
Queues 1

Queues

© 2010 Goodrich, Tamassia



Queues 2

The Queue ADT
 The Queue ADT stores arbitrary 

objects
 Insertions and deletions follow 

the first-in first-out scheme
 Insertions are at the rear of the 

queue and removals are at the 
front of the queue

 Main queue operations:
 enqueue(object): inserts an 

element at the end of the 
queue

 dequeue(): removes the 
element at the front of the 
queue

 Auxiliary queue 
operations:
 object front(): returns the 

element at the front without 
removing it

 integer size(): returns the 
number of elements stored

 boolean empty(): indicates 
whether no elements are 
stored

 Exceptions
 Attempting the execution of 

dequeue or front on an 
empty queue throws an 
QueueEmpty

© 2010 Goodrich, Tamassia



Queues 3

Example
Operation Output Q 
enqueue(5) – (5)
enqueue(3) – (5, 3)
dequeue() – (3)
enqueue(7) – (3, 7)
dequeue() – (7)
front() 7 (7)
dequeue() – ()
dequeue() “error” ()
empty() true ()
enqueue(9) – (9)
enqueue(7) – (9, 7)
size() 2 (9, 7)
enqueue(3) – (9, 7, 3)
enqueue(5) – (9, 7, 3, 5)
dequeue() – (7, 3, 5)

© 2010 Goodrich, Tamassia



Queues 4

Applications of Queues

 Direct applications
 Waiting lists, bureaucracy
 Access to shared resources (e.g., printer)
 Multiprogramming

 Indirect applications
 Auxiliary data structure for algorithms
 Component of other data structures

© 2010 Goodrich, Tamassia



Queues 5

Array-based Queue
 Use an array of size N in a circular fashion
 Three variables keep track of the front and rear

f index of the front element
r index immediately past the rear element
n number of items in the queue

Q
0 1 2 rf

normal configuration

Q
0 1 2 fr

wrapped-around configuration

© 2010 Goodrich, Tamassia



Queues 6

Queue Operations
 Use n to 

determine size 
and emptiness

Algorithm size()
return n

Algorithm empty()
return (n = 0)

Q
0 1 2 rf

Q
0 1 2 fr

© 2010 Goodrich, Tamassia



Queues 7

Queue Operations (cont.)
Algorithm enqueue(o)

if size() = N − 1 then
throw QueueFull

else 
Q[r] ← o
r ← (r + 1) mod N
n ← n + 1

 Operation enqueue 
throws an exception if 
the array is full

 This exception is 
implementation-
dependent

Q
0 1 2 rf

Q
0 1 2 fr

© 2010 Goodrich, Tamassia



Queues 8

Queue Operations (cont.)
 Operation dequeue 

throws an exception 
if the queue is empty

 This exception is 
specified in the 
queue ADT

Algorithm dequeue()
if empty() then

throw QueueEmpty
else

f ← (f + 1) mod N
n ← n − 1

Q
0 1 2 rf

Q
0 1 2 fr

© 2010 Goodrich, Tamassia



Queues 9

Queue Interface in C++

 C++ interface 
corresponding to 
our Queue ADT

 Requires the def-
inition of exception 
QueueEmpty

 No corresponding 
built-in C++ class

template <typename E>
class Queue {
public:

int size() const;
bool empty() const;
const E& front() const

throw(QueueEmpty);
void enqueue (const E& e);
void dequeue()

throw(QueueEmpty);
};

© 2010 Goodrich, Tamassia



Queues 10

Application: Round Robin Schedulers
 We can implement a round robin scheduler using a 

queue Q by repeatedly performing the following 
steps:

1. e = Q.front(); Q.dequeue()
2. Service element e
3. Q.enqueue(e)

© 2010 Goodrich, Tamassia

Shared 
Service

Queue

EnqueueDequeue


	Queues
	The Queue ADT
	Example
	Applications of Queues
	Array-based Queue
	Queue Operations
	Queue Operations (cont.)
	Queue Operations (cont.)
	Queue Interface in C++
	Application: Round Robin Schedulers

