
Array Lists 1

Array Lists

© 2010 Goodrich, Tamassia

Array Lists 2

The Array List ADT
 The Vector or Array List

ADT extends the notion
of array by storing a
sequence of objects

 An element can be
accessed, inserted or
removed by specifying
its index (number of
elements preceding it)

 An exception is thrown
if an incorrect index is
given (e.g., a negative
index)

 Main methods:
 at(integer i): returns the element

at index i without removing it
 set(integer i, object o): replace

the element at index i with o
 insert(integer i, object o): insert a

new element o to have index i
 erase(integer i): removes element

at index i
 Additional methods:

 size()
 empty()

© 2010 Goodrich, Tamassia

Array Lists 3

Applications of Array Lists
 Direct applications

 Sorted collection of objects (elementary
database)

 Indirect applications
 Auxiliary data structure for algorithms
 Component of other data structures

© 2010 Goodrich, Tamassia

Array Lists 4

Array-based Implementation
 Use an array A of size N
 A variable n keeps track of the size of the array list

(number of elements stored)
 Operation at(i) is implemented in O(1) time by

returning A[i]
 Operation set(i,o) is implemented in O(1) time by

performing A[i] = o

A
0 1 2 ni

© 2010 Goodrich, Tamassia

Array Lists 5

Insertion
 In operation insert(i, o), we need to make room

for the new element by shifting forward the n − i
elements A[i], …, A[n − 1]

 In the worst case (i = 0), this takes O(n) time

A
0 1 2 ni

A
0 1 2 ni

A
0 1 2 n

o
i

© 2010 Goodrich, Tamassia

Array Lists 6

Element Removal
 In operation erase(i), we need to fill the hole left by the

removed element by shifting backward the n − i − 1
elements A[i + 1], …, A[n − 1]

 In the worst case (i = 0), this takes O(n) time

A
0 1 2 ni

A
0 1 2 n

o
i

A
0 1 2 ni

© 2010 Goodrich, Tamassia

Array Lists 7

Performance
 In the array based implementation of an array

list:
 The space used by the data structure is O(n)
 size, empty, at and set run in O(1) time
 insert and erase run in O(n) time in worst case

 If we use the array in a circular fashion,
operations insert(0, x) and erase(0, x) run in
O(1) time

 In an insert operation, when the array is full,
instead of throwing an exception, we can
replace the array with a larger one

© 2010 Goodrich, Tamassia

Array Lists 8

Growable Array-based Array List
 In an insert(o) operation

(without an index), we
always insert at the end

 When the array is full, we
replace the array with a
larger one

 How large should the new
array be?
 Incremental strategy: increase

the size by a constant c
 Doubling strategy: double the

size

Algorithm insert(o)
if t = S.length − 1 then

A ← new array of
size …

for i ← 0 to n−1 do
A[i] ← S[i]

S ← A
n ← n + 1
S[n−1] ← o

© 2010 Goodrich, Tamassia

Array Lists 9

Comparison of the Strategies

 We compare the incremental strategy and
the doubling strategy by analyzing the total
time T(n) needed to perform a series of n
insert(o) operations

 We assume that we start with an empty
stack represented by an array of size 1

 We call amortized time of an insert operation
the average time taken by an insert over the
series of operations, i.e., T(n)/n

© 2010 Goodrich, Tamassia

Array Lists 10

Incremental Strategy Analysis

 We replace the array k = n/c times
 The total time T(n) of a series of n insert

operations is proportional to
n + c + 2c + 3c + 4c + … + kc =

n + c(1 + 2 + 3 + … + k) =
n + ck(k + 1)/2

 Since c is a constant, T(n) is O(n + k2), i.e.,
O(n2)

 The amortized time of an insert operation is
O(n)

© 2010 Goodrich, Tamassia

Array Lists 11

Doubling Strategy Analysis
 We replace the array k = log2 n

times
 The total time T(n) of a series of n

insert operations is proportional to
n + 1 + 2 + 4 + 8 + …+ 2k =
n + 2k + 1 − 1 =
3n − 1

 T(n) is O(n)
 The amortized time of an insert

operation is O(1)

geometric series

1

2

1
4

8

© 2010 Goodrich, Tamassia

	Array Lists
	The Array List ADT
	Applications of Array Lists
	Array-based Implementation
	Insertion
	Element Removal
	Performance
	Growable Array-based Array List
	Comparison of the Strategies
	Incremental Strategy Analysis
	Doubling Strategy Analysis

