
© 2004 Goodrich, Tamassia Tries 1

Tries

e nimize

nimize ze

zei mi

mize nimize ze



© 2004 Goodrich, Tamassia Tries 2

Preprocessing Strings
Preprocessing the pattern speeds up pattern matching 
queries
 After preprocessing the pattern, KMP’s algorithm performs 

pattern matching in time proportional to the text size

If the text is large, immutable and searched for often 
(e.g., works by Shakespeare), we may want to 
preprocess the text instead of the pattern
A trie is a compact data structure for representing a 
set of strings, such as all the words in a text
 A tries supports pattern matching queries in time 

proportional to the pattern size



© 2004 Goodrich, Tamassia Tries 3

Standard Tries
The standard trie for a set of strings S is an ordered tree such that:
 Each node but the root is labeled with a character
 The children of a node are alphabetically ordered
 The paths from the external nodes to the root yield the strings of S

Example: standard trie for the set of strings
S = { bear, bell, bid, bull, buy, sell, stock, stop }

a

e

b

r

l

l

s

u

l

l

y

e t

l

l

o

c

k

p

i

d



© 2004 Goodrich, Tamassia Tries 4

Analysis of Standard Tries
A standard trie uses O(n) space and supports 
searches, insertions and deletions in time O(dm), 
where:
n total size of the strings in S
m size of the string parameter of the operation
d size of the alphabet 

a

e

b

r

l

l

s

u

l

l

y

e t

l

l

o

c

k

p

i

d



© 2004 Goodrich, Tamassia Tries 5

Word Matching with a Trie
insert the words 
of the text into 
trie
Each leaf is 
associated w/ one 
particular word
leaf stores indices 
where associated 
word begins 
(“see” starts at 
index 0 & 24, leaf 
for “see” stores 
those indices)

a

e

b

l

s

u

l

e t

e

0, 24

o

c

i

l

r

6
l

78

d

47, 58
l

30

y

36
l

12 k

17, 40,
51, 62

p

84

h

e

r

69

a

s e e b e a r ? s e l l s t o c k !

s e e b u l l ? b u y s t o c k !

b i d s t o c k !

a

a

h e t h e b e l l ? s t o p !

b i d s t o c k !

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
a r

87 88



© 2004 Goodrich, Tamassia Tries 6

Compressed Tries
A compressed trie has 
internal nodes of degree at 
least two
It is obtained from standard 
trie by compressing chains of 
“redundant” nodes
ex. the “i” and “d” in “bid” 
are “redundant” because 
they signify the same word

e

b

ar ll

s

u

ll y

ell to

ck p

id

a

e

b

r

l

l

s

u

l

l

y

e t

l

l

o

c

k

p

i

d



© 2004 Goodrich, Tamassia Tries 7

Compact Representation
Compact representation of a compressed trie for an array of strings:
 Stores at the nodes ranges of indices instead of substrings
 Uses O(s) space, where s is the number of strings in the array
 Serves as an auxiliary index structure

s e e
b e a r
s e l l
s t o c k

b u l l
b u y
b i d

h e
b e l l
s t o p

0 1 2 3 4
a rS[0] =

S[1] =

S[2] =

S[3] =

S[4] =

S[5] =

S[6] =

S[7] =

S[8] =

S[9] =

0 1 2 3 0 1 2 3

1, 1, 1

1, 0, 0 0, 0, 0

4, 1, 1

0, 2, 2

3, 1, 2

1, 2, 3 8, 2, 3

6, 1, 2

4, 2, 3 5, 2, 2 2, 2, 3 3, 3, 4 9, 3, 3

7, 0, 3

0, 1, 1



© 2004 Goodrich, Tamassia Tries 8

Suffix Trie
The suffix trie of a string X is the compressed trie of all the 
suffixes of X

e nimize

nimize ze

zei mi

mize nimize ze

m i n i z em i
0 1 2 3 4 5 6 7



© 2004 Goodrich, Tamassia Tries 9

Analysis of Suffix Tries
Compact representation of the suffix trie for a string 
X of size n from an alphabet of size d
 Uses O(n) space
 Supports arbitrary pattern matching queries in X in O(dm)

time, where m is the size of the pattern
 Can be constructed in O(n) time

7, 7 2, 7

2, 7 6, 7

6, 7

4, 7 2, 7 6, 7

1, 1 0, 1

m i n i z em i
0 1 2 3 4 5 6 7



© 2004 Goodrich, Tamassia Tries 10

Encoding Trie (1)
A code is a mapping of each character of an alphabet to a binary 
code-word
A prefix code is a binary code such that no code-word is the prefix 
of another code-word
An encoding trie represents a prefix code
 Each leaf stores a character
 The code word of a character is given by the path from the root to 

the leaf storing the character (0 for a left child and 1 for a right child

a

b c

d e

00 010 011 10 11

a b c d e



© 2004 Goodrich, Tamassia Tries 11

Encoding Trie (2)
Given a text string X, we want to find a prefix code for the characters 
of X that yields a small encoding for X
 Frequent characters should have short code-words
 Rare characters should have long code-words

Example
 X = abracadabra
 T1 encodes X into 29 bits
 T2 encodes X into 24 bits

c

a r

d b a

c d

b r

T1 T2



© 2004 Goodrich, Tamassia Tries 12

Huffman’s Algorithm
Given a string X, 
Huffman’s algorithm 
construct a prefix 
code the minimizes 
the size of the 
encoding of X
It runs in time
O(n + d log d), where 
n is the size of X
and d is the number 
of distinct characters 
of X
A heap-based 
priority queue is 
used as an auxiliary 
structure

Algorithm HuffmanEncoding(X)
Input string X of size n
Output optimal encoding trie for X
C ← distinctCharacters(X)
computeFrequencies(C, X)
Q ← new empty heap 
for all c ∈ C

T ← new single-node tree storing c
Q.insert(getFrequency(c), T)

while Q.size() > 1
f1 ← Q.min()
T1 ← Q.removeMin()
f2 ← Q.min()
T2 ← Q.removeMin()
T ← join(T1, T2)
Q.insert(f1 + f2, T)

return Q.removeMin()



© 2004 Goodrich, Tamassia Tries 13

Example

a b c d r
5 2 1 1 2

X = abracadabra
Frequencies

ca rdb
5 2 1 1 2

ca rdb

2

5 2 2
ca bd r

2

5

4

ca bd r

2

5

4

6

c

a

bd r

2 4

6

11


	Tries
	Preprocessing Strings
	Standard Tries
	Analysis of Standard Tries
	Word Matching with a Trie
	Compressed Tries
	Compact Representation
	Suffix Trie
	Analysis of Suffix Tries
	Encoding Trie (1)
	Encoding Trie (2)
	Huffman’s Algorithm
	Example

