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Divide-and-Conqguer

subproblems associated
with S, and S,

s Conquer: combine the

solutions for S; and S, into a 3
solution for S
# The base case for the -
recursion are subproblems of
sizeOorl
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(§ 10.1.1)

g
\

# Divide-and conquer is a # Merge-sort is a sorting
general algorithm design algorithm based on the
paradigm: divide-and-conquer

= Divide: divide the input data paradigm
S in two disjoint subsets S, #® Like heap_sort
and 3, m |t uses a comparator
= Recur: solve the = It has O(n log n) running

time
# Unlike heap-sort

It does not use an
auxiliary priority queue

It accesses data in a
sequential manner
(suitable to sort data on a
disk)
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# Merge-sort on an input
sequence S with n
elements consists of
three steps:

= Divide: partition S into
two sequences S; and S,
of about n/2 elements
each

= Recur: recursively sort S,
and S,

= Conquer: merge S; and
S,into a unique sorted
sequence
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Merge-Sort (8 10.1)

Algorithm mergeSort(S, C)

Input sequence S with n
elements, comparator C

Output sequence S sorted
according to C

iIf S.size() > 1
(S;, S,) « partition(S, n/2)
mergeSort(S,, C)
mergeSort(S,, C)
S < merge(S,, S,)
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# The conquer step of

merge-sort consists
of merging two
sorted sequences A
and B into a sorted
seguence S
containing the union
of the elements of A
and B

Merging two sorted
sequences, each
with n/2 elements
and implemented by
means of a doubly
linked list, takes
O(n) time
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Merging Two Sorted Sequences

Algorithm merge(A, B)

Input sequences A and B with
n/2 elements each

Output sorted sequence of AU B

S « empty sequence

while —A.empty() A =B.empty()
if A.front() < B.front()
S.addBack(A.front()); A.eraseFront();
else
S.addBack(B.front()); B.eraseFront();
while —A.empty()
S.addBack(A.front()); A.eraseFront();
while —B.empty()
S.addBack(B.front()); B.eraseFront();
return S
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Merge-Sort Tree

" # An execution of merge-sort is depicted by a binary tree

= each node represents a recursive call of merge-sort and stores
+ unsorted sequence before the execution and its partition
+ sorted sequence at the end of the execution

m the root is the initial call
m the leaves are calls on subsequences of size O or 1

N

[72|94—)2479J

/\_
712527  |9l4 > 409]

[7—)7} 22 [9—)9} 4 > 4

© 2004 Goodrich, Tamassia Merge Sort 5




Execution Example
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#Partition

7294138561 ]

______________________________________________
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Execution Example (cont.)
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#Recursive call, partition

[7294|3861 ]

______________________________________________
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Execution Example (cont.)
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#Recursive call, partition

[7294|3861 ]

[72|94
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Execution Example (cont.)

# Recursive call, base case

[7294|3861 ]




Execution Example (cont.)
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# Recursive call, base case

[7294|3861 ]
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Execution Example (cont.)

#Merge

[7294|3861 ]




Execution Example (cont.)
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#Recursive call, ..., base case, merge

[7294|3861 ]

[72|94 ]
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Execution Example (cont.)

N

#Merge

[7294|3861 ]

s
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Execution Example (cont.)

#Recursive call, ..., merge, merge

[7294|3861 ]

/\_

(7219452479 [3861 5136 8]
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Execution Example (cont.)

N

#Merge

729413861 5123467809]

P AnNERERRERSn

(7219452479 (3861136 8]
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AN AN LN LN

757 |252] (959 (454 (353 858 |66 (151

© 2004 Goodrich, Tamassia Merge Sort 15



N

Analysis of Merge-Sort

# The height h of the merge-sort tree is O(log n)
m at each recursive call we divide in half the sequence,

# The overall amount or work done at the nodes of depth iis O(n)
= we partition and merge 2! sequences of size n/2!
= we make 2! recursive calls

# Thus, the total running time of merge-sort is O(n log n)

depth #seqs size

0 1
1 2
| 21
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Summary of Sorting Algorithms

L

N

Algorithm Time |Notes

=  slow
selection-sort O(n?) = in-place
= for small data sets (< 1K)

=  slow
iInsertion-sort O(n?) = in-place
= for small data sets (< 1K)

= fast
heap-sort O(nlogn) |= in-place
= for large data sets (1K — 1M)

= fast

merge-sort | O(nlogn) [= sequential data access
= for huge data sets (> 1M)
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