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Running Time
 Most algorithms transform 

input objects into output 
objects.

 The running time of an 
algorithm typically grows 
with the input size.

 Average case time is often 
difficult to determine.

 We focus on the worst case 
running time.
 Easier to analyze
 Crucial to applications such as 

games, finance and robotics
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Experimental Studies

 Write a program 
implementing the 
algorithm

 Run the program with 
inputs of varying size and 
composition

 Use a method like clock()
to get an accurate 
measure of the actual 
running time

 Plot the results 0
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Limitations of Experiments

 It is necessary to implement the 
algorithm, which may be difficult

 Results may not be indicative of the 
running time on other inputs not included 
in the experiment. 

 In order to compare two algorithms, the 
same hardware and software 
environments must be used
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Theoretical Analysis

 Uses a high-level description of the 
algorithm instead of an implementation

 Characterizes running time as a 
function of the input size, n.

 Takes into account all possible inputs
 Allows us to evaluate the speed of an 

algorithm independent of the 
hardware/software environment
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Pseudocode
 High-level description 

of an algorithm
 More structured than 

English prose
 Less detailed than a 

program
 Preferred notation for 

describing algorithms
 Hides program design 

issues

Algorithm arrayMax(A, n)
Input array A of n integers
Output maximum element of A

currentMax ← A[0]
for i ← 1 to n − 1 do

if A[i] > currentMax then
currentMax ← A[i]

return currentMax

Example: find max 
element of an array
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Pseudocode Details

 Control flow
 if … then … [else …]
 while … do …
 repeat … until …
 for … do …
 Indentation replaces braces 

 Method declaration
Algorithm method (arg [, arg…])

Input …
Output …

 Method call
var.method (arg [, arg…])

 Return value
return expression

 Expressions
←Assignment

(like = in C++)
= Equality testing

(like == in C++)
n2 Superscripts and other 

mathematical 
formatting allowed
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The Random Access Machine 
(RAM) Model

 A CPU

 An potentially unbounded 
bank of memory cells, 
each of which can hold an 
arbitrary number or 
character

0
1
2

Memory cells are numbered and accessing 
any cell in memory takes unit time.
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Seven Important Functions
 Seven functions that 

often appear in algorithm 
analysis:
 Constant ≈ 1
 Logarithmic ≈ log n
 Linear ≈ n
 N-Log-N ≈ n log n
 Quadratic ≈ n2

 Cubic ≈ n3

 Exponential ≈ 2n

 In a log-log chart, the 
slope of the line 
corresponds to the 
growth rate
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Functions Graphed 
Using “Normal” Scale
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g(n) = 2ng(n) = 1

g(n) = lg n

g(n) = n lg n

g(n) = n

g(n) = n2

g(n) = n3

Slide by Matt Stallmann 
included with permission.
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Primitive Operations
 Basic computations 

performed by an algorithm
 Identifiable in pseudocode
 Largely independent from the 

programming language
 Exact definition not important 

(we will see why later)
 Assumed to take a constant 

amount of time in the RAM 
model

 Examples:
 Evaluating an 

expression
 Assigning a value 

to a variable
 Indexing into an 

array
 Calling a method
 Returning from a 

method
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Counting Primitive Operations
 By inspecting the pseudocode, we can determine the 

maximum number of primitive operations executed by 
an algorithm, as a function of the input size

Algorithm arrayMax(A, n) # operations
currentMax ← A[0] 2
for i ← 1 to n − 1 do 2n

if A[i] > currentMax then 2(n − 1)
currentMax ← A[i] 2(n − 1)

{ increment counter i } 2(n − 1)
return currentMax 1

Total 8n − 2
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Estimating Running Time
 Algorithm arrayMax executes 8n − 2 primitive 

operations in the worst case.  Define:
a = Time taken by the fastest primitive operation
b = Time taken by the slowest primitive operation

 Let T(n) be worst-case time of arrayMax. Then
a (8n − 2) ≤ T(n) ≤ b(8n − 2)

 Hence, the running time T(n) is bounded by two 
linear functions
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Growth Rate of Running Time

 Changing the hardware/ software 
environment 
 Affects T(n) by a constant factor, but
 Does not alter the growth rate of T(n)

 The linear growth rate of the running 
time T(n) is an intrinsic property of 
algorithm arrayMax
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Why Growth Rate Matters
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Slide by Matt Stallmann 
included with permission.

if runtime 
is... time for n + 1 time for 2 n time for 4 n
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runtime
quadruples
when 
problem
size doubles



Comparison of Two Algorithms
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Slide by Matt Stallmann 
included with permission.

insertion sort is
n2 / 4

merge sort is
2 n lg n

sort a million items?
insertion sort takes
roughly 70 hours

while
merge sort takes
roughly 40 seconds

This is a slow machine, but if
100 x as fast then it’s 40 minutes
versus less than 0.5 seconds
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Constant Factors

 The growth rate is 
not affected by
 constant factors or 
 lower-order terms

 Examples
 102n + 105 is a linear 

function
 105n2 + 108n is a 

quadratic function
1E+0
1E+2
1E+4
1E+6
1E+8

1E+10
1E+12
1E+14
1E+16
1E+18
1E+20
1E+22
1E+24
1E+26

1E+0 1E+2 1E+4 1E+6 1E+8 1E+10
n

T
(n

)

Quadratic

Quadratic

Linear
Linear

© 2010 Goodrich, Tamassia



Analysis of Algorithms 18

Big-Oh Notation
 Given functions f(n) and 

g(n), we say that f(n) is 
O(g(n)) if there are 
positive constants
c and n0 such that

f(n) ≤ cg(n)  for n ≥ n0

 Example: 2n + 10 is O(n)
 2n + 10 ≤ cn
 (c − 2) n ≥ 10
 n ≥ 10/(c − 2)
 Pick c = 3 and n0 = 10
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Big-Oh Example

 Example: the function 
n2 is not O(n)
 n2 ≤ cn
 n ≤ c
 The above inequality 

cannot be satisfied 
since c must be a 
constant 
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More Big-Oh Examples
7n-2

7n-2 is O(n)
need c > 0 and n0 ≥ 1 such that 7n-2 ≤ c•n for n ≥ n0

this is true for c = 7 and n0 = 1

 3n3 + 20n2 + 5
3n3 + 20n2 + 5 is O(n3)
need c > 0 and n0 ≥ 1 such that 3n3 + 20n2 + 5 ≤ c•n3 for n ≥ n0

this is true for c = 4 and n0 = 21

 3 log n + 5
3 log n + 5 is O(log n)
need c > 0 and n0 ≥ 1 such that 3 log n + 5 ≤ c•log n for n ≥ n0

this is true for c = 8 and n0 = 2
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Big-Oh and Growth Rate
 The big-Oh notation gives an upper bound on the 

growth rate of a function
 The statement “f(n) is O(g(n))” means that the growth 

rate of f(n) is no more than the growth rate of g(n)
 We can use the big-Oh notation to rank functions 

according to their growth rate

f(n) is O(g(n)) g(n) is O(f(n))

g(n) grows more Yes No
f(n) grows more No Yes
Same growth Yes Yes
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Big-Oh Rules

 If is f(n) a polynomial of degree d, then f(n) is 
O(nd), i.e.,

1. Drop lower-order terms
2. Drop constant factors

 Use the smallest possible class of functions
 Say “2n is O(n)” instead of “2n is O(n2)”

 Use the simplest expression of the class
 Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)”
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Asymptotic Algorithm Analysis
 The asymptotic analysis of an algorithm determines 

the running time in big-Oh notation
 To perform the asymptotic analysis

 We find the worst-case number of primitive operations 
executed as a function of the input size

 We express this function with big-Oh notation
 Example:

 We determine that algorithm arrayMax executes at most 
8n − 2 primitive operations

 We say that algorithm arrayMax “runs in O(n) time”

 Since constant factors and lower-order terms are 
eventually dropped anyhow, we can disregard them 
when counting primitive operations
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Computing Prefix Averages
 We further illustrate 

asymptotic analysis with 
two algorithms for prefix 
averages

 The i-th prefix average of 
an array X is average of the 
first (i + 1) elements of X:

A[i] = (X[0] + X[1] + … + X[i])/(i+1)

 Computing the array A of 
prefix averages of another 
array X has applications to 
financial analysis

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7

X
A

© 2010 Goodrich, Tamassia



Analysis of Algorithms 25

Prefix Averages (Quadratic)
The following algorithm computes prefix averages in 
quadratic time by applying the definition

Algorithm prefixAverages1(X, n)
Input array X of n integers
Output array A of prefix averages of X #operations
A ← new array of n integers n
for i ← 0 to n − 1 do n

s ← X[0] n
for j ← 1 to i do 1 + 2 + …+ (n − 1)

s ← s + X[j] 1 + 2 + …+ (n − 1)
A[i] ← s / (i + 1) n

return A 1
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Arithmetic Progression

 The running time of 
prefixAverages1 is
O(1 + 2 + …+ n)

 The sum of the first n
integers is n(n + 1) / 2
 There is a simple visual 

proof of this fact

 Thus, algorithm 
prefixAverages1 runs in 
O(n2) time 
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Prefix Averages (Linear)
The following algorithm computes prefix averages in 
linear time by keeping a running sum

Algorithm prefixAverages2(X, n)
Input array X of n integers
Output array A of prefix averages of X #operations
A ← new array of n integers n
s ← 0 1
for i ← 0 to n − 1 do n

s ← s + X[i] n
A[i] ← s / (i + 1) n

return A 1
Algorithm prefixAverages2 runs in O(n) time 
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 properties of logarithms:
logb(xy) = logbx + logby
logb (x/y) = logbx - logby
logbxa = alogbx
logba = logxa/logxb

 properties of exponentials:
a(b+c) = aba c
abc = (ab)c

ab /ac = a(b-c)

b = a logab

bc = a c*logab

Summations
Logarithms and Exponents

Proof techniques
Basic probability

Math you need to Review
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Relatives of Big-Oh
big-Omega
 f(n) is Ω(g(n)) if there is a constant c > 0 

and an integer constant n0 ≥ 1 such that 
f(n) ≥ c•g(n) for n ≥ n0

big-Theta
 f(n) is Θ(g(n)) if there are constants c’ > 0 and c’’ 

> 0 and an integer constant n0 ≥ 1 such that 
c’•g(n) ≤ f(n) ≤ c’’•g(n) for n ≥ n0
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Intuition for Asymptotic 
Notation

Big-Oh
 f(n) is O(g(n)) if f(n) is asymptotically 

less than or equal to g(n)
big-Omega
 f(n) is Ω(g(n)) if f(n) is asymptotically 

greater than or equal to g(n)
big-Theta
 f(n) is Θ(g(n)) if f(n) is asymptotically 

equal to g(n)
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Example Uses of the 
Relatives of Big-Oh

f(n) is Θ(g(n)) if it is Ω(n2) and O(n2). We have already seen the former, 
for the latter recall that f(n) is O(g(n)) if there is a constant c > 0 and an 
integer constant n0 ≥ 1 such that f(n) < c•g(n) for n ≥ n0 

Let c = 5 and n0 = 1

 5n2 is Θ(n2)

f(n) is Ω(g(n)) if there is a constant c > 0 and an integer constant n0 ≥ 1 
such that f(n) ≥ c•g(n) for n ≥ n0

let c = 1 and n0 = 1

 5n2 is Ω(n)

f(n) is Ω(g(n)) if there is a constant c > 0 and an integer constant n0 ≥ 1 
such that f(n) ≥ c•g(n) for n ≥ n0

let c = 5 and n0 = 1

 5n2 is Ω(n2)

© 2010 Goodrich, Tamassia


	Analysis of Algorithms
	Running Time
	Experimental Studies
	Limitations of Experiments
	Theoretical Analysis
	Pseudocode
	Pseudocode Details
	The Random Access Machine (RAM) Model
	Seven Important Functions
	Functions Graphed �Using “Normal” Scale
	Primitive Operations
	Counting Primitive Operations
	Estimating Running Time
	Growth Rate of Running Time
	�Why Growth Rate Matters
	�Comparison of Two Algorithms
	Constant Factors
	Big-Oh Notation
	Big-Oh Example
	Slide Number 20
	Big-Oh and Growth Rate
	Big-Oh Rules
	Asymptotic Algorithm Analysis
	Computing Prefix Averages
	Slide Number 25
	Arithmetic Progression
	Slide Number 27
	Math you need to Review
	Slide Number 29
	Intuition for Asymptotic Notation
	Slide Number 31

