
© 2010 Goodrich, Tamassia Shortest Paths 1

Shortest Paths

CB

A

E

D

F

0

328

5 8

48

7 1

2 5

2

3 9

© 2010 Goodrich, Tamassia Shortest Paths 2

Weighted Graphs
 In a weighted graph, each edge has an associated numerical

value, called the weight of the edge
 Edge weights may represent, distances, costs, etc.
 Example:

 In a flight route graph, the weight of an edge represents the
distance in miles between the endpoint airports

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

© 2010 Goodrich, Tamassia Shortest Paths 3

Shortest Paths
 Given a weighted graph and two vertices u and v, we want to

find a path of minimum total weight between u and v.
 Length of a path is the sum of the weights of its edges.

 Example:
 Shortest path between Providence and Honolulu

 Applications
 Internet packet routing
 Flight reservations
 Driving directions

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

© 2010 Goodrich, Tamassia Shortest Paths 4

Shortest Path Properties
Property 1:

A subpath of a shortest path is itself a shortest path
Property 2:

There is a tree of shortest paths from a start vertex to all the other
vertices

Example:
Tree of shortest paths from Providence

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

© 2010 Goodrich, Tamassia Shortest Paths 5

Dijkstra’s Algorithm
 The distance of a vertex

v from a vertex s is the
length of a shortest path
between s and v

 Dijkstra’s algorithm
computes the distances
of all the vertices from a
given start vertex s

 Assumptions:
 the graph is connected
 the edges are

undirected
 the edge weights are

nonnegative

 We grow a “cloud” of vertices,
beginning with s and eventually
covering all the vertices

 We store with each vertex v a
label d(v) representing the
distance of v from s in the
subgraph consisting of the cloud
and its adjacent vertices

 At each step
 We add to the cloud the vertex

u outside the cloud with the
smallest distance label, d(u)

 We update the labels of the
vertices adjacent to u

© 2010 Goodrich, Tamassia Shortest Paths 6

Edge Relaxation
 Consider an edge e = (u,z)

such that
 u is the vertex most recently

added to the cloud
 z is not in the cloud

 The relaxation of edge e
updates distance d(z) as
follows:
d(z) ← min{d(z),d(u) + weight(e)}

d(z) = 75
d(u) = 50

zs
u

d(z) = 60
d(u) = 50

zs
u

e

e

© 2010 Goodrich, Tamassia Shortest Paths 7

Example

CB

A

E

D

F

0

428

∞ ∞

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

328

5 11

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

328

5 8

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

© 2010 Goodrich, Tamassia Shortest Paths 8

Example (cont.)

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

© 2010 Goodrich, Tamassia Shortest Paths 9

Dijkstra’s Algorithm
 A heap-based adaptable

priority queue with
location-aware entries
stores the vertices
outside the cloud
 Key: distance
 Value: vertex
 Recall that method

replaceKey(l,k) changes
the key of entry l

 We store two labels
with each vertex:
 Distance
 Entry in priority queue

Algorithm DijkstraDistances(G, s)
Q ← new heap-based priority queue
for all v ∈ G.vertices()

if v = s
v.setDistance(0)

else
v.setDistance(∞)

l ← Q.insert(v.getDistance(), v)
v.setEntry(l)

while ¬Q.empty()
l ← Q.removeMin()
u ← l.getValue()
for all e ∈ u.incidentEdges() { relax e }

z ← e.opposite(u)
r ← u.getDistance() + e.weight()
if r < z.getDistance()

z.setDistance(r)
Q.replaceKey(z.getEntry(), r)

© 2010 Goodrich, Tamassia Shortest Paths 10

Analysis of Dijkstra’s Algorithm
 Graph operations

 Method incidentEdges is called once for each vertex
 Label operations

 We set/get the distance and locator labels of vertex z O(deg(z)) times
 Setting/getting a label takes O(1) time

 Priority queue operations
 Each vertex is inserted once into and removed once from the priority

queue, where each insertion or removal takes O(log n) time
 The key of a vertex in the priority queue is modified at most deg(w)

times, where each key change takes O(log n) time
 Dijkstra’s algorithm runs in O((n + m) log n) time provided the

graph is represented by the adjacency list structure
 Recall that Σv deg(v) = 2m

 The running time can also be expressed as O(m log n) since the
graph is connected

© 2010 Goodrich, Tamassia Shortest Paths 11

Shortest Paths Tree
 Using the template

method pattern, we
can extend Dijkstra’s
algorithm to return a
tree of shortest paths
from the start vertex
to all other vertices

 We store with each
vertex a third label:
 parent edge in the

shortest path tree

 In the edge relaxation
step, we update the
parent label

Algorithm DijkstraShortestPathsTree(G, s)

…

for all v ∈ G.vertices()
…
v.setParent(∅)
…

for all e ∈ u.incidentEdges()
{ relax edge e }
z ← e.opposite(u)
r ← u.getDistance() + e.weight()
if r < z.getDistance()

z.setDistance(r)
z.setParent(e)
Q.replaceKey(z.getEntry(),r)

© 2010 Goodrich, Tamassia Shortest Paths 12

Why Dijkstra’s Algorithm Works
 Dijkstra’s algorithm is based on the greedy

method. It adds vertices by increasing distance.

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

 Suppose it didn’t find all shortest
distances. Let F be the first wrong
vertex the algorithm processed.

 When the previous node, D, on the
true shortest path was considered,
its distance was correct

 But the edge (D,F) was relaxed at
that time!

 Thus, so long as d(F)>d(D), F’s
distance cannot be wrong. That is,
there is no wrong vertex

© 2010 Goodrich, Tamassia Shortest Paths 13

Why It Doesn’t Work for
Negative-Weight Edges

 If a node with a negative
incident edge were to be added
late to the cloud, it could mess
up distances for vertices already
in the cloud.

CB

A

E

D

F

0

457

5 9

48

7 1

2 5

6

0 -8

Dijkstra’s algorithm is based on the greedy
method. It adds vertices by increasing distance.

C’s true distance is 1, but
it is already in the cloud
with d(C)=5!

© 2010 Goodrich, Tamassia Shortest Paths 14

Bellman-Ford Algorithm
(not in book)
 Works even with negative-

weight edges
 Must assume directed

edges (for otherwise we
would have negative-
weight cycles)

 Iteration i finds all shortest
paths that use i edges.

 Running time: O(nm).
 Can be extended to detect

a negative-weight cycle if it
exists
 How?

Algorithm BellmanFord(G, s)
for all v ∈ G.vertices()

if v = s
v.setDistance(0)

else
v.setDistance(∞)

for i ← 1 to n − 1 do
for each e ∈ G.edges()

{ relax edge e }
u ← e.origin()
z ← e.opposite(u)
r ← u.getDistance() + e.weight()
if r < z.getDistance()

z.setDistance(r)

© 2010 Goodrich, Tamassia Shortest Paths 15

∞

-2

Bellman-Ford Example

∞∞

0

∞

∞

∞

48

7 1

-2 5

-2

3 9

∞

0

∞

∞

∞

48

7 1

-2 5
3 9

Nodes are labeled with their d(v) values

-2

-28

0

4

∞

48

7 1

-2 5
3 9

∞

8 -2 4

-15

6
1

9

-25

0

1

-1

9

48

7 1

-2 5

-2

3 9
4

© 2010 Goodrich, Tamassia Shortest Paths 16

DAG-based Algorithm
(not in book)

 Works even with
negative-weight edges

 Uses topological order
 Doesn’t use any fancy

data structures
 Is much faster than

Dijkstra’s algorithm
 Running time: O(n+m).

Algorithm DagDistances(G, s)
for all v ∈ G.vertices()

if v = s
v.setDistance(0)

else
v.setDistance(∞)

{ Perform a topological sort of the vertices }
for u ← 1 to n do {in topological order}

for each e ∈ u.outEdges()
{ relax edge e }
z ← e.opposite(u)
r ← u.getDistance() + e.weight()
if r < z.getDistance()
z.setDistance(r)

© 2010 Goodrich, Tamassia Shortest Paths 17

∞

-2

DAG Example

∞∞

0

∞

∞

∞

48

7 1

-5 5

-2

3 9

∞

0

∞

∞

∞

48

7 1

-5 5
3 9

Nodes are labeled with their d(v) values

-2

-28

0

4

∞

48

7 1

-5 5
3 9

∞

-2 4

-1

1 7

-25

0

1

-1

7

48

7 1

-5 5

-2

3 9
4

1

2 43

6 5

1

2 43

6 5

8

1

2 43

6 5

1

2 43

6 5

5

0

(two steps)

	Shortest Paths
	Weighted Graphs
	Shortest Paths
	Shortest Path Properties
	Dijkstra’s Algorithm
	Edge Relaxation
	Example
	Example (cont.)
	Dijkstra’s Algorithm
	Analysis of Dijkstra’s Algorithm
	Shortest Paths Tree
	Why Dijkstra’s Algorithm Works
	Why It Doesn’t Work for Negative-Weight Edges
	Bellman-Ford Algorithm �(not in book)
	Bellman-Ford Example
	DAG-based Algorithm �(not in book)
	DAG Example

