
Array Lists 1

Array Lists

© 2010 Goodrich, Tamassia

Array Lists 2

The Array List ADT
 The Vector or Array List

ADT extends the notion
of array by storing a
sequence of objects

 An element can be
accessed, inserted or
removed by specifying
its index (number of
elements preceding it)

 An exception is thrown
if an incorrect index is
given (e.g., a negative
index)

 Main methods:
 at(integer i): returns the element

at index i without removing it
 set(integer i, object o): replace

the element at index i with o
 insert(integer i, object o): insert a

new element o to have index i
 erase(integer i): removes element

at index i
 Additional methods:

 size()
 empty()

© 2010 Goodrich, Tamassia

Array Lists 3

Applications of Array Lists
 Direct applications

 Sorted collection of objects (elementary
database)

 Indirect applications
 Auxiliary data structure for algorithms
 Component of other data structures

© 2010 Goodrich, Tamassia

Array Lists 4

Array-based Implementation
 Use an array A of size N
 A variable n keeps track of the size of the array list

(number of elements stored)
 Operation at(i) is implemented in O(1) time by

returning A[i]
 Operation set(i,o) is implemented in O(1) time by

performing A[i] = o

A
0 1 2 ni

© 2010 Goodrich, Tamassia

Array Lists 5

Insertion
 In operation insert(i, o), we need to make room

for the new element by shifting forward the n − i
elements A[i], …, A[n − 1]

 In the worst case (i = 0), this takes O(n) time

A
0 1 2 ni

A
0 1 2 ni

A
0 1 2 n

o
i

© 2010 Goodrich, Tamassia

Array Lists 6

Element Removal
 In operation erase(i), we need to fill the hole left by the

removed element by shifting backward the n − i − 1
elements A[i + 1], …, A[n − 1]

 In the worst case (i = 0), this takes O(n) time

A
0 1 2 ni

A
0 1 2 n

o
i

A
0 1 2 ni

© 2010 Goodrich, Tamassia

Array Lists 7

Performance
 In the array based implementation of an array

list:
 The space used by the data structure is O(n)
 size, empty, at and set run in O(1) time
 insert and erase run in O(n) time in worst case

 If we use the array in a circular fashion,
operations insert(0, x) and erase(0, x) run in
O(1) time

 In an insert operation, when the array is full,
instead of throwing an exception, we can
replace the array with a larger one

© 2010 Goodrich, Tamassia

Array Lists 8

Growable Array-based Array List
 In an insert(o) operation

(without an index), we
always insert at the end

 When the array is full, we
replace the array with a
larger one

 How large should the new
array be?
 Incremental strategy: increase

the size by a constant c
 Doubling strategy: double the

size

Algorithm insert(o)
if t = S.length − 1 then

A ← new array of
size …

for i ← 0 to n−1 do
A[i] ← S[i]

S ← A
n ← n + 1
S[n−1] ← o

© 2010 Goodrich, Tamassia

Array Lists 9

Comparison of the Strategies

 We compare the incremental strategy and
the doubling strategy by analyzing the total
time T(n) needed to perform a series of n
insert(o) operations

 We assume that we start with an empty
stack represented by an array of size 1

 We call amortized time of an insert operation
the average time taken by an insert over the
series of operations, i.e., T(n)/n

© 2010 Goodrich, Tamassia

Array Lists 10

Incremental Strategy Analysis

 We replace the array k = n/c times
 The total time T(n) of a series of n insert

operations is proportional to
n + c + 2c + 3c + 4c + … + kc =

n + c(1 + 2 + 3 + … + k) =
n + ck(k + 1)/2

 Since c is a constant, T(n) is O(n + k2), i.e.,
O(n2)

 The amortized time of an insert operation is
O(n)

© 2010 Goodrich, Tamassia

Array Lists 11

Doubling Strategy Analysis
 We replace the array k = log2 n

times
 The total time T(n) of a series of n

insert operations is proportional to
n + 1 + 2 + 4 + 8 + …+ 2k =
n + 2k + 1 − 1 =
3n − 1

 T(n) is O(n)
 The amortized time of an insert

operation is O(1)

geometric series

1

2

1
4

8

© 2010 Goodrich, Tamassia

	Array Lists
	The Array List ADT
	Applications of Array Lists
	Array-based Implementation
	Insertion
	Element Removal
	Performance
	Growable Array-based Array List
	Comparison of the Strategies
	Incremental Strategy Analysis
	Doubling Strategy Analysis

