Merge Sort

[72|94—>2479]

/\

[7|2—->27] [9|4-—>

)

) (52

4 >4

N

© 2004 Goodrich, Tamassia Merge Sort

Divide-and-Conqguer

subproblems associated
with S, and S,

s Conquer: combine the

solutions for S; and S, into a 3
solution for S
The base case for the -
recursion are subproblems of
sizeOorl

© 2004 Goodrich, Tamassia Merge Sort

(§ 10.1.1)

g
\

Divide-and conquer is a # Merge-sort is a sorting
general algorithm design algorithm based on the
paradigm: divide-and-conquer

= Divide: divide the input data paradigm
S in two disjoint subsets S, #® Like heap_sort
and 3, m |t uses a comparator
= Recur: solve the = It has O(n log n) running

time
Unlike heap-sort

It does not use an
auxiliary priority queue

It accesses data in a
sequential manner
(suitable to sort data on a
disk)

N

Merge-sort on an input
sequence S with n
elements consists of
three steps:

= Divide: partition S into
two sequences S; and S,
of about n/2 elements
each

= Recur: recursively sort S,
and S,

= Conquer: merge S; and
S,into a unique sorted
sequence

© 2004 Goodrich, Tamassia Merge Sort

Merge-Sort (8 10.1)

Algorithm mergeSort(S, C)

Input sequence S with n
elements, comparator C

Output sequence S sorted
according to C

iIf S.size() > 1
(S;, S,) « partition(S, n/2)
mergeSort(S,, C)
mergeSort(S,, C)
S < merge(S,, S,)

N

L/
The conquer step of

merge-sort consists
of merging two
sorted sequences A
and B into a sorted
seguence S
containing the union
of the elements of A
and B

Merging two sorted
sequences, each
with n/2 elements
and implemented by
means of a doubly
linked list, takes
O(n) time

© 2004 Goodrich, Tamassia

Merging Two Sorted Sequences

Algorithm merge(A, B)

Input sequences A and B with
n/2 elements each

Output sorted sequence of AU B

S « empty sequence

while —A.empty() A =B.empty()
if A.front() < B.front()
S.addBack(A.front()); A.eraseFront();
else
S.addBack(B.front()); B.eraseFront();
while —A.empty()
S.addBack(A.front()); A.eraseFront();
while —B.empty()
S.addBack(B.front()); B.eraseFront();
return S

Merge Sort 4

Merge-Sort Tree

" # An execution of merge-sort is depicted by a binary tree

= each node represents a recursive call of merge-sort and stores
+ unsorted sequence before the execution and its partition
+ sorted sequence at the end of the execution

m the root is the initial call
m the leaves are calls on subsequences of size O or 1

N

[72|94—)2479J

/_
712527 |9l4 > 409]

[7—)7} 22 [9—)9} 4 > 4

© 2004 Goodrich, Tamassia Merge Sort 5

Execution Example

N

#Partition

7294138561]

__

© 2004 Goodrich, Tamassia Merge Sort 6

Execution Example (cont.)

N

#Recursive call, partition

[7294|3861]

__

© 2004 Goodrich, Tamassia Merge Sort 7

Execution Example (cont.)

N

#Recursive call, partition

[7294|3861]

[72|94

© 2004 Goodrich, Tamassia Merge Sort

Execution Example (cont.)

Recursive call, base case

[7294|3861]

Execution Example (cont.)

N

Recursive call, base case

[7294|3861]

© 2004 Goodrich, Tamassia Merge Sort 10

Execution Example (cont.)

#Merge

[7294|3861]

Execution Example (cont.)

N
\J

#Recursive call, ..., base case, merge

[7294|3861]

[72|94]

/\

[7|2—>27 94—>49 o
AN VAN

[7—)7] [2—)2] 9—)9 4—)4

© 2004 Goodrich, Tamassia Merge Sort 12

Execution Example (cont.)

N

#Merge

[7294|3861]

s

7219452479

AN

[7|2—>27] [94—>49]

AN N

757 (252 [959] [4>4

© 2004 Goodrich, Tamassia Merge Sort 13

Execution Example (cont.)

#Recursive call, ..., merge, merge

[7294|3861]

/_

(7219452479 [3861 5136 8]

EARRRS AN

[7|2—>27] [94—>49] [38—)38] [61—)16]

AN AN LN LN

757 |252] (959 (454 (353 858 |66 (151

© 2004 Goodrich, Tamassia Merge Sort 14

Execution Example (cont.)

N

#Merge

729413861 5123467809]

P AnNERERRERSn

(7219452479 (3861136 8]
T cam e e

AN AN LN LN

757 |252] (959 (454 (353 858 |66 (151

© 2004 Goodrich, Tamassia Merge Sort 15

N

Analysis of Merge-Sort

The height h of the merge-sort tree is O(log n)
m at each recursive call we divide in half the sequence,

The overall amount or work done at the nodes of depth iis O(n)
= we partition and merge 2! sequences of size n/2!
= we make 2! recursive calls

Thus, the total running time of merge-sort is O(n log n)

depth #seqs size

0 1
1 2
| 21

© 2004 Goodrich, Tamassia

n/2 [] [J

n/2 |] |)|]‘76
[/][\][/][\][][][][]

Merge Sort 16

Summary of Sorting Algorithms

L

N

Algorithm Time |Notes

= slow
selection-sort O(n?) = in-place
= for small data sets (< 1K)

= slow
iInsertion-sort O(n?) = in-place
= for small data sets (< 1K)

= fast
heap-sort O(nlogn) |= in-place
= for large data sets (1K — 1M)

= fast

merge-sort | O(nlogn) [= sequential data access
= for huge data sets (> 1M)

© 2004 Goodrich, Tamassia Merge Sort 17

	Merge Sort
	Divide-and-Conquer (§ 10.1.1)
	Merge-Sort (§ 10.1)
	Merging Two Sorted Sequences
	Merge-Sort Tree
	Execution Example
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Analysis of Merge-Sort
	Summary of Sorting Algorithms

