
Stacks

© 2010 Goodrich, Tamassia 1Stacks

Stacks 2

Abstract Data Types (ADTs)
 An abstract data

type (ADT) is an
abstraction of a
data structure

 An ADT specifies:
 Data stored
 Operations on the

data
 Error conditions

associated with
operations

 Example: ADT modeling a
simple stock trading system
 The data stored are buy/sell

orders
 The operations supported are

 order buy(stock, shares, price)
 order sell(stock, shares, price)
 void cancel(order)

 Error conditions:
 Buy/sell a nonexistent stock
 Cancel a nonexistent order

© 2010 Goodrich, Tamassia

Stacks 3

The Stack ADT
 The Stack ADT stores

arbitrary objects
 Insertions and deletions

follow the last-in first-out
scheme

 Think of a spring-loaded
plate dispenser

 Main stack operations:
 push(object): inserts an

element
 object pop(): removes the

last inserted element

 Auxiliary stack
operations:
 object top(): returns the

last inserted element
without removing it

 integer size(): returns the
number of elements
stored

 boolean empty():
indicates whether no
elements are stored

© 2010 Goodrich, Tamassia

Stacks 4

Stack Interface in C++
 C++ interface

corresponding to
our Stack ADT

 Uses an exception
class StackEmpty

 Different from the
built-in C++ STL
class stack

template <typename E>
class Stack {
public:

int size() const;
bool empty() const;
const E& top() const

throw(StackEmpty);
void push(const E& e);
void pop() throw(StackEmpty);

}

© 2010 Goodrich, Tamassia

Stacks 5

Exceptions
 Attempting the

execution of an
operation of ADT may
sometimes cause an
error condition, called
an exception

 Exceptions are said to
be “thrown” by an
operation that cannot
be executed

 In the Stack ADT,
operations pop and
top cannot be
performed if the
stack is empty

 Attempting pop or
top on an empty
stack throws a
StackEmpty
exception

© 2010 Goodrich, Tamassia

Stacks 6

Applications of Stacks

 Direct applications
 Page-visited history in a Web browser
 Undo sequence in a text editor
 Chain of method calls in the C++ run-time

system
 Indirect applications

 Auxiliary data structure for algorithms
 Component of other data structures

© 2010 Goodrich, Tamassia

Stacks 7

C++ Run-Time Stack
 The C++ run-time system

keeps track of the chain of
active functions with a stack

 When a function is called, the
system pushes on the stack a
frame containing
 Local variables and return value
 Program counter, keeping track of

the statement being executed
 When the function ends, its

frame is popped from the stack
and control is passed to the
function on top of the stack

 Allows for recursion

main() {
int i = 5;
foo(i);
}

foo(int j) {
int k;
k = j+1;
bar(k);
}

bar(int m) {
…
}

bar
PC = 1
m = 6

foo
PC = 3
j = 5
k = 6

main
PC = 2
i = 5

© 2010 Goodrich, Tamassia

Stacks 8

Array-based Stack
 A simple way of

implementing the
Stack ADT uses an
array

 We add elements
from left to right

 A variable keeps
track of the index of
the top element

S
0 1 2 t

…

Algorithm size()
return t + 1

Algorithm pop()
if empty() then

throw StackEmpty
else

t ← t − 1
return S[t + 1]

© 2010 Goodrich, Tamassia

Stacks 9

Array-based Stack (cont.)
 The array storing the

stack elements may
become full

 A push operation will
then throw a StackFull
exception
 Limitation of the array-

based implementation
 Not intrinsic to the

Stack ADT

S
0 1 2 t

…

Algorithm push(o)
if t = S.size() − 1 then

throw StackFull
else

t ← t + 1
S[t] ← o

© 2010 Goodrich, Tamassia

Stacks 10

Performance and Limitations
 Performance

 Let n be the number of elements in the stack
 The space used is O(n)
 Each operation runs in time O(1)

 Limitations
 The maximum size of the stack must be defined a

priori and cannot be changed
 Trying to push a new element into a full stack

causes an implementation-specific exception

© 2010 Goodrich, Tamassia

Stacks 11

Array-based Stack in C++
template <typename E>
class ArrayStack {
private:

E* S; // array holding the stack
int cap; // capacity
int t; // index of top element

public:
// constructor given capacity
ArrayStack(int c) :

S(new E[c]), cap(c), t(-1) { }

void pop() {
if (empty()) throw StackEmpty

(“Pop from empty stack”);
t--;

}
void push(const E& e) {

if (size() == cap) throw
StackFull(“Push to full stack”);

S[++ t] = e;
}
… (other methods of Stack interface)

© 2010 Goodrich, Tamassia

Stacks 12

Example use in C++
ArrayStack<int> A; // A = [], size = 0
A.push(7); // A = [7*], size = 1
A.push(13); // A = [7, 13*], size = 2
cout << A.top() << endl; A.pop(); // A = [7*], outputs: 13
A.push(9); // A = [7, 9*], size = 2
cout << A.top() << endl; // A = [7, 9*], outputs: 9
cout << A.top() << endl; A.pop(); // A = [7*], outputs: 9
ArrayStack<string> B(10); // B = [], size = 0
B.push("Bob"); // B = [Bob*], size = 1
B.push("Alice"); // B = [Bob, Alice*], size = 2
cout << B.top() << endl; B.pop(); // B = [Bob*], outputs: Alice
B.push("Eve"); // B = [Bob, Eve*], size = 2

© 2010 Goodrich, Tamassia

* indicates top

Stacks 13

Parentheses Matching

 Each “(”, “{”, or “[” must be paired with
a matching “)”, “}”, or “[”
 correct: ()(()){([()])}
 correct: ((()(()){([()])}
 incorrect:)(()){([()])}
 incorrect: ({[])}
 incorrect: (

© 2010 Goodrich, Tamassia

Stacks 14

Parentheses Matching Algorithm
Algorithm ParenMatch(X,n):
Input: An array X of n tokens, each of which is either a grouping symbol, a
variable, an arithmetic operator, or a number
Output: true if and only if all the grouping symbols in X match
Let S be an empty stack
for i=0 to n-1 do

if X[i] is an opening grouping symbol then
S.push(X[i])

else if X[i] is a closing grouping symbol then
if S.empty() then

return false {nothing to match with}
if S.pop() does not match the type of X[i] then

return false {wrong type}
if S.empty() then

return true {every symbol matched}
else return false {some symbols were never matched}

© 2010 Goodrich, Tamassia

© 2010 Stallmann Stacks 15

Evaluating Arithmetic
Expressions

14 – 3 * 2 + 7 = (14 – (3 * 2)) + 7
Operator precedence

* has precedence over +/–

Associativity
operators of the same precedence group
evaluated from left to right
Example: (x – y) + z rather than x – (y + z)

Idea: push each operator on the stack, but first pop and
perform higher and equal precedence operations.

Slide by Matt Stallmann
included with permission.

Algorithm for
Evaluating Expressions

Two stacks:
 opStk holds operators
 valStk holds values
 Use $ as special “end of input”

token with lowest precedence
Algorithm doOp()

x ← valStk.pop();
y ← valStk.pop();
op ← opStk.pop();
valStk.push(y op x)

Algorithm repeatOps(refOp):

while (valStk.size() > 1 ∧
prec(refOp) ≤
prec(opStk.top())

doOp()

Algorithm EvalExp()
Input: a stream of tokens representing

an arithmetic expression (with
numbers)

Output: the value of the expression

while there’s another token z
if isNumber(z) then

valStk.push(z)
else

repeatOps(z);
opStk.push(z)

repeatOps($);
return valStk.top()

© 2010 Stallmann 16Stacks

Slide by Matt Stallmann
included with permission.

© 2010 Stallmann Stacks 17

Algorithm on an
Example Expression

14 ≤ 4 – 3 * 2 + 7
Operator ≤ has lower
precedence than +/–

–
≤14

4

*3
–
≤14

4

2
*3
–
≤14

4

+

2
*3
–
≤14

4

+

6
–
≤14

4 +
≤14

-2

$

7
+
≤14

-2

$

F
$

≤14
5

Slide by Matt Stallmann
included with permission.

Stacks 18

Computing Spans (not in book)
 Using a stack as an auxiliary

data structure in an algorithm
 Given an an array X, the span

S[i] of X[i] is the maximum
number of consecutive
elements X[j] immediately
preceding X[i] and such that
X[j] ≤ X[i]

 Spans have applications to
financial analysis
 E.g., stock at 52-week high 6 3 4 5 2

1 1 2 3 1
X
S

0
1
2
3
4
5
6
7

0 1 2 3 4

© 2010 Goodrich, Tamassia

Stacks 19

Quadratic Algorithm
Algorithm spans1(X, n)

Input array X of n integers
Output array S of spans of X #
S ← new array of n integers n
for i ← 0 to n − 1 do n

s ← 1 n
while s ≤ i ∧ X[i − s] ≤ X[i] 1 + 2 + …+ (n − 1)

s ← s + 1 1 + 2 + …+ (n − 1)
S[i] ← s n

return S 1

Algorithm spans1 runs in O(n2) time
© 2010 Goodrich, Tamassia

Stacks 20

Computing Spans with a Stack
 We keep in a stack the

indices of the elements
visible when “looking
back”

 We scan the array from
left to right
 Let i be the current index
 We pop indices from the

stack until we find index j
such that X[i] < X[j]

 We set S[i] ← i − j
 We push x onto the stack

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

© 2010 Goodrich, Tamassia

Stacks 21

Linear Algorithm
Algorithm spans2(X, n) #

S ← new array of n integers n
A ← new empty stack 1
for i ← 0 to n − 1 do n

while (¬A.empty() ∧
X[A.top()] ≤ X[i]) do n

A.pop() n
if A.empty() then n

S[i] ← i + 1 n
else

S[i] ← i − A.top() n
A.push(i) n

return S 1

Each index of the
array
 Is pushed into the

stack exactly one
 Is popped from

the stack at most
once

The statements in
the while-loop are
executed at most
n times
Algorithm spans2
runs in O(n) time

© 2010 Goodrich, Tamassia

	Stacks
	Abstract Data Types (ADTs)
	The Stack ADT
	Stack Interface in C++
	Exceptions
	Applications of Stacks
	C++ Run-Time Stack
	Array-based Stack
	Array-based Stack (cont.)
	Performance and Limitations
	Array-based Stack in C++
	Example use in C++
	Parentheses Matching
	Parentheses Matching Algorithm
	Evaluating Arithmetic �Expressions
	Algorithm for �Evaluating Expressions
	Algorithm on an �Example Expression
	Computing Spans (not in book)
	Quadratic Algorithm
	Computing Spans with a Stack
	Linear Algorithm

