
© 2004 Goodrich, Tamassia Campus Tour 1

Campus Tour



© 2004 Goodrich, Tamassia Campus Tour 2

Graph Assignment
Goals
 Learn and implement the adjacency matrix structure an 

Kruskal’s minimum spanning tree algorithm
 Understand and use  the decorator pattern and various JDSL 

classes and interfaces

Your task
 Implement the adjacency matrix structure for representing a 

graph
 Implement Kruskal’s MST algorithm

Frontend
 Computation and visualization of an approximate traveling 

salesperson tour



© 2004 Goodrich, Tamassia Campus Tour 3

Adjacency Matrix Structure
Edge list structure
Augmented vertex 
objects
 Integer key (index) 

associated with 
vertex

2D-array adjacency 
array
 Reference to edge 

object for adjacent 
vertices

 Null for non 
nonadjacent 
vertices

u

v

w
a b

0 1 2

0 ∅ ∅

1 ∅

2 ∅ ∅a

u v w0 1 2

b



© 2004 Goodrich, Tamassia Campus Tour 4

Kruskal’s Algorithm
The vertices are 
partitioned into clouds
 We start with one cloud 

per vertex
 Clouds are merged during 

the execution of the 
algorithm

Partition ADT:
 makeSet(o): create set {o} 

and return a locator for 
object o

 find(l): return the set of 
the object with locator l

 union(A,B): merge sets A 
and B

Algorithm KruskalMSF(G)
Input weighted graph G
Output labeling of the edges of a

minimum spanning forest of G
Q ← new heap-based priority queue
for all v ∈ G.vertices() do

l ← makeSet(v) { elementary cloud }
v.setLocator(l)

for all e ∈ G.edges() do
Q.insert(e.weight(), e)

while ¬Q.empty()
e ← Q.removeMin()
[u,v] ← e.endVertices()
A ← find(u.getLocator())
B ← find(v.getLocator())
if A ≠ B

setMSFedge(e)
{ merge clouds }
union(A, B)



© 2004 Goodrich, Tamassia Campus Tour 5

Example

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9



© 2004 Goodrich, Tamassia Campus Tour 6

Example (contd.)

four steps

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9



© 2004 Goodrich, Tamassia Campus Tour 7

Partition Implementation
Partition implementation
 A set is represented the 

sequence of its elements
 A position stores a reference 

back to the sequence itself (for 
operation find)

 The position of an element in 
the sequence serves as locator 
for the element in the set

 In operation union, we move 
the elements of the smaller 
sequence into to the larger 
sequence

Worst-case running times
 makeSet, find: O(1)
 union: O(min(nA, nB))

Amortized analysis
 Consider a series of k Partiton 

ADT operations that includes 
n makeSet operations 

 Each time we move an 
element into a new sequence, 
the size of its set at least 
doubles

 An element is moved at most 
log2 n times

 Moving an element takes O(1) 
time

 The total time for the series 
of operations is O(k + n log n)



© 2004 Goodrich, Tamassia Campus Tour 8

Analysis of Kruskal’s Algorithm
Graph operations
 Methods vertices and edges are called once
 Method endVertices is called m times

Priority queue operations
 We perform m insert operations and m removeMin operations

Partition operations
 We perform n makeSet operations, 2m find operations and no 

more than n − 1 union operations 

Label operations
 We set vertex labels n times and get them 2m times 

Kruskal’s algorithm runs in time O((n + m) log n) time 
provided the graph has no parallel edges and is 
represented by the adjacency list structure



© 2004 Goodrich, Tamassia Campus Tour 9

Decorator Pattern
Labels are commonly used in 
graph algorithms
 Auxiliary data
 Output

Examples
 DFS: unexplored/visited 

label for vertices and 
unexplored/ forward/back 
labels for edges

 Dijkstra and Prim-Jarnik: 
distance, locator, and 
parent labels for vertices

 Kruskal: locator label for 
vertices and MSF label for 
edges

The decorator pattern extends 
the methods of the Position 
ADT to support the handling 
of attributes (labels)
 has(a): tests whether the 

position has attribute a
 get(a): returns the value of 

attribute a
 set(a, x): sets to x the value of 

attribute a
 destroy(a): removes attribute 

a and its associated value (for 
cleanup purposes) 

The decorator pattern can be 
implemented by storing a 
dictionary of (attribute, value) 
items at each position



© 2004 Goodrich, Tamassia Campus Tour 10

Traveling Salesperson Problem
A tour of a graph is a spanning cycle 
(e.g., a cycle that goes through all 
the vertices)
A traveling salesperson tour of a 
weighted graph is a tour that is 
simple (i.e., no repeated vertices or 
edges) and has has minimum weight
No polynomial-time algorithms are 
known for computing traveling 
salesperson tours
The traveling salesperson problem 
(TSP) is a major open problem in 
computer science
 Find a polynomial-time algorithm  

computing a traveling salesperson 
tour or prove that none exists

B
D

C

A

F

E

7
4

2
8

5

3

2

6

1

Example of traveling
salesperson tour
(with weight 17)



© 2004 Goodrich, Tamassia Campus Tour 11

TSP Approximation
We can approximate a TSP tour 
with a tour of at most twice the 
weight for the case of Euclidean 
graphs
 Vertices are points in the plane
 Every pair of vertices is connected 

by an edge
 The weight of an edge is the 

length of the segment joining the 
points

Approximation algorithm
 Compute a minimum spanning tree
 Form an Eulerian circuit around the 

MST
 Transform the circuit into a tour


	Campus Tour
	Graph Assignment
	Adjacency Matrix Structure
	Kruskal’s Algorithm
	Example
	Example (contd.)
	Partition Implementation
	Analysis of Kruskal’s Algorithm
	Decorator Pattern
	Traveling Salesperson Problem
	TSP Approximation

