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Weighted Graphs
 In a weighted graph, each edge has an associated numerical 

value, called the weight of the edge
 Edge weights may represent, distances, costs, etc.
 Example:

 In a  flight route graph, the weight of an edge represents the 
distance in miles between the endpoint airports
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Shortest Paths
 Given a weighted graph and two vertices u and v, we want to 

find a path of minimum total weight between u and v.
 Length of a path is the sum of the weights of its edges.

 Example:
 Shortest path between Providence and Honolulu

 Applications
 Internet packet routing 
 Flight reservations
 Driving directions
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Shortest Path Properties
Property 1:

A subpath of a shortest path is itself a shortest path
Property 2:

There is a tree of shortest paths from a start vertex to all the other 
vertices

Example:
Tree of shortest paths from Providence
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Dijkstra’s Algorithm
 The distance of a vertex 

v from a vertex s is the 
length of a shortest path 
between s and v

 Dijkstra’s algorithm 
computes the distances 
of all the vertices from a 
given start vertex s

 Assumptions:
 the graph is connected
 the edges are 

undirected
 the edge weights are 

nonnegative

 We grow a “cloud” of vertices, 
beginning with s and eventually 
covering all the vertices

 We store with each vertex v a 
label d(v) representing the 
distance of v from s in the 
subgraph consisting of the cloud 
and its adjacent vertices

 At each step
 We add to the cloud the vertex 

u outside the cloud with the 
smallest distance label, d(u)

 We update the labels of the 
vertices adjacent to u
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Edge Relaxation
 Consider an edge e = (u,z)

such that
 u is the vertex most recently 

added to the cloud
 z is not in the cloud

 The relaxation of edge e 
updates distance d(z) as 
follows:
d(z) ← min{d(z),d(u) + weight(e)}
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Example
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Example (cont.)
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Dijkstra’s Algorithm
 A heap-based adaptable 

priority queue with 
location-aware entries 
stores the vertices 
outside the cloud
 Key: distance
 Value: vertex
 Recall that method 

replaceKey(l,k) changes 
the key of entry l

 We store two labels 
with each vertex:
 Distance
 Entry in priority queue

Algorithm DijkstraDistances(G, s)
Q ← new heap-based priority queue
for all v ∈ G.vertices()

if v = s
v.setDistance(0)

else
v.setDistance(∞)

l ← Q.insert(v.getDistance(), v)
v.setEntry(l)

while ¬Q.empty()
l ← Q.removeMin()
u ← l.getValue()
for all e ∈ u.incidentEdges() { relax e }

z ← e.opposite(u)
r ← u.getDistance() + e.weight()
if r < z.getDistance()

z.setDistance(r)
Q.replaceKey(z.getEntry(), r)
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Analysis of Dijkstra’s Algorithm
 Graph operations

 Method incidentEdges is called once for each vertex
 Label operations

 We set/get the distance and locator labels of vertex z O(deg(z)) times
 Setting/getting a label takes O(1) time

 Priority queue operations
 Each vertex is inserted once into and removed once from the priority 

queue, where each insertion or removal takes O(log n) time
 The key of a vertex in the priority queue is modified at most deg(w) 

times, where each key change takes O(log n) time 
 Dijkstra’s algorithm runs in O((n + m) log n) time provided the 

graph is represented by the adjacency list structure
 Recall that Σv deg(v) = 2m

 The running time can also be expressed as O(m log n) since the 
graph is connected
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Shortest Paths Tree
 Using the template 

method pattern, we 
can extend Dijkstra’s 
algorithm to return a 
tree of shortest paths
from the start vertex 
to all other vertices

 We store with each 
vertex a third label:
 parent edge in the 

shortest path tree

 In the edge relaxation 
step, we update the 
parent label

Algorithm DijkstraShortestPathsTree(G, s)

…

for all v ∈ G.vertices()
…
v.setParent(∅)
…

for all e ∈ u.incidentEdges()
{ relax edge e }
z ← e.opposite(u)
r ← u.getDistance() + e.weight()
if r < z.getDistance()

z.setDistance(r)
z.setParent(e)
Q.replaceKey(z.getEntry(),r)
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Why Dijkstra’s Algorithm Works
 Dijkstra’s algorithm is based on the greedy 

method. It adds vertices by increasing distance.
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 Suppose it didn’t find all shortest 
distances. Let F be the first wrong 
vertex the algorithm processed.

 When the previous node, D, on the 
true shortest path was considered, 
its distance was correct

 But the edge (D,F) was relaxed at 
that time!

 Thus, so long as d(F)>d(D), F’s 
distance cannot be wrong.  That is, 
there is no wrong vertex
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Why It Doesn’t Work for 
Negative-Weight Edges

 If a node with a negative 
incident edge were to be added 
late to the cloud, it could mess 
up distances for vertices already 
in the cloud. 
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Dijkstra’s algorithm is based on the greedy 
method. It adds vertices by increasing distance.

C’s true distance is 1, but 
it is already in the cloud 
with d(C)=5!
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Bellman-Ford Algorithm 
(not in book)
 Works even with negative-

weight edges
 Must assume directed 

edges (for otherwise we 
would have negative-
weight cycles)

 Iteration i finds all shortest 
paths that use i edges.

 Running time: O(nm).
 Can be extended to detect 

a negative-weight cycle if it 
exists 
 How?

Algorithm BellmanFord(G, s)
for all v ∈ G.vertices()

if v = s
v.setDistance(0)

else
v.setDistance(∞)

for i ← 1 to n − 1 do
for each e ∈ G.edges()

{ relax edge e }
u ← e.origin()
z ← e.opposite(u)
r ← u.getDistance() + e.weight()
if r < z.getDistance()

z.setDistance(r)
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DAG-based Algorithm 
(not in book)

 Works even with 
negative-weight edges

 Uses topological order
 Doesn’t use any fancy 

data structures
 Is much faster than 

Dijkstra’s algorithm
 Running time: O(n+m).

Algorithm DagDistances(G, s)
for all v ∈ G.vertices()

if v = s
v.setDistance(0)

else
v.setDistance(∞)

{ Perform a topological sort of the vertices }
for u ← 1 to n do    {in topological order}

for each e ∈ u.outEdges()
{ relax edge e }
z ← e.opposite(u)
r ← u.getDistance() + e.weight()
if r < z.getDistance()
z.setDistance(r)
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