a 0 on the the end of r;. Now, repeat the procedure to calculate
another digit (the hundredths) of the quotient and another remainder r; < k, follow this by
concatenating another O on the end of r;, repeat again, and so on.

The only & possible remainders at each step are 0, 1,2, ..., and k — 1. Hence, after
at most k + 1 steps of the division, two of the remainders must be equal. Then, however,
the process must start repeating, as in the previous illustrations. It is important that at the
end of each step, the same digit, 0, and not any other digit, is always concatenated onto
the remainder. The digit concatenated is always 0, because j and k are both integers and
0 < j < k. This guarantees that when remainders are equal, the entire process repeats. So,
r has a repeating decimal expansion.

(&) Suppose a real number r has a repeating decimal expansion. Again, for convenience,
we will limit the proof to decimals in the interval (0, 1). For illustration, use

The Pigeon-Hole Principle 259

r = 0.4579909909909909 . . . 909909 . .

with repeating block of digits 909. It is easier to work with expansions in which the repeat-
ing part appears beginning immediately to the right of the decimal point. To accomplish
this proof, we will need to multiply the decimal by some power of 10. This is really just
for our convenience and does not affect the proof.

If the repeating part has length & that begins j digits to the right of the decimal point,
multiply r by 10/+*. In the illustration,

107 - r = 4579909.909909909 ... 909

Now, multiply r by 10/, and subtract the product from 10/*% .7, giving d = (10/+F —
10/) - r. In the illustration,

107r = 4579909.909909909909 ... 909 . . .
— 10 = —4579.909909909909 ...909.. . .

(107 = 104 r = 4575330.000000000000. . .000. ..

Since all digits past the decimal point match, the subtraction results in all O’s to the right of
the decimal point. Therefore, the difference d is an integer. It follows from this computation
that r = d/(10/ +k _ 10/). Therefore, r is a rational number. n

46.4 Application: Problems with Divisors and Schedules

In scenarios as diverse as studying for exams or finding divisors of sums of numbers, the
Pigeon-Hole Principle can provide answers to many questions.

Example 4. Let m € N. Given m integers ay, az, . . ., 4, there exist k and [with 0 <
k < I < m such that

Gyl + a2+t a
is divisible by m.
Solution. Consider the m sums:
ay,a1+ax,a1+ax+as,...,a1+ax+---+apy

If any of these sums is divisible by m, then the conclusion follows. If not, then we may sup-
pose that each sum has a nonzero remainder when divided by m. The possible remainders
are

1,2,3,....m—1

Since there are m sums and only m — 1 possible remainders, at least two of the sums must
have the same remainder when divided by m (according to the Pigeon-Hole Principle).
Therefore, there are integers k and [with [> k such that

ata+--+ak
and

ap+ay+---+a

260

CHAPTER 4 Functions

have the same remainder r when divided by m. That is, there are integers ¢, d, and r such
that

agta+---+ag=cm+r
and

ag+a+---+a=dmn+r
Subtracting the k-element sum from the /-element sum gives

g+l +aks2+--+a=d—c)m
Therefore,
Qk+1 + Qry2 + -+ a
1s divisible by m.]
Example 5 shows how a scheduling decision can be better understood.

Example 5. The local softball league wants to schedule at least one game every day
during the 11-week summer season. To keep the fields in good condition, it is decided to
schedule no more than 12 games in any week. Show that there is a succession of days
during which exactly 21 games are scheduled.

Solution. Let a| be the number of games scheduled for day 1. In general let a; where
1 <i <77 be the total number of games played on days 1 through i. The sequence of
numbers ay, az, .. ., a77 is strictly increasing since at least one game is played each day.
Since a; > | and at most 12 games are played in a week, we have ay; < 132. The se-
quence a; +21,a> +21,...,a77 + 21 is also an increasing sequence. Each of the 154
numbers ay, az, ..., a77,a;1 +21, a2 + 21, ..., a77 + 21 1s an integer between 1 and 153.
Since there are 154 numbers, then by the Pigeon-Hole Principle, two of them must be
equal. No two of the numbers ay, az, . . ., a7 are equal, however, and no two of the num-
bers a; + 21, ay + 21, ..., a77 + 21 are equal. Therefore, there are i and j such that

a =aj+21
Thus, on daysajyi,a;42,...,a;, 21 games are scheduled.]

It would be nice if we knew how many days were used for these 21 games. The only
thing we can say for sure is that the number of days is no more than 21 and no less than 11.
In 7 days 12 games can be played. During a second week an additional 12 games can be
played. Since at least one game must be played each day, a total of 21 games cannot occur
in fewer than 11 days.

465 Application: Two Combinatorial Results

The two results included here are probably surprising as far as finite sequences of natu-
ral numbers. The first proves that two elements of certain finite sequences must have the
property that one divides the other. The second proves that some sequences always have
an increasing or decreasing subsequence that is at least of a length given as a function of
the number of elements in the sequence. Both of these results are credited to the eminent
mathematician Paul Erdés (1913-1996, b. Hungary).

The Pigeon-Hole Principle 261

To appreciate these two results, it is helpful to experiment with some subsets of a set,
say {1,2,3,...,17}, and see how large a subset you can find so that no elements of the
subset divides any other element of the subset. For a second experiment, write down these
17 elements in an arbitrary order (not in increasing or decreasing order), and see how long
a subsequence you can find that is either increasing or decreasing. For example, try

12,6,3,7,8,1,17, 16, 14,15, 13,2,9,10,4, 11

You should be able to find an increasing subsequence of length six but no increasing sub-
sequence of longer length. The theorems will tell us what we can always expect as answers
for these two problems.

Theorem 8. (Erdos) Let
X <{1,2,3,4,...,2n—1}
and | X | > n + 1. There are two numbers a, b € X with a < b such that a divides b.
Proof. For x € X, let F(x) be the largest odd divisor of x. So
F()=1,FQ2)=1,F3)=3,F4)=1,F(5)=5F®6)=3,...

and so forth. For x € X, there are n possible values for F(x), namely 1,3,5,...,2n — 1.
There are at least n + 1 elements of X. So, F is not /-1 on X. Pick two elements of X
whose images under F are the same, and call the smaller one a and the larger one b. Now,
let

k = F(a) = F(b)
Soa=2 -k, andb =2/ -k where i < j.Then, b =a -2/, so a divides b. [

Theorem 8 is the “best possible” result. That is, if the hypothesis instead required only
that | X | = n, then the result would be false. To prove this for any n, choose
X={n,n+1,n+2,...,2n—1}

Then, | X | = n. Now, show that no element of X is a factor of any other. Because if a were
a factor of b, then a - ¢ = b for some c. Since a < b, we must have ¢ > 1. However,a > n
andb <2n—1,s0

n-c<a-c=b<2n-—1
Hence,
l<e<(@2n—-1)/n<?2

However, there is no integer ¢ between 1 and 2.

Theorem 9 tells that in a sequence of n? + 1 elements, for any n € N there is always
a subsequence of at least n + 1 elements that is either increasing or decreasing. Even in
choosing a sequence of random numbers, this behavior occurs.

Theorem 9. (Erdés and Szekerés) Letn € Nand k = n? + 1. Let
ay,az,as, ..., ag

be any sequence of k distinct numbers. Then, the sequence has either an n 4 1 element
increasing subsequence or an n 4 1 element decreasing subsequence.

Example to Motivate Proof. Letrn =3, and consider the 10-element sequence
5064982173

262

CHAPTER 4 Functions

The goal is to find either a four-element increasing subsequence or a four-element de-
creasing subsequence.

For each element of the sequence, find the longest increasing subsequence starting
with that element. For example, starting with 5, there are three increasing subsequences of
length three (569, 568, and 5 67), but none of length four. Starting with 0, there are sev-
eral increasing subsequences of length three but none of length four. Under each number,
write the length of the longest increasing subsequence starting with that number:

50 6 4 9 8 2 1 7 3
LongestincSeq(x) | { 1 4 4 4 4 1
3 3 2 2 1 1 2 2 1 1

If any of these subsequences had length four or greater, then that subsequence would be the
example needed. In this case, there is no such subsequence, since each of the 10 elements of
the sequence mapped to 1, 2, or 3. By the Generalized Pigeon-Hole Principle, we know that
at least four elements of the sequence must map to the same value. In this example, each
element of the subsequence (6, 4, 2, 1) maps to 2, and each element of the subsequence (9,
8,7, 3) maps to 1. Both of these subsequences are decreasing subsequences of length four.

Proof. Letk = n? + 1 and the sequence a{, ay, ..., ax be given as in the statement of
Theorem 9. For each q;, define a function F such that F(g;) is the length of the longest
increasing subsequence starting with ;.

We first show that if i < j and a; < aj, then F(a;) > F(a;). This follows because,
if, say, F(a;) =, then there is a length-/ increasing subsequence beginning with q; :
aj=by <by <--- <by. Then, a; < by <by <--- < b is a subsequence of length +
1, which implies that F(a;) > 1+ 1 > F(a;). In particular,

ifi < jand F(a;) = F(aj), thena; > a;

Case 1: For some i such that 1 <i <k, we have F(a;) > n. Then, there is an increasing
subsequence of length n + 1 starting with a;.
Case 2: Thereisnoi suchthat 1 <i <k with F(a;) > n. Consequently, the range of F

is a subset of the n-element set {1, 2, 3, ..., n}. By the Generalized Pigeon-Hole Principle,
at least
k—1 24D -1
V)J+1=L("—+)——J+1=n+1
n n

elements of the sequence will be mapped to the same element of {1,2,...,r}. By the
remark before Case 1, these n + 1 elements form a decreasing sequence. |
Exercises

1. Prove that in any set of 27 words, at least two must begin with the same letter assuming
at most a 26-letter alphabet.

2. Prove that in any group of five integers, at least two have the same value under the
(mod 4) operation.

10.

11.

12.

13.

14.

Exercises 263

. Prove that in any class of more than 101 students, at least two must receive the same

grade for an exam with grading scale of 0 to 100.

. Prove that for any 44 people, at least four must be born in the same month.
. Prove that in any class of 35 students, at least seven receive the same final grade, where

the scale is A-B-C-D-F.

. Area codes are used to distinguish phone numbers for which the last seven digits are

the same. If you have 35,000,000 phone numbers in a state and an area code can
distinguish approximately 900,000 phone numbers, how many area codes are needed
to distinguish the phone numbers of this state?

. There are 35,000 students at State University. Each student takes four different courses

each term. State University offers 999 courses each term. The largest classroom on
campus holds 135 students. Is this a problem? If so, what is the problem?

At Bridgetown University, there are 45 time periods during the week for scheduling
classes. Use the Generalized Pigeon-Hole Principle to determine how many rooms (at
least) are needed if 780 different classes are to be scheduled in the 45 time slots.
Suppose someone (say, Aesop) is marking days in some leap year (say, 2948). You do
not know which days he marks, only how many. Use this to answer the following ques-
tions. (Warning: Some, but not all, of these questions use the Pigeon-Hole Principle.)

(a) How many days would Aesop have to mark before you can conclude that he
marked two days in January?

(b) How many days would Aesop have to mark before you can conclude that he
marked two days in February?

(c) How many days would Aesop have to mark before you can conclude that he
marked two days in the same month?

(d) How many days would Aesop have to mark before you can conclude that he
marked three days in the same month?

(e) How many days would Aesop have to mark before you can conclude that he
marked three days with the same date (for example, the third of three different
months, or the 31st of three different months)?

(f) How many days would Aesop have to mark before you can conclude that he
marked two consecutive days (for example, January 31 and February 1)?

(g) How many days would Aesop have to mark before you can conclude that he
marked three consecutive days?

Prove that for any collection of n people, two persons have the exact same number of
acquaintances in the group provided that each person has at least one acquaintance.
There are five suburbs in the city of Melbourn. How many all-stars must be picked
from each suburb to guarantee that at least five players come from the same suburb?
A bowl contains raspberry and orange lollipops, with 15 of each. How many must be
drawn one at a time to ensure that you have at least three orange lollipops?

A man has 10 black socks and 11 blue socks scrambled in a drawer. Still half-asleep,
the man reaches in the drawer to get a pair of matching socks. How many socks
should he select, one at a time, before he will be sure that he has a matching pair. How
many selections are needed to be sure he has a blue pair?

Prove that:

(a) 0.999999...99... =1
(b) 0.346270 = 0.346269

264

CHAPTER 4 Functions

15.

16.

17.

18.

19.

20.

21.
22.

23.

Construct a sequence of 16 integers that has no increasing or decreasing subsequence

of five elements.

During a month with 30 days, a team will play at least one game a day but no more

than 45 games in all 30 days. Show that there is a stretch of consecutive days during

which the team plays exactly 14 games. (Hint: Let a; be the number of games played

on or before the ith day for 1 <i < 30.)

A widget-maker makes at least one widget every day but not more than 730 widgets

in a year. Given any n, show that the widget-maker makes exactly n widgets in some

set of consecutive days. For some #, it may take more than a single year.

A student has 37 days to prepare for an exam. From past experience, he knows that

he will need no more than 60 hours of study. To keep from forgetting the material,

he wants to study for at least one hour each day. Show that there is a sequence of

successive days during which he will have studied exactly 13 hours.

For any four integers, none of which is even and none of which is a multiple of

5, prove that some consecutive product of these ends in the digit 1. A consecutive

product is one term, two terms in a row, three terms in a row, or all four terms. For

example, for the four integers a, b, ¢, and d a consecutive product would be a - b but

not a - c. (Hint: Prove that if b-c,b-c-d donot end in a 1, and if there is no integer

ending in 1 among a, b, c, and d, thena,a-b,a-b-c,and a-b - c-d are all distinct.

Use Theorem 3 in Section 4.6.2).

Select 100 integers from the integers 1, 2, ..., 200 such that no one of the chosen

values is divisible by any other chosen value. Show that if one of the 100 integers

chosen from 1, 2, ..., 200 is less than 16, then one of those 100 numbers is divisible

by another.

Prove the assertion in Example 4(c).

(a) Find two functions F, G : N — N that are /I but not onto.

(b) Find a function G : N — N that is onto but not /—/.

(c) Challenge: Suppose G : N — N is onto but not /-1, and suppose G is specified
by an algorithm A. Show that there is an algorithm A’ that computes a function
F : N — N, where G o F = Idy. Also, show that F must be /-1 but not onto. We
have not been precise about what an “algorithm” is; you might choose to interpret
an “algorithm” as being a function written in some programming language. (Hint:
A’ can use A as a subprogram.)

Infinite Pigeon-Hole Principle: Suppose X is an infinite set and Y is a finite set. Now,
suppose F : X — Y. Show there is a y € Y such that for infinitely many x € X such
that F(x) = y.

Countable and Uncountable Sets

In this section, we develop the notion of counting the elements of a set or cardinality more
carefully. The modern notion of cardinality is credited to Georg Cantor (1845-1918, b.
Russia), who found an abstract notion of counting that enabled mathematicians to speak
of the cardinality of an infinite set. The notion also enabled mathematicians to discuss the

Countable and Uncountable Sets 265

cardinality of finite sets more precisely. In Section 1.5.1, we gave a provisional definition
for counting the number of elements in a set that can now be made more precise.

Consider checking to see whether the sets {red, blue, green} and {Jean, Michele, Paul}
have the same number of elements. Of course, each set has three elements, and one merely
counts the elements:

{(0, red), (1, blue), (2, green)}
and
{(0, Jean), (1, Michele), (2, Paul)}

Each of the two sets of ordered pairs are /I functions, the first from {0, 1, 2} onto {red,
blue, green}—call it Color—and the second from {0, 1, 2} onto {Jean, Michele, Paul}—
call it Person. Consider the set {0, 1, 2} only as an intermediary. The function Color™! o
Person 1s a 1-1 function (Theorem 3(c) in Section 4.3.2 and Theorem 2(a) in Section
4.3.1) (from {red, blue, green} onto {Jean, Michele, Paul}. This function shows, without
explicitly counting, that the two sets have the same number of elements in the sense that
we now make more precise.

Definition 1. (Cantor) Let X and Y be sets. Then, the cardinality of X is less than or
equal to the cardinality of Y, written | X | < | Y |, if there is a I-I function F : X — Y.
The cardinality of X is equal to the cardinality of Y, written | X | = | Y |, if there is a I-1
correspondence F : X — Y. The cardinality of X is less than the cardinality of Y, written
X <|YLif|X|<|Y|and |Y| £ |X]|.

The definition of | X | = | Y | generalizes Theorem 5 in Section 4.6. Notice that we
have not defined the term cardinality of X here, only some relationship between X and Y.
Using these notions, one can define the usual notion of cardinality for a finite set.

Definition 2. Let X be a set and n € N. If X has the same cardinality as the set
{0,1,2,...,n — 1}, then the cardinality of X is n. We say X is finite if X has cardinality
equal to some natural number. We say X is infinite if X is not finite.

At this point, the careful reader should note that, since we have redefined (or per-
haps, at last, defined) a term we have used throughout this book, some of our ear-
lier proofs may have been false, relying on unprovable intuitions. In fact, as the reader
surely suspects, the earlier results are not false by this definition; however, the proofs
may have important parts missing. This is not a book about the foundations of math-
ematics, so we shall not go back to recheck any proofs. We shall make one further
remark, however: The entire discussion of the Pigeon-Hole Principle depended crit-
ically on the result that if m and n are natural numbers and m > n, then the sets
{0,1,2,....,m—1} and {0, 1,2, ..., n — 1} do not have the same cardinality. After the
previous discussion, the student likely has no idea what one is allowed to use in prov-
ing such a result. In the development of the foundations of mathematics, this theorem
can be proved by induction on m. The interested reader is invited to look for a simple
proof.

The following properties of cardinalities are easy to prove. They are also suggested by
the notations for equal (=) and less than or equal (<), but it is, of course, very dangerous
to assume such results by analogy based on notation.

CHAPTER 4 Functions

Theorem 1. (Properties of Cardinalities) Let X, Y, and Z be sets.

@ X=X
®If|X|<|Y|and|Y|<|Z]| then | X|<|Z]|
© IXI=1X|

(@ If|X|=|Y]| then|Y|=|X]|
(e If|X|=|Y|and|Y|=1|Z| then |X|=|Z].

Proof. This proof is left as an exercise for the reader.]

One is tempted to restate parts (c) through (e) of Theorem 1 by stating that the relation
has the same cardinality as is an equivalence relation. This is not done, however, because
if it is an equivalence relation, then it is an equivalence relation on the set of all sets—but
the set of all sets does not exist! Even so, it is correct to say that has the same cardinality
as is an equivalence relation on any set of sets.

A fundamental result regarding cardinality uses the work of Georg Cantor, Friedrich
Schroder (1841-1902, b. Germany), and Sergi Bernstein (1880-1968, b. Ukraine).

Theorem 2. (Cantor-Schrider-Bernstein) Let X and Y be sets, and let | X | < |Y |
and |Y| < |X|.Then, | X | =Y.

The proof of the Cantor-Schréder-Bernstein Theorem is fairly complicated, and we re-
fer the reader to a text about set theory. A related question is whether there exist two sets X
and Y where [X | £ |Y{and] Y | £ | X |. This question turns out to be related to whether
one accepts a famous and, sometimes, controversial axiom called the Axiom of Choice.
The reader is also referred to books on set theory and the foundations of mathematics for
discussion of this issue.

4.8.1 Countably Infinite Sets

Cantor’s definition allows a more careful development of the study of finite sets, but the
study of infinite sets under Cantor’s definition is sometimes surprising. The simplest infi-
nite sets are N and those other sets with the same cardinality as N.

Definition 3. Let X be a set. X is countably infinite if | X | = |N|. If X is countably
infinite, the cardinality of X is &y (pronounced aleph nought), written | X | = Rp. X is
countable if it is either finite or countably infinite. If a set is not countable, then it is
uncountable.

In Definition 3 the object 8¢ was left undefined. For set theorists, 8¢ is another name
for N, but the symbol 8y is used almost exclusively to denote the cardinality of N.

Theorem 3. Any countably infinite set is infinite.

Proof. As noted earlier, N is infinite. Now, suppose a set X is both countably infinite and
finite. Then, there are /-1 correspondences F : X - Nand G : X — {0,1,2,...,n} for
some natural number n. However, then F~! 0 G : N — {0,1,2,...,n}is I-1 and onto by
Theorem 3(c) in Section 4.3.2, contradicting the result, noted above, that N is infinite. W

Theorem 5 in Section 4.6.2 says that for finite X and F : X — X, F is /-] if and only
if F is onto. This result fails for infinite X. Earlier (see Section 4.1.8), a /-1 function from

Countable and Uncountable Sets 267

R to R was given that is not onto, and an onto function from R to R was given that is not
1-1. We recommend the reader find a /-1 function from N to N that is not onto and an
onto function from N to N that is not /-1.

The next three results give proofs that some of the common sets we use are indeed
infinite.

Theorem 4. Evens = {n € N : n = 2k for some k € N} is countably infinite.
Proof. Let
F :N — Evens

be defined by F(n) = 2n. The graph of this function is shown in Figure 4.25.

00 1AWV HE WN—

—_—
[

L

.
%]

Figure 425 Bijection F(n) = 2n maps N to Evens.

Show that F is both /-1 and onto. First, show that F is I-1. Suppose F(m) = F(n).
That is, suppose 2m = 2n. Dividing both sides by 2 gives m = n. So, F is 1-1. Now show
that F is onto. Suppose k is even, and show that k = F(n) for some n € N. Since £ is even,
k = 2ng for some ny € N. Now, F(ng) = 2ny = k as required. |

Theorem 5 tells us that there were infinitely many base cases in our proof of the Fun-
damental Theorem of Arithmetic.

Theorem 5. The set of prime positive integers is countably infinite.

Proof. First, show that the set of primes is not finite. Suppose it were, and let the set of
primes be

{po, P1,..., Pn—1}

The set is nonempty since 2 is a prime. Now, let k = pg- p1-- - pn—1 + 1. None of the
given primes divides k, because each divides k — 1. Thus, there must be some other prime
that divides k—perhaps even k itself. In any case, the existence of at least one more prime
contradicts our assumption that pg, p1, ..., Pn—) are the only primes. Therefore, there
must be infinitely many primes.

268

CHAPTER 4 Functions

Now, show that the set of primes is countably infinite. List the primes in increasing
order:

2,3,5,7,11,13,17,19, 23,29, 31, 37,41, 43,47, 53,59, ...
Then, define a function
P:N-— (235,7,11,13,17,19, 23,29, 31, 37,41, 43,47,53,59, .. .}

by the rule that P(n) is the nth prime on the list forn =0, 1,2, 3, We claim that P is
a I-1 and onto function. Function P is I-1, because it is strictly increasing. Function P is
also onto, because the nth prime is always larger than n, so if k is prime, then k = P (n)
forsomen € {0,1,2,...,k—1}. [|

The first somewhat surprising result that follows from Theorem 5 is that there are no
more integers than there are prime numbers, even though there certainly are gaps between
consecutive primes.

Theorem 6. Z is countably infinite.

Proof. This part depends on listing the integers in a special order—in order of their ab-
solute values. First, list the integer with absolute value O:

0
Then, add to the list the integers with absolute value 1:
0,-1,1
and so forth:
0,-1,1,-2,2,-3,3,-4,4,-5,5,...,—n,n, ...

We must now formalize this idea of a function. For any n € N, define G(n) to be
the nth number on this list. It is apparent that every integer is listed exactly once on the
list. In fact, it is easy to see that G(0) = 0, and for n > 1, we have G(2n ~ 1) = —n and
G(2n) = n. It follows that the function G : N — Z is 1-1 and onto. [|

482 Cantor's First Diagonal Argument

Cantor found two important proof techniques for showing that two sets had the same car-
dina