Selection

N

© 2004 Goodrich, Tamassia

Selection

The Selection Problem

N

Given an integer k and n elements Xy, X,, ..., X

n?

taken from a total order, find the k-th smallest
element In this set.

Of course, we can sort the set in O(n log n) time
and then index the k-th element.

k=3 (74962 —>246709|

Can we solve the selection problem faster?

© 2004 Goodrich, Tamassia Selection 2

Quick-Select

Quick-select is a randomized
selection algorithm based on

N

the prune-and-search §
paradigm:
= Prune: pick a random element x
(called pivot) and partition S into
+ L: elements less than x X
+ E: elements equal x \ " = Y S " /
+ G: elements greater than x L E G
= Search: depending on k, either K < |L| ‘ k> |L|+E]
answer is in E, or we need to K’=k-|L|-|E]|
recur in either L or G
L] <k < [L|+[E]
(done)

© 2004 Goodrich, Tamassia Selection 3

Partition

N

© 2004 Goodrich, Tamassia

L

We partition an input
sequence as in the quick-sort
algorithm:

= We remove, In turn, each
element y from S and

= Weinsertyinto L, E or G,
depending on the result of
the comparison with the
pivot X

A2

L

Algorithm partition(S, p)
Input sequence S, position p of pivot

Output subsequences L, E, G of the
elements of S less than, equal to,
or greater than the pivot, resp.

L, E, G « empty sequences
X «— S.erase(p)
while —S.empty()

y <« S.eraseFront()

e . ify <x
Each insertion and removal is L.insertBack(y)

at the beginning or at the else if y = x

re]nd of a Ifeqlé)erllce', and E.insertBack(y)

ence takes O(1) time else {y>x}

Thus, the partition step of G.insertBack(y)

quick-select takes O(n) time return L, E, G

Selection 4

Quick-Select Visualization

L/
An execution of quick-select can be visualized by a
recursion path

m Each node represents a recursive call of quick-select, and
stores k and the remaining sequence

(k=5,S=(7 4 9326 5 1 8)]

N

| k=2,S=(7 4 9 6 5 8) |

© 2004 Goodrich, Tamassia Selection

Expected Running Time &

Consider a recursive call of quick-select on a sequence of size s
s Good call: the sizes of L and G are each less than 3s/4
= Bad call: one of L and G has size greater than 3s/4

N

72943761] | 72943761]
(2431] (797] 1] 7294376 |
Good call Bad call

A call is good with probability 1/2
m 1/2 of the possible pivots cause good calls:

[1234567891011121314 1516 |
H_I\ ~ JH_J

Bad pivots Good pivots Bad pivots

© 2004 Goodrich, Tamassia Selection 6

Expected Running Time,
Part 2

Probabilistic Fact #1: The expected number of coin tosses required in
order to get one head is two

Probabilistic Fact #2: Expectation is a linear function:
s EX+Y)=EX)+E(Y)
s E(cX)=CcE(X)
Let T(n) denote the expected running time of quick-select.
By Fact #2,
s T(n) <T(3n/4) + bn*(expected # of calls before a good call)
By Fact #1,
s T(n)<T(3n/4) + 2bn
That is, T(n) iIs a geometric series:
s T(n) <2bn + 2b(3/4)n + 2b(3/4)°n + 2b(3/4)°*n + ...
4 So T(n) is O(n).
We can solve the selection problem in O(n) expected

time.
© 2004 Goodrich, Tamassia Selection 7

N

® @ @@

Deterministic Selection

We can do selection in O(n) worst-case time.

Main idea: recursively use the selection algorithm itself to find a
good pivot for quick-select:

s Divide S into n/5 sets of 5 each
s Find a median in each set
= Recursively find the median of the “baby” medians.

N

Min size
forL .

' ' Min size
- for G

U'I-b:ool\Jl—‘
G NI

© 2004 Goodrich, Tamassia Selection 8

	Selection
	The Selection Problem
	Quick-Select
	Partition
	Quick-Select Visualization
	Expected Running Time
	Expected Running Time, Part 2
	Deterministic Selection

