
Stacks

© 2010 Goodrich, Tamassia 1Stacks

Stacks 2

Abstract Data Types (ADTs)
 An abstract data

type (ADT) is an
abstraction of a
data structure

 An ADT specifies:
 Data stored
 Operations on the

data
 Error conditions

associated with
operations

 Example: ADT modeling a
simple stock trading system
 The data stored are buy/sell

orders
 The operations supported are

 order buy(stock, shares, price)
 order sell(stock, shares, price)
 void cancel(order)

 Error conditions:
 Buy/sell a nonexistent stock
 Cancel a nonexistent order

© 2010 Goodrich, Tamassia

Stacks 3

The Stack ADT
 The Stack ADT stores

arbitrary objects
 Insertions and deletions

follow the last-in first-out
scheme

 Think of a spring-loaded
plate dispenser

 Main stack operations:
 push(object): inserts an

element
 object pop(): removes the

last inserted element

 Auxiliary stack
operations:
 object top(): returns the

last inserted element
without removing it

 integer size(): returns the
number of elements
stored

 boolean empty():
indicates whether no
elements are stored

© 2010 Goodrich, Tamassia

Stacks 4

Stack Interface in C++
 C++ interface

corresponding to
our Stack ADT

 Uses an exception
class StackEmpty

 Different from the
built-in C++ STL
class stack

template <typename E>
class Stack {
public:

int size() const;
bool empty() const;
const E& top() const

throw(StackEmpty);
void push(const E& e);
void pop() throw(StackEmpty);

}

© 2010 Goodrich, Tamassia

Stacks 5

Exceptions
 Attempting the

execution of an
operation of ADT may
sometimes cause an
error condition, called
an exception

 Exceptions are said to
be “thrown” by an
operation that cannot
be executed

 In the Stack ADT,
operations pop and
top cannot be
performed if the
stack is empty

 Attempting pop or
top on an empty
stack throws a
StackEmpty
exception

© 2010 Goodrich, Tamassia

Stacks 6

Applications of Stacks

 Direct applications
 Page-visited history in a Web browser
 Undo sequence in a text editor
 Chain of method calls in the C++ run-time

system
 Indirect applications

 Auxiliary data structure for algorithms
 Component of other data structures

© 2010 Goodrich, Tamassia

Stacks 7

C++ Run-Time Stack
 The C++ run-time system

keeps track of the chain of
active functions with a stack

 When a function is called, the
system pushes on the stack a
frame containing
 Local variables and return value
 Program counter, keeping track of

the statement being executed
 When the function ends, its

frame is popped from the stack
and control is passed to the
function on top of the stack

 Allows for recursion

main() {
int i = 5;
foo(i);
}

foo(int j) {
int k;
k = j+1;
bar(k);
}

bar(int m) {
…
}

bar
PC = 1
m = 6

foo
PC = 3
j = 5
k = 6

main
PC = 2
i = 5

© 2010 Goodrich, Tamassia

Stacks 8

Array-based Stack
 A simple way of

implementing the
Stack ADT uses an
array

 We add elements
from left to right

 A variable keeps
track of the index of
the top element

S
0 1 2 t

…

Algorithm size()
return t + 1

Algorithm pop()
if empty() then

throw StackEmpty
else

t ← t − 1
return S[t + 1]

© 2010 Goodrich, Tamassia

Stacks 9

Array-based Stack (cont.)
 The array storing the

stack elements may
become full

 A push operation will
then throw a StackFull
exception
 Limitation of the array-

based implementation
 Not intrinsic to the

Stack ADT

S
0 1 2 t

…

Algorithm push(o)
if t = S.size() − 1 then

throw StackFull
else

t ← t + 1
S[t] ← o

© 2010 Goodrich, Tamassia

Stacks 10

Performance and Limitations
 Performance

 Let n be the number of elements in the stack
 The space used is O(n)
 Each operation runs in time O(1)

 Limitations
 The maximum size of the stack must be defined a

priori and cannot be changed
 Trying to push a new element into a full stack

causes an implementation-specific exception

© 2010 Goodrich, Tamassia

Stacks 11

Array-based Stack in C++
template <typename E>
class ArrayStack {
private:

E* S; // array holding the stack
int cap; // capacity
int t; // index of top element

public:
// constructor given capacity
ArrayStack(int c) :

S(new E[c]), cap(c), t(-1) { }

void pop() {
if (empty()) throw StackEmpty

(“Pop from empty stack”);
t--;

}
void push(const E& e) {

if (size() == cap) throw
StackFull(“Push to full stack”);

S[++ t] = e;
}
… (other methods of Stack interface)

© 2010 Goodrich, Tamassia

Stacks 12

Example use in C++
ArrayStack<int> A; // A = [], size = 0
A.push(7); // A = [7*], size = 1
A.push(13); // A = [7, 13*], size = 2
cout << A.top() << endl; A.pop(); // A = [7*], outputs: 13
A.push(9); // A = [7, 9*], size = 2
cout << A.top() << endl; // A = [7, 9*], outputs: 9
cout << A.top() << endl; A.pop(); // A = [7*], outputs: 9
ArrayStack<string> B(10); // B = [], size = 0
B.push("Bob"); // B = [Bob*], size = 1
B.push("Alice"); // B = [Bob, Alice*], size = 2
cout << B.top() << endl; B.pop(); // B = [Bob*], outputs: Alice
B.push("Eve"); // B = [Bob, Eve*], size = 2

© 2010 Goodrich, Tamassia

* indicates top

Stacks 13

Parentheses Matching

 Each “(”, “{”, or “[” must be paired with
a matching “)”, “}”, or “[”
 correct: ()(()){([()])}
 correct: ((()(()){([()])}
 incorrect:)(()){([()])}
 incorrect: ({[])}
 incorrect: (

© 2010 Goodrich, Tamassia

Stacks 14

Parentheses Matching Algorithm
Algorithm ParenMatch(X,n):
Input: An array X of n tokens, each of which is either a grouping symbol, a
variable, an arithmetic operator, or a number
Output: true if and only if all the grouping symbols in X match
Let S be an empty stack
for i=0 to n-1 do

if X[i] is an opening grouping symbol then
S.push(X[i])

else if X[i] is a closing grouping symbol then
if S.empty() then

return false {nothing to match with}
if S.pop() does not match the type of X[i] then

return false {wrong type}
if S.empty() then

return true {every symbol matched}
else return false {some symbols were never matched}

© 2010 Goodrich, Tamassia

© 2010 Stallmann Stacks 15

Evaluating Arithmetic
Expressions

14 – 3 * 2 + 7 = (14 – (3 * 2)) + 7
Operator precedence

* has precedence over +/–

Associativity
operators of the same precedence group
evaluated from left to right
Example: (x – y) + z rather than x – (y + z)

Idea: push each operator on the stack, but first pop and
perform higher and equal precedence operations.

Slide by Matt Stallmann
included with permission.

Algorithm for
Evaluating Expressions

Two stacks:
 opStk holds operators
 valStk holds values
 Use $ as special “end of input”

token with lowest precedence
Algorithm doOp()

x ← valStk.pop();
y ← valStk.pop();
op ← opStk.pop();
valStk.push(y op x)

Algorithm repeatOps(refOp):

while (valStk.size() > 1 ∧
prec(refOp) ≤
prec(opStk.top())

doOp()

Algorithm EvalExp()
Input: a stream of tokens representing

an arithmetic expression (with
numbers)

Output: the value of the expression

while there’s another token z
if isNumber(z) then

valStk.push(z)
else

repeatOps(z);
opStk.push(z)

repeatOps($);
return valStk.top()

© 2010 Stallmann 16Stacks

Slide by Matt Stallmann
included with permission.

© 2010 Stallmann Stacks 17

Algorithm on an
Example Expression

14 ≤ 4 – 3 * 2 + 7
Operator ≤ has lower
precedence than +/–

–
≤14

4

*3
–
≤14

4

2
*3
–
≤14

4

+

2
*3
–
≤14

4

+

6
–
≤14

4 +
≤14

-2

$

7
+
≤14

-2

$

F
$

≤14
5

Slide by Matt Stallmann
included with permission.

Stacks 18

Computing Spans (not in book)
 Using a stack as an auxiliary

data structure in an algorithm
 Given an an array X, the span

S[i] of X[i] is the maximum
number of consecutive
elements X[j] immediately
preceding X[i] and such that
X[j] ≤ X[i]

 Spans have applications to
financial analysis
 E.g., stock at 52-week high 6 3 4 5 2

1 1 2 3 1
X
S

0
1
2
3
4
5
6
7

0 1 2 3 4

© 2010 Goodrich, Tamassia

Stacks 19

Quadratic Algorithm
Algorithm spans1(X, n)

Input array X of n integers
Output array S of spans of X #
S ← new array of n integers n
for i ← 0 to n − 1 do n

s ← 1 n
while s ≤ i ∧ X[i − s] ≤ X[i] 1 + 2 + …+ (n − 1)

s ← s + 1 1 + 2 + …+ (n − 1)
S[i] ← s n

return S 1

Algorithm spans1 runs in O(n2) time
© 2010 Goodrich, Tamassia

Stacks 20

Computing Spans with a Stack
 We keep in a stack the

indices of the elements
visible when “looking
back”

 We scan the array from
left to right
 Let i be the current index
 We pop indices from the

stack until we find index j
such that X[i] < X[j]

 We set S[i] ← i − j
 We push x onto the stack

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

© 2010 Goodrich, Tamassia

Stacks 21

Linear Algorithm
Algorithm spans2(X, n) #

S ← new array of n integers n
A ← new empty stack 1
for i ← 0 to n − 1 do n

while (¬A.empty() ∧
X[A.top()] ≤ X[i]) do n

A.pop() n
if A.empty() then n

S[i] ← i + 1 n
else

S[i] ← i − A.top() n
A.push(i) n

return S 1

Each index of the
array
 Is pushed into the

stack exactly one
 Is popped from

the stack at most
once

The statements in
the while-loop are
executed at most
n times
Algorithm spans2
runs in O(n) time

© 2010 Goodrich, Tamassia

	Stacks
	Abstract Data Types (ADTs)
	The Stack ADT
	Stack Interface in C++
	Exceptions
	Applications of Stacks
	C++ Run-Time Stack
	Array-based Stack
	Array-based Stack (cont.)
	Performance and Limitations
	Array-based Stack in C++
	Example use in C++
	Parentheses Matching
	Parentheses Matching Algorithm
	Evaluating Arithmetic �Expressions
	Algorithm for �Evaluating Expressions
	Algorithm on an �Example Expression
	Computing Spans (not in book)
	Quadratic Algorithm
	Computing Spans with a Stack
	Linear Algorithm

