
Analysis of Algorithms

AlgorithmInput Output

© 2010 Goodrich, Tamassia 1Analysis of Algorithms

Analysis of Algorithms 2

Running Time
 Most algorithms transform

input objects into output
objects.

 The running time of an
algorithm typically grows
with the input size.

 Average case time is often
difficult to determine.

 We focus on the worst case
running time.
 Easier to analyze
 Crucial to applications such as

games, finance and robotics

0

20

40

60

80

100

120

R
un

ni
ng

 T
im

e
1000 2000 3000 4000

Input Size

best case
average case
worst case

© 2010 Goodrich, Tamassia

Analysis of Algorithms 3

Experimental Studies

 Write a program
implementing the
algorithm

 Run the program with
inputs of varying size and
composition

 Use a method like clock()
to get an accurate
measure of the actual
running time

 Plot the results 0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100

Input Size

Ti
m

e
(m

s)

© 2010 Goodrich, Tamassia

Analysis of Algorithms 4

Limitations of Experiments

 It is necessary to implement the
algorithm, which may be difficult

 Results may not be indicative of the
running time on other inputs not included
in the experiment.

 In order to compare two algorithms, the
same hardware and software
environments must be used

© 2010 Goodrich, Tamassia

Analysis of Algorithms 5

Theoretical Analysis

 Uses a high-level description of the
algorithm instead of an implementation

 Characterizes running time as a
function of the input size, n.

 Takes into account all possible inputs
 Allows us to evaluate the speed of an

algorithm independent of the
hardware/software environment

© 2010 Goodrich, Tamassia

Analysis of Algorithms 6

Pseudocode
 High-level description

of an algorithm
 More structured than

English prose
 Less detailed than a

program
 Preferred notation for

describing algorithms
 Hides program design

issues

Algorithm arrayMax(A, n)
Input array A of n integers
Output maximum element of A

currentMax ← A[0]
for i ← 1 to n − 1 do

if A[i] > currentMax then
currentMax ← A[i]

return currentMax

Example: find max
element of an array

© 2010 Goodrich, Tamassia

Analysis of Algorithms 7

Pseudocode Details

 Control flow
 if … then … [else …]
 while … do …
 repeat … until …
 for … do …
 Indentation replaces braces

 Method declaration
Algorithm method (arg [, arg…])

Input …
Output …

 Method call
var.method (arg [, arg…])

 Return value
return expression

 Expressions
←Assignment

(like = in C++)
= Equality testing

(like == in C++)
n2 Superscripts and other

mathematical
formatting allowed

© 2010 Goodrich, Tamassia

Analysis of Algorithms 8

The Random Access Machine
(RAM) Model

 A CPU

 An potentially unbounded
bank of memory cells,
each of which can hold an
arbitrary number or
character

0
1
2

Memory cells are numbered and accessing
any cell in memory takes unit time.

© 2010 Goodrich, Tamassia

Analysis of Algorithms 9

Seven Important Functions
 Seven functions that

often appear in algorithm
analysis:
 Constant ≈ 1
 Logarithmic ≈ log n
 Linear ≈ n
 N-Log-N ≈ n log n
 Quadratic ≈ n2

 Cubic ≈ n3

 Exponential ≈ 2n

 In a log-log chart, the
slope of the line
corresponds to the
growth rate

1E+0
1E+2
1E+4
1E+6
1E+8

1E+10
1E+12
1E+14
1E+16
1E+18
1E+20
1E+22
1E+24
1E+26
1E+28
1E+30

1E+0 1E+2 1E+4 1E+6 1E+8 1E+10
n

T
(n

)

Cubic

Quadratic

Linear

© 2010 Goodrich, Tamassia

Functions Graphed
Using “Normal” Scale

© 2010 Stallmann 10Analysis of Algorithms

g(n) = 2ng(n) = 1

g(n) = lg n

g(n) = n lg n

g(n) = n

g(n) = n2

g(n) = n3

Slide by Matt Stallmann
included with permission.

Analysis of Algorithms 11

Primitive Operations
 Basic computations

performed by an algorithm
 Identifiable in pseudocode
 Largely independent from the

programming language
 Exact definition not important

(we will see why later)
 Assumed to take a constant

amount of time in the RAM
model

 Examples:
 Evaluating an

expression
 Assigning a value

to a variable
 Indexing into an

array
 Calling a method
 Returning from a

method

© 2010 Goodrich, Tamassia

Analysis of Algorithms 12

Counting Primitive Operations
 By inspecting the pseudocode, we can determine the

maximum number of primitive operations executed by
an algorithm, as a function of the input size

Algorithm arrayMax(A, n) # operations
currentMax ← A[0] 2
for i ← 1 to n − 1 do 2n

if A[i] > currentMax then 2(n − 1)
currentMax ← A[i] 2(n − 1)

{ increment counter i } 2(n − 1)
return currentMax 1

Total 8n − 2

© 2010 Goodrich, Tamassia

Analysis of Algorithms 13

Estimating Running Time
 Algorithm arrayMax executes 8n − 2 primitive

operations in the worst case. Define:
a = Time taken by the fastest primitive operation
b = Time taken by the slowest primitive operation

 Let T(n) be worst-case time of arrayMax. Then
a (8n − 2) ≤ T(n) ≤ b(8n − 2)

 Hence, the running time T(n) is bounded by two
linear functions

© 2010 Goodrich, Tamassia

Analysis of Algorithms 14

Growth Rate of Running Time

 Changing the hardware/ software
environment
 Affects T(n) by a constant factor, but
 Does not alter the growth rate of T(n)

 The linear growth rate of the running
time T(n) is an intrinsic property of
algorithm arrayMax

© 2010 Goodrich, Tamassia

Why Growth Rate Matters

© 2010 Stallmann 15Analysis of Algorithms

Slide by Matt Stallmann
included with permission.

if runtime
is... time for n + 1 time for 2 n time for 4 n

c lg n c lg (n + 1) c (lg n + 1) c(lg n + 2)

c n c (n + 1) 2c n 4c n

c n lg n
~ c n lg n

+ c n
2c n lg n +

2cn
4c n lg n +

4cn

c n2 ~ c n2 + 2c n 4c n2 16c n2

c n3 ~ c n3 + 3c n2 8c n3 64c n3

c 2n c 2 n+1 c 2 2n c 2 4n

runtime
quadruples
when
problem
size doubles

Comparison of Two Algorithms

© 2010 Stallmann 16Analysis of Algorithms

Slide by Matt Stallmann
included with permission.

insertion sort is
n2 / 4

merge sort is
2 n lg n

sort a million items?
insertion sort takes
roughly 70 hours

while
merge sort takes
roughly 40 seconds

This is a slow machine, but if
100 x as fast then it’s 40 minutes
versus less than 0.5 seconds

Analysis of Algorithms 17

Constant Factors

 The growth rate is
not affected by
 constant factors or
 lower-order terms

 Examples
 102n + 105 is a linear

function
 105n2 + 108n is a

quadratic function
1E+0
1E+2
1E+4
1E+6
1E+8

1E+10
1E+12
1E+14
1E+16
1E+18
1E+20
1E+22
1E+24
1E+26

1E+0 1E+2 1E+4 1E+6 1E+8 1E+10
n

T
(n

)

Quadratic

Quadratic

Linear
Linear

© 2010 Goodrich, Tamassia

Analysis of Algorithms 18

Big-Oh Notation
 Given functions f(n) and

g(n), we say that f(n) is
O(g(n)) if there are
positive constants
c and n0 such that

f(n) ≤ cg(n) for n ≥ n0

 Example: 2n + 10 is O(n)
 2n + 10 ≤ cn
 (c − 2) n ≥ 10
 n ≥ 10/(c − 2)
 Pick c = 3 and n0 = 10

1

10

100

1,000

10,000

1 10 100 1,000
n

3n

2n+10

n

© 2010 Goodrich, Tamassia

Analysis of Algorithms 19

Big-Oh Example

 Example: the function
n2 is not O(n)
 n2 ≤ cn
 n ≤ c
 The above inequality

cannot be satisfied
since c must be a
constant

1

10

100

1,000

10,000

100,000

1,000,000

1 10 100 1,000
n

n^2

100n

10n

n

© 2010 Goodrich, Tamassia

Analysis of Algorithms 20

More Big-Oh Examples
7n-2

7n-2 is O(n)
need c > 0 and n0 ≥ 1 such that 7n-2 ≤ c•n for n ≥ n0

this is true for c = 7 and n0 = 1

 3n3 + 20n2 + 5
3n3 + 20n2 + 5 is O(n3)
need c > 0 and n0 ≥ 1 such that 3n3 + 20n2 + 5 ≤ c•n3 for n ≥ n0

this is true for c = 4 and n0 = 21

 3 log n + 5
3 log n + 5 is O(log n)
need c > 0 and n0 ≥ 1 such that 3 log n + 5 ≤ c•log n for n ≥ n0

this is true for c = 8 and n0 = 2
© 2010 Goodrich, Tamassia

Analysis of Algorithms 21

Big-Oh and Growth Rate
 The big-Oh notation gives an upper bound on the

growth rate of a function
 The statement “f(n) is O(g(n))” means that the growth

rate of f(n) is no more than the growth rate of g(n)
 We can use the big-Oh notation to rank functions

according to their growth rate

f(n) is O(g(n)) g(n) is O(f(n))

g(n) grows more Yes No
f(n) grows more No Yes
Same growth Yes Yes

© 2010 Goodrich, Tamassia

Analysis of Algorithms 22

Big-Oh Rules

 If is f(n) a polynomial of degree d, then f(n) is
O(nd), i.e.,

1. Drop lower-order terms
2. Drop constant factors

 Use the smallest possible class of functions
 Say “2n is O(n)” instead of “2n is O(n2)”

 Use the simplest expression of the class
 Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)”

© 2010 Goodrich, Tamassia

Analysis of Algorithms 23

Asymptotic Algorithm Analysis
 The asymptotic analysis of an algorithm determines

the running time in big-Oh notation
 To perform the asymptotic analysis

 We find the worst-case number of primitive operations
executed as a function of the input size

 We express this function with big-Oh notation
 Example:

 We determine that algorithm arrayMax executes at most
8n − 2 primitive operations

 We say that algorithm arrayMax “runs in O(n) time”

 Since constant factors and lower-order terms are
eventually dropped anyhow, we can disregard them
when counting primitive operations

© 2010 Goodrich, Tamassia

Analysis of Algorithms 24

Computing Prefix Averages
 We further illustrate

asymptotic analysis with
two algorithms for prefix
averages

 The i-th prefix average of
an array X is average of the
first (i + 1) elements of X:

A[i] = (X[0] + X[1] + … + X[i])/(i+1)

 Computing the array A of
prefix averages of another
array X has applications to
financial analysis

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7

X
A

© 2010 Goodrich, Tamassia

Analysis of Algorithms 25

Prefix Averages (Quadratic)
The following algorithm computes prefix averages in
quadratic time by applying the definition

Algorithm prefixAverages1(X, n)
Input array X of n integers
Output array A of prefix averages of X #operations
A ← new array of n integers n
for i ← 0 to n − 1 do n

s ← X[0] n
for j ← 1 to i do 1 + 2 + …+ (n − 1)

s ← s + X[j] 1 + 2 + …+ (n − 1)
A[i] ← s / (i + 1) n

return A 1

© 2010 Goodrich, Tamassia

Analysis of Algorithms 26

Arithmetic Progression

 The running time of
prefixAverages1 is
O(1 + 2 + …+ n)

 The sum of the first n
integers is n(n + 1) / 2
 There is a simple visual

proof of this fact

 Thus, algorithm
prefixAverages1 runs in
O(n2) time

0

1

2

3

4

5

6

7

1 2 3 4 5 6

© 2010 Goodrich, Tamassia

Analysis of Algorithms 27

Prefix Averages (Linear)
The following algorithm computes prefix averages in
linear time by keeping a running sum

Algorithm prefixAverages2(X, n)
Input array X of n integers
Output array A of prefix averages of X #operations
A ← new array of n integers n
s ← 0 1
for i ← 0 to n − 1 do n

s ← s + X[i] n
A[i] ← s / (i + 1) n

return A 1
Algorithm prefixAverages2 runs in O(n) time

© 2010 Goodrich, Tamassia

Analysis of Algorithms 28

 properties of logarithms:
logb(xy) = logbx + logby
logb (x/y) = logbx - logby
logbxa = alogbx
logba = logxa/logxb

 properties of exponentials:
a(b+c) = aba c
abc = (ab)c

ab /ac = a(b-c)

b = a logab

bc = a c*logab

Summations
Logarithms and Exponents

Proof techniques
Basic probability

Math you need to Review

© 2010 Goodrich, Tamassia

Analysis of Algorithms 29

Relatives of Big-Oh
big-Omega
 f(n) is Ω(g(n)) if there is a constant c > 0

and an integer constant n0 ≥ 1 such that
f(n) ≥ c•g(n) for n ≥ n0

big-Theta
 f(n) is Θ(g(n)) if there are constants c’ > 0 and c’’

> 0 and an integer constant n0 ≥ 1 such that
c’•g(n) ≤ f(n) ≤ c’’•g(n) for n ≥ n0

© 2010 Goodrich, Tamassia

Analysis of Algorithms 30

Intuition for Asymptotic
Notation

Big-Oh
 f(n) is O(g(n)) if f(n) is asymptotically

less than or equal to g(n)
big-Omega
 f(n) is Ω(g(n)) if f(n) is asymptotically

greater than or equal to g(n)
big-Theta
 f(n) is Θ(g(n)) if f(n) is asymptotically

equal to g(n)

© 2010 Goodrich, Tamassia

Analysis of Algorithms 31

Example Uses of the
Relatives of Big-Oh

f(n) is Θ(g(n)) if it is Ω(n2) and O(n2). We have already seen the former,
for the latter recall that f(n) is O(g(n)) if there is a constant c > 0 and an
integer constant n0 ≥ 1 such that f(n) < c•g(n) for n ≥ n0

Let c = 5 and n0 = 1

 5n2 is Θ(n2)

f(n) is Ω(g(n)) if there is a constant c > 0 and an integer constant n0 ≥ 1
such that f(n) ≥ c•g(n) for n ≥ n0

let c = 1 and n0 = 1

 5n2 is Ω(n)

f(n) is Ω(g(n)) if there is a constant c > 0 and an integer constant n0 ≥ 1
such that f(n) ≥ c•g(n) for n ≥ n0

let c = 5 and n0 = 1

 5n2 is Ω(n2)

© 2010 Goodrich, Tamassia

	Analysis of Algorithms
	Running Time
	Experimental Studies
	Limitations of Experiments
	Theoretical Analysis
	Pseudocode
	Pseudocode Details
	The Random Access Machine (RAM) Model
	Seven Important Functions
	Functions Graphed �Using “Normal” Scale
	Primitive Operations
	Counting Primitive Operations
	Estimating Running Time
	Growth Rate of Running Time
	�Why Growth Rate Matters
	�Comparison of Two Algorithms
	Constant Factors
	Big-Oh Notation
	Big-Oh Example
	Slide Number 20
	Big-Oh and Growth Rate
	Big-Oh Rules
	Asymptotic Algorithm Analysis
	Computing Prefix Averages
	Slide Number 25
	Arithmetic Progression
	Slide Number 27
	Math you need to Review
	Slide Number 29
	Intuition for Asymptotic Notation
	Slide Number 31

