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Union-Find Partition Structures
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Partitions with Union-Find 
Operations

makeSet(x): Create a singleton set containing 
the element x and return the position storing x 
in this set
union(A,B ): Return the set A U B, destroying 
the old A and B
find(p): Return the set containing the element 
at position p
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List-based Implementation
Each set is stored in a sequence represented 
with a linked-list
Each node should store an object containing 
the element and a reference to the set name
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Analysis of List-based 
Representation

When doing a union, always move 
elements from the smaller set to the 
larger set
 Each time an element is moved it goes to a 

set of size at least double its old set
 Thus, an element can be moved at most 

O(log n) times
Total time needed to do n unions and 
finds is O(n log n).
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Tree-based Implementation
Each element is stored in a node, which contains a 
pointer to a set name
A node v whose set pointer points back to v is also a 
set name
Each set is a tree, rooted at a node with a self-
referencing set pointer
For example: The sets “1”, “2”, and “5”:
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Union-Find Operations
To do a union, simply 
make the root of one tree 
point to the root of the 
other 

To do a find, follow set-
name pointers from the 
starting node until 
reaching a node whose 
set-name pointer refers 
back to itself
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Union-Find Heuristic 1
Union by size: 
 When performing a union, 

make the root of smaller tree 
point to the root of the larger

Implies O(n log n) time for 
performing n union-find 
operations:
 Each time we follow a pointer, 

we are going to a subtree of 
size at least double the size of 
the previous subtree

 Thus, we will follow at most 
O(log n) pointers for any find. 
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Path compression: 
 After performing a find, compress all the pointers on the path 

just traversed so that they all point to the root

Implies O(n log* n) time for performing n union-find 
operations:
 Proof is somewhat involved… (and not in the book)

Union-Find Heuristic 2
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Proof of log* n Amortized Time
For each node v that is a root
 define n(v) to be the size of the subtree rooted at v 

(including v)
 identified a set with the root of its associated tree.

We update the size field of v each time a set is 
unioned into v. Thus, if v is not a root, then n(v) is 
the largest the subtree rooted at v can be, which 
occurs just before we union v into some other node 
whose size is at least as large as v ’s. 
For any node v, then, define the rank of v, which we 
denote as r (v), as r (v) = [log n(v)]:
Thus, n(v) ≥ 2r(v). 
Also, since there are at most n nodes in the tree of v, 
r (v) = [log n], for each node v.
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Proof of log* n Amortized Time (2)
For each node v with parent w:
 r (v ) > r (w )

Claim: There are at most n/ 2s nodes of rank s.
Proof:
 Since r (v) < r (w), for any node v with parent w, ranks are 

monotonically increasing as we follow parent pointers up 
any tree. 

 Thus, if r (v) = r (w) for two nodes v and w, then the nodes 
counted in n(v) must be separate and distinct from the 
nodes counted in n(w). 

 If a node v is of rank s, then n(v) ≥ 2s. 
 Therefore, since there are at most n nodes total, there can 

be at most n/ 2s that are of rank s.
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Proof of log* n Amortized Time (3)

Definition: Tower of two’s function: 
 t(i) = 2t(i-1)

Nodes v and u are in the same rank 
group g if 
 g = log*(r(v)) = log*(r(u)):

Since the largest rank is log n, the 
largest rank group is 
 log*(log n) = (log* n) - 1
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Proof of log* n Amortized Time (4)
Charge 1 cyber-dollar per pointer hop during 
a find:
 If w is the root or if w is in a different rank group 

than v, then charge the find operation one cyber-
dollar.

 Otherwise (w is not a root and v and w are in the 
same rank group), charge the node v one cyber-
dollar.

Since there are most (log* n)-1 rank groups, 
this rule guarantees that any find operation is 
charged at most log* n cyber-dollars.
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Proof of log* n Amortized Time (5)
After we charge a node v then v will get a new 
parent, which is a node higher up in v ’s tree. 
The rank of v ’s new parent will be greater than the 
rank of v ’s old parent w. 
Thus, any node v can be charged at most the 
number of different ranks that are in v ’s rank group. 
If v is in rank group g > 0, then v can be charged at 
most t(g)-t(g-1) times before v has a parent in a 
higher rank group (and from that point on, v will 
never be charged again). In other words, the total 
number, C, of cyber-dollars that can ever be charged 
to nodes can be bounded by
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Proof of log* n Amortized Time (end)

Bounding n(g): Returning to C: 

)(

2

2
2

2
1

2

2
)(

)1(

1)1(

1)1()(

0
1)1(

)(

1)1(

gt
n

n

n

n

ngn

gt

gt

gtgt

s
sgt

gt

gts
s

=

=

⋅<

=

≤

−

+−

−−−

=
+−

+−=

∑

∑

nn

n

gt
gt
n

gtgt
gt
nC

n

g

n

g

n

g

log*

)(
)(

))1()((
)(

1log*

1

1log*

1

1log*

1

≤

=

⋅≤

−−⋅<

∑

∑

∑

−

=

−

=

−

=


	Union-Find Partition Structures
	Partitions with Union-Find Operations
	List-based Implementation
	Analysis of List-based Representation
	Tree-based Implementation
	Union-Find Operations
	Union-Find Heuristic 1
	Union-Find Heuristic 2
	Proof of log* n Amortized Time
	Proof of log* n Amortized Time (2)
	Proof of log* n Amortized Time (3)
	Proof of log* n Amortized Time (4)
	Proof of log* n Amortized Time (5)
	Proof of log* n Amortized Time (end)

