

 1

A SURVEY OF ASSOCIATION RULES

Margaret H. Dunham, Yongqiao Xiao Le Gruenwald, Zahid Hossain

 Department of Computer Science and Engineering Department of Computer Science
 Southern Methodist University University of Oklahoma
 Dallas, Texas 75275-0122 Norman, OK 73019

ABSTRACT: Association rules are one of the most researched areas of data mining and have
recently received much attention from the database community. They have proven to be quite
useful in the marketing and retail communities as well as other more diverse fields. In this paper
we provide an overview of association rule research.

1 INTRODUCTION

Data Mining is the discovery of hidden information found in databases and can be viewed

as a step in the knowledge discovery process [Chen1996] [Fayyad1996]. Data mining functions

include clustering, classification, prediction, and link analysis (associations). One of the most

important data mining applications is that of mining association rules. Association rules, first

introduced in 1993 [Agrawal1993], are used to identify relationships among a set of items in a

database. These relationships are not based on inherent properties of the data themselves (as

with functional dependencies), but rather based on co-occurrence of the data items. Example 1

illustrates association rules and their use.

Example 1: A grocery store has weekly specials for which advertising supplements are created
for the local newspaper. When an item, such as peanut butter, has been designated to go on sale,
management determines what other items are frequently purchased with peanut butter. They find
that bread is purchased with peanut butter 30% of the time and that jelly is purchased with it 40%
of the time. Based on these associations, special displays of jelly and bread are placed near the
peanut butter which is on sale. They also decide not to put these items on sale. These actions are
aimed at increasing overall sales volume by taking advantage of the frequency with which these
items are purchased together.

There are two association rules mentioned in Example 1. The first one states that when

peanut butter is purchased, bread is purchased 30% of the time. The second one states that 40%

of the time when peanut butter is purchased so is jelly. Association rules are often used by retail

stores to analyze market basket transactions. The discovered association rules can be used by

management to increase the effectiveness (and reduce the cost) associated with advertising,

 2

marketing, inventory, and stock location on the floor. Association rules are also used for other

applications such as prediction of failure in telecommunications networks by identifying what

events occur before a failure. Most of our emphasis in this paper will be on basket market

analysis, however in later sections we will look at other applications as well.

The objective of this paper is to provide a thorough survey of previous research on

association rules. In the next section we give a formal definition of association rules. Section 3

contains the description of sequential and parallel algorithms as well as other algorithms to find

association rules. Section 4 provides a new classification and comparison of the basic

algorithms. Section 5 presents generalization and extension of association rules. In Section 6 we

examine the generation of association rules when the database is being modified. In appendices

we provide information on different association rule products, data source and source code

available in the market, and include a table summarizing notation used throughout the paper.

2 ASSOCIATION RULE PROBLEM

A formal statement of the association rule problem is [Agrawal1993] [Cheung1996c]:

Definition 1: Let I ={I1, I2, … , Im} be a set of m distinct attributes, also called literals. Let D be
a database, where each record (tuple) T has a unique identifier, and contains a set of items such
that T⊆ I An association rule is an implication of the form X⇒ Y, where X, Y⊂ I, are sets of
items called itemsets, and X! Y=φ. Here, X is called antecedent, and Y consequent.

Two important measures for association rules, support (s) and confidence (α), can be defined

as follows.

Definition 2: The support (s) of an association rule is the ratio (in percent) of the records that
contain X" Y to the total number of records in the database.

Therefore, if we say that the support of a rule is 5% then it means that 5% of the total records

contain X" Y. Support is the statistical significance of an association rule. Grocery store

managers probably would not be concerned about how peanut butter and bread are related if less

than 5% of store transactions have this combination of purchases. While a high support is often

desirable for association rules, this is not always the case. For example, if we were using

association rules to predict the failure of telecommunications switching nodes based on what set

 3

of events occur prior to failure, even if these events do not occur very frequently association rules

showing this relationship would still be important.

Definition 3: For a given number of records, confidence (α) is the ratio (in percent) of the
number of records that contain X" Y to the number of records that contain X.

Thus, if we say that a rule has a confidence of 85%, it means that 85% of the records

containing X also contain Y. The confidence of a rule indicates the degree of correlation in the

dataset between X and Y. Confidence is a measure of a rule’s strength. Often a large confidence

is required for association rules. If a set of events occur a small percentage of the time before a

switch failure or if a product is purchased only very rarely with peanut butter, these relationships

may not be of much use for management.

Mining of association rules from a database consists of finding all rules that meet the

user-specified threshold support and confidence. The problem of mining association rules can be

decomposed into two subproblems [Agrawal1994] as stated in Algorithm 1.

Algorithm 1. Basic:
Input:

I, D, s, α
Output:

Association rules satisfying s and α
Algorithm:

1) Find all sets of items which occur with a frequency that is greater than or equal to the
user-specified threshold support, s.
2) Generate the desired rules using the large itemsets, which have user-specified threshold
confidence, α.

The first step in Algorithm 1 finds large or frequent itemsets. Itemsets other than those are

referred as small itemsets. Here an itemset is a subset of the total set of items of interest from the

database. An interesting (and useful) observation about large itemsets is that:

If an itemset X is small, any superset of X is also small.

Of course the contrapositive of this statement (If X is a large itemset than so is any subset of X)

is also important to remember. In the remainder of this paper we use L to designate the set of

large itemsets. The second step in Algorithm 1 finds association rules using large itemsets

 4

obtained in the first step. Example 2 illustrates this basic process for finding association rules

from large itemsets.

Example 2: Consider a small database with four items I={Bread, Butter, Eggs, Milk} and four
transactions as shown in Table 1. Table 2 shows all itemsets for I. Suppose that the minimum
support and minimum confidence of an association rule are 40% and 60%, respectively. There
are several potential association rules. For discussion purposes we only look at those in Table 3.
At first, we have to find out whether all sets of items in those rules are large. Secondly, we have
to verify whether a rule has a confidence of at least 60%. If the above conditions are satisfied for
a rule, we can say that there is enough evidence to conclude that the rule holds with a confidence
of 60%. Itemsets associated with the aforementioned rules are: {Bread, Butter}, and {Butter,
Eggs}. The support of each individual itemset is at least 40% (see Table 2). Therefore, all of
these itemsets are large. The confidence of each rule is presented in Table 3. It is evident that
the first rule (Bread ⇒ Butter) holds. However, the second rule (Butter ⇒ Eggs) does not hold
because its confidence is less than 60%.

Table 1 Transaction Database for Example 2

Transaction ID Items
i Bread, Butter, Eggs

T2 Butter, Eggs, Milk
T3 Butter
T4 Bread, Butter

Table 2 Support for Itemsets in Table 1 and Large Itemsets with a support of 40%

Itemset Support, s Large/Small
Bread 50% Large
Butter 100% Large
Eggs 50% Large
Milk 25% Small
Bread, Butter 50% Large
Bread, Eggs 25% Small
Bread, Milk 0% Small
Butter, Eggs 50% Large
Butter, Milk 25% Small
Eggs, Milk 25% Small
Bread, Butter, Eggs 25% Small
Bread, Butter, Milk 0% Small
Bread, Eggs, Milk 0% Small
Butter, Eggs, Milk 25% Small
Bread, Butter Eggs, Milk 0% Small

 5

Table 3 Confidence of Some Association Rules for Example 1 where αααα=60%

Rule Confidence Rule Hold
Bread ⇒ Butter 100% Yes
Butter ⇒ Bread 50% No
Butter ⇒ Eggs 50% No
Eggs ⇒ Butter 100% Yes

The identification of the large itemsets is computationally expensive [Agrawal1994].

However, once all sets of large itemsets (l ∈ L) are obtained, there is a straightforward algorithm

for finding association rules given in [Agrawal1994] which is restated in Algorithm 2.

Algorithm 2. Find Association Rules Given Large Itemsets:
Input:

I, D, s, α, L
Output:

Association rules satisfying s and α
Algorithm:

1) Find all nonempty subsets, x, of each large itemset, l ∈ L
3) For every subset, obtain a rule of the form x⇒ (l-x) if the ratio of the frequency of

occurrence of l to that of x is greater than or equal to the threshold confidence.

For example, suppose we want to see whether the first rule {Bread ⇒ Butter) holds for

Example 2. Here l = {Bread, Butter}, and x = {Bread}. Therefore, (l-x) = {Butter}. Now, the

ratio of support(Bread, Butter) to support(Bread) is 100% which is greater than the minimum

confidence. Therefore, the rule holds. For a better understanding, let us consider the third rule,

Butter ⇒ Eggs, where x = {Butter}, and (l-x) = {Eggs}. The ratio of support(Butter, Eggs) to

support(Butter) is 50% which is less than 60%. Therefore, we can say that there is not enough

evidence to conclude {Butter} ⇒ {Eggs} with 60% confidence.

Since finding large itemsets in a huge database is very expensive and dominates the

overall cost of mining association rules, most research has been focused on developing efficient

algorithms to solve step 1 in Algorithm 1 [Agrawal1994] [Cheung1996c] [Klemettinen1994].

The following section provides an overview of these algorithms.

 6

3 BASIC ALGORITHMS

In this section we provide a survey of existing algorithms to generate association rules.

Most algorithms used to identify large itemsets can be classified as either sequential or parallel.

In most cases, it is assumed that the itemsets are identified and stored in lexicographic order

(based on item name). This ordering provides a logical manner in which itemsets can be

generated and counted. This is the normal approach with sequential algorithms. On the other

hand, parallel algorithms focus on how to parallelize the task of finding large itemsets. In the

following subsections we describe important features of previously proposed algorithms. We

describe all techniques, but only include a statement of the algorithm and survey its use with an

example for a representative subset of these algorithms. We discuss the performance of the

algorithms and look at data structures used.

3.1 Sequential Algorithms

3.1.1 AIS

The AIS algorithm was the first published algorithm developed to generate all large

itemsets in a transaction database [Agrawal1993]. It focused on the enhancement of databases

with necessary functionality to process decision support queries. This algorithm was targeted to

discover qualitative rules. This technique is limited to only one item in the consequent. That is,

the association rules are in the form of X⇒ Ij | α, where X is a set of items and Ij is a single item

in the domain I, and α is the confidence of the rule.

The AIS algorithm makes multiple passes over the entire database. During each pass, it

scans all transactions. In the first pass, it counts the support of individual items and determines

which of them are large or frequent in the database. Large itemsets of each pass are extended to

generate candidate itemsets. After scanning a transaction, the common itemsets between large

itemsets of the previous pass and items of this transaction are determined. These common

itemsets are extended with other items in the transaction to generate new candidate itemsets. A

large itemset l is extended with only those items in the transaction that are large and occur in the

lexicographic ordering of items later than any of the items in l. To perform this task efficiently, it

uses an estimation tool and pruning technique. The estimation and pruning techniques determine

 7

candidate sets by omitting unnecessary itemsets from the candidate sets. Then, the support of

each candidate set is computed. Candidate sets having supports greater than or equal to min

support are chosen as large itemsets. These large itemsets are extended to generate candidate sets

for the next pass. This process terminates when no more large itemsets are found.

It is believed that if an itemset is absent in the whole database, it can never become a

candidate for measurement of large itemsets in the subsequent pass. To avoid replication of an

itemset, items are kept in lexicographic order. An itemset A is tried for extension only by items

B (i.e., B=I1, I2, ……Ik) that are later in the ordering than any of the members of A. For example,

let I={p, q, r, s, t, u, v}, and {p, q} be a large itemset. For transaction T = {p, q, r, s}, the

following candidate itemsets are generated:

{p, q, r} expected large: continue extending

{p, q, s} expected large: cannot be extended further

{p, q, r, s} expected small: cannot be extended further

Let us see how the expected support for A+B is calculated. The expected support of A+B

is the product of individual relative frequencies of items in B and the support for A, which is

given as follows [Agrawal1993]:

sexpected = f(I1) × f(I2) × . . . ×f(Ik) × (x-c)/dbsize

where f(Ii) represents the relative frequency of item Ii in the database, and (x-c)/dbsize is

the actual support for A in the remaining portion of the database (here x = number of transactions

that contain itemset A, c = number of transactions containing A that have already been processed

in the current pass, and dbsize = the total number of transactions in the database).

Generation of a huge number of candidate sets might cause the memory buffer to

overflow. Therefore, a suitable buffer management scheme is required to handle this problem

whenever necessary. The AIS algorithm suggested that the large itemsets need not be in memory

during a pass over the database and can be disk-resident. The memory buffer management

algorithm for candidate sets is given in [Agrawal1993]. Two candidate itemsets U and V are

called siblings if they are 1-extension (i.e. extension of an itemset with 1 item) of the same

itemset. At first, an attempt is made to make room for new itemsets that have never been

extended. If this attempt fails, the candidate itemset having the maximum number of items is

discarded. All of its siblings are also discarded because their parents will have to be included in

 8

the candidate itemsets for the next pass. Even after pruning, there might be a situation that all the

itemsets that need to be measured in a pass may not fit into memory.

Applying to sales data obtained from a large retailing company, the effectiveness of the

AIS algorithm was measured in [Agrawal1993]. There were a total of 46,873 customer

transactions and 63 departments in the database. The algorithm was used to find if there was an

association between departments in the customers’ purchasing behavior. The main problem of

the AIS algorithm is that it generates too many candidates that later turn out to be small

[Agrawal1994]. Besides the single consequent in the rule, another drawback of the AIS

algorithm is that the data structures required for maintaining large and candidate itemsets were

not specified [Agrawal1993]. If there is a situation where a database has m items and all items

appear in every transaction, there will be 2m potentially large itemsets. Therefore, this method

exhibits complexity which is exponential in the order of m in the worst case.

3.1.2 SETM

 The SETM algorithm was proposed in [Houtsma1995] and was motivated by the desire to

use SQL to calculate large itemsets [Srikant1996b]. In this algorithm each member of the set

large itemsets, kL , is in the form <TID, itemset> where TID is the unique identifier of a

transaction. Similarly, each member of the set of candidate itemsets, kC , is in the form <TID,

itemset>.

Similar to the AIS algorithm, the SETM algorithm makes multiple passes over the

database. In the first pass, it counts the support of individual items and determines which of them

are large or frequent in the database. Then, it generates the candidate itemsets by extending

large itemsets of the previous pass. In addition, the SETM remembers the TIDs of the generating

transactions with the candidate itemsets. The relational merge-join operation can be used to

generate candidate itemsets [Srikant1996b]. Generating candidate sets, the SETM algorithm

saves a copy of the candidate itemsets together with TID of the generating transaction in a

sequential manner. Afterwards, the candidate itemsets are sorted on itemsets, and small itemsets

are deleted by using an aggregation function. If the database is in sorted order on the basis of

TID, large itemsets contained in a transaction in the next pass are obtained by sorting kL on TID.

 9

This way, several passes are made on the database. When no more large itemsets are found, the

algorithm terminates.

The main disadvantage of this algorithm is due to the number of candidate sets

kC [Agrawal1994]. Since for each candidate itemset there is a TID associated with it, it requires

more space to store a large number of TIDs. Furthermore, when the support of a candidate

itemset is counted at the end of the pass, kC is not in ordered fashion. Therefore, again sorting is

needed on itemsets. Then, the candidate itemsets are pruned by discarding the candidate itemsets

which do not satisfy the support constraint. Another sort on TID is necessary for the resulting set

(kL). Afterwards, kL can be used for generating candidate itemsets in the next pass. No buffer

management technique was considered in the SETM algorithm [Agrawal1994]. It is assumed

that kC can fit in the main memory. Furthermore, [Sarawagi1998] mentioned that SETM is not

efficient and there are no results reported on running it against a relational DBMS.

3.1.3 Apriori

 The Apriori algorithm developed by [Agrawal1994] is a great achievement in the history of

mining association rules [Cheung1996c]. It is by far the most well-known association rule

algorithm. This technique uses the property that any subset of a large itemset must be a large

itemset. Also, it is assumed that items within an itemset are kept in lexicographic order. The

fundamental differences of this algorithm from the AIS and SETM algorithms are the way of

generating candidate itemsets and the selection of candidate itemsets for counting. As mentioned

earlier, in both the AIS and SETM algorithms, the common itemsets between large itemsets of

the previous pass and items of a transaction are obtained. These common itemsets are extended

with other individual items in the transaction to generate candidate itemsets. However, those

individual items may not be large. As we know that a superset of one large itemset and a small

itemset will result in a small itemset, these techniques generate too many candidate itemsets

which turn out to be small. The Apriori algorithm addresses this important issue. The Apriori

generates the candidate itemsets by joining the large itemsets of the previous pass and deleting

those subsets which are small in the previous pass without considering the transactions in the

database. By only considering large itemsets of the previous pass, the number of candidate large

itemsets is significantly reduced.

 10

 In the first pass, the itemsets with only one item are counted. The discovered large itemsets of

the first pass are used to generate the candidate sets of the second pass using the apriori_gen()

function. Once the candidate itemsets are found, their supports are counted to discover the large

itemsets of size two by scanning the database. In the third pass, the large itemsets of the second

pass are considered as the candidate sets to discover large itemsets of this pass. This iterative

process terminates when no new large itemsets are found. Each pass i of the algorithm scans the

database once and determines large itemsets of size i. Li denotes large itemsets of size i, while Ci

is candidates of size i.

The apriori_gen() function as described in [Agrawal1994] has two steps. During the first

step, Lk-1 is joined with itself to obtain Ck. In the second step, apriori_gen() deletes all itemsets

from the join result, which have some (k-1)–subset that is not in Lk-1. Then, it returns the

remaining large k-itemsets.

Method: apriori_gen() [Agrawal1994]
Input: set of all large (k-1)-itemsets Lk-1
Output: A superset of the set of all large k-itemsets
//Join step
Ii = Items i
insert into Ck

Select p.I1, p.I2, ……. , p.Ik-1, q .Ik-1
From Lk-1 is p, Lk-1 is q
Where p.I1 = q.I1 and …… and p.Ik-2 = q.I k-2 and p.Ik-1 < q.Ik-1.

//pruning step
forall itemsets c∈ Ck do

forall (k-1)-subsets s of c do
If (s∉ Lk-1) then

delete c from Ck

Consider the example given in Table 4 to illustrate the apriori_gen(). Large itemsets after the

third pass are shown in the first column. Suppose a transaction contains {Apple, Bagel, Chicken,

Eggs, DietCoke}. After joining L3 with itself, C4 will be {{Apple, Bagel, Chicken, DietCoke},

{Apple, Chicken, DietCoke, Eggs}. The prune step deletes the itemset {Apple, Chicken,

DietCoke, Eggs} because its subset with 3 items {Apple, DietCoke, Eggs} is not in L3.

 11

Table 4 Finding Candidate Sets Using Apriori_gen()

Large Itemsets in the third pass
(L3)

Join (L3, L3) Candidate sets of the fourth
pass (C4 after pruning)

{{Apple, Bagel, Chicken},
{Apple, Bagel, DietCoke},
{Apple, Chicken, DietCoke},
{Apple, Chicken, Eggs},
{Bagel, Chicken, DietCoke}}

{{Apple, Bagel,
Chicken, DietCoke},
{Apple, Chicken,
DietCoke Eggs}}

{{Apple, Bagel, Chicken,
DietCoke}}

The subset() function returns subsets of candidate sets that appear in a transaction.

Counting support of candidates is a time-consuming step in the algorithm [Cengiz1997]. To

reduce the number of candidates that need to be checked for a given transaction, candidate

itemsets Ck are stored in a hash tree. A node of the hash tree either contains a leaf node or a hash

table (an internal node). The leaf nodes contain the candidate itemsets in sorted order. The

internal nodes of the tree have hash tables that link to child nodes. Itemsets are inserted into the

hash tree using a hash function. When an itemset is inserted, it is required to start from the root

and go down the tree until a leaf is reached. Furthermore, Lk are stored in a hash table to make

the pruning step faster [Srikant1996b]

 Algorithm 3 shows the Apriori technique. As mentioned earlier, the algorithm proceeds

iteratively.

Function count(C: a set of itemsets, D: database)
begin
 for each transaction T ∈ D="Di do begin
 forall subsets x ⊆ T do
 if x ∈ C then
 x.count++;
 end
end

 12

Algorithm 3. Apriori [Agrawal1994]
Input:
I, D, s
Output:
L
Algorithm:
//Apriori Algorithm proposed by Agrawal R., Srikant, R. [Agrawal1994]
//procedure LargeItemsets
 1) C 1: = I; //Candidate 1-itemsets
2) Generate L1 by traversing database and counting each occurrence of an attribute in a
transaction;
3) for (k = 2; Lk-1≠ φ; k++) do begin
//Candidate Itemset generation
//New k-candidate itemsets are generated from (k-1)-large itemsets
4) Ck = apriori-gen(Lk-1);
//Counting support of Ck
5) Count (Ck, D)
6) Lk = {c∈ Ck | c.count ≥ minsup}
7) end
9) L:= " kLk

 Figure 1 illustrates how the Apriori algorithm works on Example 2. Initially, each item of

the itemset is considered as a 1-item candidate itemset. Therefore, C1 has four 1-item candidate

sets which are {Bread}, {Butter}, {Eggs}, and {Milk}. L1 consists of those 1-itemsets from C1

with support greater than or equal to 0.4. C2 is formed by joining L1 with itself, and deleting any

itemsets which have subsets not in L1. This way, we obtain C2 as {{Bread Butter}, {Bread Eggs},

{Butter Eggs}}. Counting support of C2, L2 is found to be {{Bread Butter}, {Butter Eggs}}.

Using apriori_gen(), we do not get any candidate itemsets for the third round. This is because the

conditions for joining L2 with itself are not satisfied.

 13

Item

Figure 1 Discovering Large Itemsets using the Apriori Algorith

Apriori always outperforms AIS and SETM (Agrawal1994). Recall the ex

Table 4. Apriori generates only one candidate ({Apple, Bagel, Chicken, DietCok

round. On the other hand, AIS and SETM will generate five candidates wh

Bagel, Chicken, DietCoke}, {Apple, Bagel, Chicken, Eggs}, {Apple, Bagel, D

{Apple, Chicken, DietCoke, Eggs}, and {Bagel, Chicken, DietCoke, Eggs}. As

itemsets are discovered after counting the supports of candidates. Therefo

support counts are required if either AIS or SETM is followed.

Apriori incorporates buffer management to handle the fact that all the large i

the candidate itemsets Ck need to be stored in the candidate generation phase of a

fit in the memory. A similar problem may arise during the counting phase wher

and at least one page to buffer the database transactions are needed

[Agrawal1994] considered two approaches to handle these issues. At first they a

fits in memory but Ck does not. The authors resolve this problem by modifying

that it generates a number of candidate sets Ck′ which fits in the memory. L

resulting from Ck′ are written to disk, while small itemsets are deleted. This p

C1
Itemset
{Bread}
{Butter}
{Egg}
{Milk}

Scan D to count
support for itemset in
C1

C1
Itemset Support
{Bread} 0.50
{Butter} 1.0
{Egg} 0.5
{Milk} 0.25

Itemse
{Bread
{Butte
{Egg}

Items
{Brea
{Brea
{Butt

Scan D to count
support for itemset in
C2

C2
Itemset Support
{Bread Butter} 0.50
{Bread Egg} 0.25
{Butter Egg} 0.50

Itemset
{Bread
{Butter

I

φ

Scan D to count
support for itemset in
C3

C3
Itemset Support
φ

Itemset

φ
L1
t Support
} 0.5
r} 1.0
 0.50

 B
 E
C2
et
d Butter}
d Egg}
er Egg}
a

e

i

i

 w

r

t

e

[

s

a

a

ro

L2
 Support
utter} 0.50
gg} 0.50
C3
temset
 L3

 Support
m

mple given in

}) in the fourth

ch are {Apple,

etCoke, Eggs},

e know, large

e, unnecessary

emsets Lk-1 and

pass k may not

 storage for Ck

Agrawal1994].

sumed that Lk-1

priori_gen() so

rge itemsets Lk

cess continues

 14

until all of Ck has been measured. The second scenario is that Lk-1 does not fit in the memory.

This problem is handled by sorting Lk-1 externally [Srikant1996b]. A block of Lk-1 is brought

into the memory in which the first (k-2) items are the same. Blocks of Lk-1 are read and

candidates are generated until the memory fills up. This process continues until all Ck has been

counted.

The performance of Apriori was assessed by conducting several experiments for discovering

large itemsets on an IBM RS/6000 530 H workstation with the CPU clock rate of 33 MHz, 64

MB of main memory, and running AIX 3.2. Experimental results show that the Apriori

algorithm always outperforms both AIS and SETM [Agrawal1994].

3.1.4 Apriori-TID

 As mentioned earlier, Apriori scans the entire database in each pass to count support.

Scanning of the entire database may not be needed in all passes. Based on this conjecture,

[Agrawal1994] proposed another algorithm called Apriori-TID. Similar to Apriori, Apriori-TID

uses the Apriori’s candidate generating function to determine candidate itemsets before the

beginning of a pass. The main difference from Apriori is that it does not use the database for

counting support after the first pass. Rather, it uses an encoding of the candidate itemsets used in

the previous pass denoted by kC . As with SETM, each member of the set kC is of the form

<TID, Xk> where Xk is a potentially large k-itemset present in the transaction with the identifier

TID. In the first pass, 1C corresponds to the database. However, each item is replaced by the

itemset. In other passes, the member of kC corresponding to transaction T is <TID, c> where c is

a candidate belonging to Ck contained in T. Therefore, the size of kC may be smaller than the

number of transactions in the database. Furthermore, each entry in kC may be smaller than the

corresponding transaction for larger k values. This is because very few candidates may be

contained in the transaction. It should be mentioned that each entry in kC may be larger than the

corresponding transaction for smaller k values [Srikant1996b].

At first, the entire database is scanned and 1C is obtained in terms of itemsets. That is, each

entry of 1C has all items along with TID. Large itemsets with 1-item L1 are calculated by

counting entries of 1C . Then, apriori_gen() is used to obtain C2. Entries of 2C corresponding to

 15

a transaction T is obtained by considering members of C2 which are present in T. To perform

this task, 1C is scanned rather than the entire database. Afterwards, L2 is obtained by counting

the support in 2C . This process continues until the candidate itemsets are found to be empty.

 The advantage of using this encoding function is that in later passes the size of the encoding

function becomes smaller than the database, thus saving much reading effort. Apriori-TID also

outperforms AIS and SETM. Using the example given in Table 4, where L3 was found as

{{Apple, Bagel, Chicken}, {Apple, Bagel, DietCoke}, {Apple, Chicken, DietCoke}, {Apple,

Chicken, Eggs}, {Bagel, Chicken, DietCoke}}. Similar to Apriori, Apriori-TID will also

generate only one candidate itemsets {Apple, Bagel, Chicken, DietCoke}. As mentioned earlier,

both AIS and SETM generate five candidate itemsets which are {Apple, Bagel, Chicken,

DietCoke}, {Apple, Bagel, Chicken, Eggs}, {Apple, Bagel, DietCoke Eggs}, {Apple, Chicken,

DietCoke, Eggs}, and {Bagel, Chicken, DietCoke, Eggs}.

In Apriori-TID, the candidate itemsets in Ck are stored in an array indexed by TIDs of the

itemsets in Ck. Each Ck is stored in a sequential structure. In the kth pass, Apriori-TID needs

memory space for Lk-1 and Ck during candidate generation. Memory space is needed for Ck-1, Ck,

kC , and 1−kC in the counting phase. Roughly half of the buffer is filled with candidates at the

time of candidate generation. This allows the relevant portions of both Ck and Ck-1 to be kept in

memory during the computing phase. If Lk does not fit in the memory, it is recommended to sort

Lk externally.

Similar to Apriori, the performance of this algorithm was also assessed by experimenting

using a large sample on an IBM RS/6000 530H workstation [Agrawal1994]. Since Apriori-TID

uses kC rather than the entire database after the first pass, it is very effective in later passes when

kC becomes smaller. However, Apriori-TID has the same problem as SETM in that kC tends to

be large, but Apriori-TID generates significantly fewer candidate itemsets than SETM does.

Apriori-TID does not need to sort kC as is needed in SETM. There is some problem associated

with buffer management when kC becomes larger. It was also found that Apriori-TID

outperforms Apriori when there is a smaller number of kC sets, which can fit in the memory and

the distribution of the large itemsets has a long tail [Srikant1996b]. That means the distribution

of entries in large itemsets is high at early stage. The distribution becomes smaller immediately

 16

after it reaches the peak and continues for a long time. It is reported that the performance of

Apriori is better than that of Apriori-TID for large data sets [Agrawal1994]. On the other hand,

Apriori-TID outperforms Apriori when the kC sets are relatively small (fit in memory).

Therefore, a hybrid technique “Apriori-Hybrid” was also introduced by [Agrawal1994].

3.1.5 Apriori-Hybrid

 This algorithm is based on the idea that it is not necessary to use the same algorithm in all

passes over data. As mentioned in [Agrawal1994], Apriori has better performance in earlier

passes, and Apiori-TID outperforms Apriori in later passes. Based on the experimental

observations, the Apriori-Hybrid technique was developed which uses Apriori in the initial

passes and switches to Apriori-TID when it expects that the set kC at the end of the pass will fit

in memory. Therefore, an estimation of kC at the end of each pass is necessary. Also, there is a

cost involvement of switching from Apriori to Apriori-TID. The performance of this technique

was also evaluated by conducting experiments for large datasets. It was observed that Apriori-

Hybrid performs better than Apriori except in the case when the switching occurs at the very end

of the passes [Srikant1996b].

3.1.6 Off-line Candidate Determination (OCD)

The Off-line Candidate Determination (OCD) technique is proposed in [Mannila1994]

based on the idea that small samples are usually quite good for finding large itemsets. The OCD

technique uses the results of the combinatorial analysis of the information obtained from

previous passes to eliminate unnecessary candidate sets. To know if a subset Y⊆ I is infrequent,

at least (1-s) of the transactions must be scanned where s is the support threshold. Therefore, for

small values of s, almost the entire relation has to be read. It is obvious that if the database is

very large, it is important to make as few passes over the data as possible.

OCD follows a different approach from AIS to determine candidate sets. OCD uses all

available information from previous passes to prune candidate sets between the passes by

keeping the pass as simple as possible. It produces a set Lk as the collection of all large itemsets

of size k. Candidate sets Ck+1 contain those sets of size (k+1) that can possibly be in Lk+1, given

 17

the large itemsets of Lk. It is noted that if X ∈ Lk+e and e ≥0, then X includes

 +
k

ek
sets from Lk

where e denotes the extension of Lk. That means, if e=1, k=2, and X∈ L3, then X includes

2
3

or

3 sets from L2. Similarly, each item of L4 includes 4 items of L3, and so on. For example, we

know L2={{Apple, Banana}, {Banana, Cabbage}, {Apple, Cabbage}, {Apple, Eggs}, {Banana,

Eggs}, {Apple, Icecream}, {Cabbage, Syrup}}. We can conclude that {Apple, Banana,

Cabbage} and {Apple, Banana, Eggs} are the only possible members of L3. This is because they

are the only sets of size 3 whose all subsets of size 2 are included in L2. At this stage, L4 is

empty. This is because any member of L4 includes 4 items of L3, but we have only 2 members in

L3. Therefore, Ck+1 is counted as follows:

Ck+1 = {Y⊆ I such that |Y|=k+1 and Y includes (k+1) members of Lk} (1)

A trivial solution for finding Ck+1 is the exhaustive procedure. In the exhaustive method,

all subsets of size k+1 are inspected. However, this procedure produces a large number of

unnecessary candidates, and it is a wasteful technique. To expedite the counting operation, OCD

suggests two alternative approaches. One of them is to compute a collection of C′k+1 by forming

unions of Lk that have (k-1) items in common as mentioned Equation (2):

C′k+1 = {Y" Y′ such that Y, Y′ ∈ Lk and | Y" Y′ | =(k-1)} (2)

Then Ck+1∈ C′k+1 and Ck+1 can be computed by checking for each set in C′k+1 whether the

defining condition of Ck+1 holds.

The second approach is to form unions of sets from Lk and L1 as expressed in Equation

(3):

C″k+1 = {Y" Y′ such that Y∈ Lk and Y′ ∈ L1 and Y′⊄ Y} (3)

Then compute Ck+1 by checking the inclusion condition as stated in Equation (1).

Here it is noted that the work involved in generating Ck+1 does not depend on the size of

database, rather on the size of Lk. Also, one can compute several families of Ck+1, Ck+2, . . . , Ck+e

for some e>1 directly from Lk. The time complexity for determining Ck+1 from C′k+1 is O(k| Lk|3).

On the other hand, the running time for determining Ck+1 from C″k+1 is linear in size of the

database (n) and exponential in size of the largest large itemset. Therefore, the algorithm can be

 18

quite slow for very large values of n. A good approximation of the large itemsets can be

obtained by analyzing only small samples of a large database [Lee1998; Mannila1994].

Theoretical analysis performed by [Mannila1994] shows that small samples are quite good for

finding large itemsets. It is also mentioned in [Mannila1994] that even for fairly low values of

support threshold, a sample consisting of 3000 rows gives an extremely good approximation in

finding large itemsets.

The performance of this algorithm was evaluated in [Mannila1994] by using two datasets.

One of them is a course enrollment database of 4734 students. The second one is a telephone

company fault management database which contains some 30,000 records of switching network

notifications. Experimental results indicate that the time requirement of OCD is typically 10-

20% of that of AIS. The advantage of OCD increases with a lower support threshold

[Mannila1994]. Generated candidates in AIS are significantly higher than those in OCD. AIS

may generate duplicate candidates during the pass whereas OCD generates any candidate once

and checks that its subsets are large before evaluating it against the database.

3.1.7 Partitioning

PARTITION [Savasere1995] reduces the number of database scans to 2. It divides the

database into small partitions such that each partition can be handled in the main memory. Let

the partitions of the database be D1, D2, ..., Dp. In the first scan, it finds the local large itemsets in

each partition Di (1≤i≤p), i.e. {X |X.count ≥ s × |Di|}. The local large itemsets, Li, can be found

by using a level-wise algorithm such as Apriori. Since each partition can fit in the main memory,

there will be no additional disk I/O for each partition after loading the partition into the main

memory. In the second scan, it uses the property that a large itemset in the whole database must

be locally large in at least one partition of the database. Then the union of the local large itemsets

found in each partition are used as the candidates and are counted through the whole database to

find all the large itemsets.

 19

Item

Figure 2 Discovering Large Itemsets using the PARTITION Algorithm

Figure 2 illustrates the use of PARTITION with Example 2. If the database is divided into

two partitions, with the first partition containing the first two transactions and the second

partition the remaining two transactions. Since the minimum support is 40% and there are only

two transactions in each partition, an itemset which occurs once will be large. Then the local

large itemsets in the two partitions are just all subsets of the transactions. Their union is the set of

the candidate itemsets for the second scan. The algorithm is shown in Algorithm 4. Note that we

use superscripts to denote the database partitions, and subscripts the sizes of the itemsets.

Algorithm 4. PARTITION [Savasere 95]
Input:
I, s, D1, D2, ..., Dp
Output:
L
Algorithm:
//scan one computes the local large itemsets in each partition
1) for i from 1 to p do
2) Li = Apriori(I,Di,s); //Li are all local large itemsets(all sizes) in Di
//scan two counts the union of the local large itemsets in all partitions
3) C = " i Li;
4) count(C, D) = "Di;
5) return L = {x | x ∈ C, x.count ≥ s × |D|};

Scan D1 and D2 to
Find local large
itemsets

L1={{Bread}.{Butter},{Egg}.{Bread,Butter},
 {Bread,Egg},{Butter,Egg},{Bread,Butter,Egg},
 {Milk},{Butter,Milk},{Egg,Milk},{Butter,Egg,
 Milk}}

L2={{Butter},{Bread},{Butter},{Bread,Butter}

Scan D to count
support for itemset in
C

L={{Bread},{Butter},
{Egg},{Bread,Butter},
{Butter,Egg}}

T3=Butter
T4=Bread,Butter

 T1=Bread,
 Butter,Egg
T2=Butter,
 Egg,Milk

C={{Bread}.{Butter},{Egg}.{Bread,Butter},
 {Bread,Egg},{Butter,Egg},{Bread,Butter,
 Egg},{Milk},{Butter,Milk},{Egg,Milk},
 {Butter,Egg, Milk}}

 20

PARTITION favors a homogeneous data distribution. That is, if the count of an itemset is

evenly distributed in each partition, then most of the itemsets to be counted in the second scan

will be large. However, for a skewed data distribution, most of the itemsets in the second scan

may turn out to be small, thus wasting a lot of CPU time counting false itemsets. AS-CPA (Anti-

Skew Counting Partition Algorithm) [Lin1998] is a family of anti-skew algorithms, which were

proposed to improve PARTITION when data distribution is skewed. In the first scan, the counts

of the itemsets found in the previous partitions will be accumulated and incremented in the later

partitions. The accumulated counts are used to prune away the itemsets that are likely to be small.

Due to the early pruning techniques, the number of false itemsets to be counted in the second

scan is reduced.

3.1.8 Sampling

Sampling [Toivonen1996] reduces the number of database scans to one in the best case and

two in the worst. A sample which can fit in the main memory is first drawn from the database.

The set of large itemsets in the sample is then found from this sample by using a level-wise

algorithm such as Apriori. Let the set of large itemsets in the sample be PL, which is used as a

set of probable large itemsets and used to generate candidates which are to be verified against the

whole database . The candidates are generated by applying the negative border function, BD−, to

PL. Thus the candidates are BD−(PL)" PL. The negative border of a set of itemsets PL is the

minimal set of itemsets which are not in PL, but all their subsets are. The negative border

function is a generalization of the apriori_gen function in Apriori. When all itemsets in PL are of

the same size, BD−(PL) = apriori_gen(PL). The difference lies in that the negative border can be

applied to a set of itemsets of different sizes, while the function apriori_gen() only applies to a

single size. After the candidates are generated, the whole database is scanned once to determine

the counts of the candidates. If all large itemsets are in PL, i.e., no itemsets in BD−(PL) turn out

to be large, then all large itemsets are found and the algorithm terminates. This can guarantee that

all large itemsets are found, because BD−(PL)" PL actually contains all candidate itemsets of

Apriori if PL contains all large itemsets L, i.e., L⊆ PL. Otherwise, i.e. there are misses in

BD−(PL), some new candidate itemsets must be counted to ensure that all large itemsets are

 21

found, and thus one more scan is needed. In this case, i.e., L! PL ≠ ∅ , the candidate itemsets in

the first scan may not contain all candidate itemsets of Apriori.

To illustrate Sampling, suppose PL={{A}, {B}, {C}, {A,B}}. The candidate itemsets for the

first scan are BD−(PL)" PL = {{A, C}, {B,C}}" {{A}, {B}, {C}, {A,B}} = {{A}, {B}, {C},

{A,B}, {A,C}, {B,C}}. If L ={{A}, {B}, {C}, {A,B}, {A,C}, {B,C}}, i.e., there are two misses

{A,C} and {B,C} in BD−(PL), the itemset {A, B, C}, which might be large, is a candidate in

Apriori, while not counted in the first scan of Sampling. So the Sampling algorithm needs one

more scan to count the new candidate itemsets like {A, B, C}. The new candidate itemsets are

generated by applying the negative border function recursively to the misses. The algorithm is

shown in Algorithm 5.

Algorithm 5. Sampling [Toivonen 96]
Input:
I, s, D
Output:
L
Algorithm:
//draw a sample and find the local large itemsets in the sample
1) Ds = a random sample drawn from D;
2) PL = Apriori(I,Ds,s);
//first scan counts the candidates generated from PL
3) C = PL" BD−(PL);
4) count(C, D);
//second scan counts additional candidates if there are misses in BD−(PL)
5) ML = {x | x ∈ BD−(PL), x.count ≥ s × |D|}; //ML are the misses
6) if ML ≠ ∅ then //MC are the new candidates generated from the misses
7) MC = {x | x ∈ C, x.count ≥ s × |D|};
8) repeat
9) MC = MC" BD−(MC);
10) until MC doesn’t grow;
11) MC = MC - C); //itemsets in C have already been counted in scan one
12) count(MC, D);
13) return L = {x | x ∈ C" MC, x.count ≥ s × |D|};

3.1.9 Dynamic Itemset Counting [Brin1997a]

DIC (Dynamic Itemset Counting) [Brin1997a] tries to generate and count the itemsets earlier,

thus reducing the number of database scans. The database is viewed as intervals of transactions,

 22

and the intervals are scanned sequentially. While scanning the first interval, the 1-itemsets are

generated and counted. At the end of the first interval, the 2-itemsets which are potentially large

are generated. While scanning the second interval, all 1-itemsets and 2-itemsets generated are

counted. At the end of the second interval, the 3-itemsets that are potentially large are generated,

and are counted during scanning the third interval together with the 1-itemsets and 2-itemsets. In

general, at the end of the kth interval, the (k+1)-itemsets which are potentially large are generated

and counted together with the previous itemsets in the later intervals. When reaching the end of

the database, it rewinds the database to the beginning and counts the itemsets which are not fully

counted. The actual number of database scans depends on the interval size. If the interval is small

enough, all itemsets will be generated in the first scan and fully counted in the second scan. It

also favors a homogeneous distribution as does the PARTITION.

3.1.10 CARMA

CARMA (Continuous Association Rule Mining Algorithm) [Hidb1999] brings the

computation of large itemsets online. Being online, CARMA shows the current association rules

to the user and allows the user to change the parameters, minimum support and minimum

confidence, at any transaction during the first scan of the database. It needs at most 2 database

scans. Similar to DIC, CARMA generates the itemsets in the first scan and finishes counting all

the itemsets in the second scan. Different from DIC, CARMA generates the itemsets on the fly

from the transactions. After reading each transaction, it first increments the counts of the itemsets

which are subsets of the transaction. Then it generates new itemsets from the transaction, if all

immediate subsets of the itemsets are currently potentially large with respect to the current

minimum support and the part of the database that is read. For more accurate prediction of

whether an itemset is potentially large, it calculates an upper bound for the count of the itemset,

which is the sum of its current count and an estimate of the number of occurrences before the

itemset is generated. The estimate of the number of occurrences (called maximum misses) is

computed when the itemset is first generated.

 23

3.2 Parallel and Distributed Algorithms

The current parallel and distributed algorithms are based on the serial algorithm Apriori.

An excellent survey given in [Zaki1999] classifies the algorithms by load-balancing strategy,

architecture and parallelism. Here we focus on the parallelism used: data parallelism and task

parallelism [Chat1997]. The two paradigms differ in whether the candidate set is distributed

across the processors or not. In the data parallelism paradigm, each node counts the same set of

candidates. In the task parallelism paradigm, the candidate set is partitioned and distributed

across the processors, and each node counts a different set of candidates. The database, however,

may or may not be partitioned in either paradigm theoretically. In practice for more efficient I/O

it is usually assumed the database is partitioned and distributed across the processors.

In the data parallelism paradigm, a representative algorithm is the count distribution

algorithm in [Agrawal1996]. The candidates are duplicated on all processors, and the database is

distributed across the processors. Each processor is responsible for computing the local support

counts of all the candidates, which are the support counts in its database partition. All processors

then compute the global support counts of the candidates, which are the total support counts of

the candidates in the whole database, by exchanging the local support counts (Global Reduction).

Subsequently, large itemsets are computed by each processor independently. The data parallelism

paradigm is illustrated in Figure 3 using the data in Table 1. The four transactions are partitioned

across the three processors with processor 3 having two transactions T3 and T4, processor 1

having transaction T1 and processor 2 having transaction T2. The three candidate itemsets in the

second scan are duplicated on each processor. The local support counts are shown after scanning

the local databases.

 24

 Processor 1 Processor 2 Processor 3

Figure 3 Data Parallelism Paradigm

In the task parallelism paradigm, a representative algorithm is the data distribution

algorithm in [Agrawal1996]. The candidate set is partitioned and distributed across the

processors as is the database. Each processor is responsible for keeping the global support counts

of only a subset of the candidates. This approach requires two rounds of communication at each

iteration. In the first round, every processor sends its database partition to all the other

processors. In the second round, every processor broadcasts the large itemsets that it has found to

all the other processors for computing the candidates for the next iteration. The task parallelism

paradigm is shown in Figure 4 using the data in Table 1. The four transactions are partitioned as

in data parallelism. The three candidate itemsets are partitioned across the processors with each

processor having one candidate itemset. After scanning the local database and the database

partitions broadcast from the other processors, the global count of each candidate is shown.

 D1

 T1

 C2 Count

Bread, Butter 1

Bread, Egg 1

Butter, Egg 1

 D2

 T2

 C2 Count

 D3

 T3
 T4

 C2 Count

Bread, Butter 0

Bread, Egg 0

Butter, Egg 1

Bread, Butter 1

Bread, Egg 0

Butter, Egg 0

 Global Reduction

 25

 Processor 1 Processor 2 Processor 3

Figure 4 Task parallelism paradigm

3.2.1 Data Parallelism Algorithms

The algorithms which adopt the data parallelism paradigm include: CD [Agrawal1996],

PDM [Park1995], DMA [Cheung1996], and CCPD [Zaki1996]. These parallel algorithms differ

in whether further candidate pruning or efficient candidate counting techniques are employed or

not. The representative algorithm CD(Count Distribution) is described in details, and for the

other three algorithms only the additional techniques introduced are described.

3.2.1.1 CD

In CD, the database D is partitioned into {D1, D2, …, Dp} and distributed across n

processors. Note that we use superscript to denote the processor number, while subscript the size

of candidates. The program fragment of CD at processor i, 1 ≤ i ≤ p, is outlined in Algorithm 6.

There are basically three steps. In step 1, local support counts of the candidates Ck in the local

database partition Di are found. In step 2, each processor exchanges the local support counts of

Database Broadcast

 Itemset Broadcast

 D2

 T2

 C2

2 Count

 Bread, Egg 1

 D1

 T1

 C2

1 Count

Bread, Butter 2

 D3

 T3
 T4

 C2

3 Count

Butter, Egg 2

 26

all candidates to get the global support counts of all candidates. In step 3, the globally large

itemsets Lk are identified and the candidates of size k+1 are generated by applying apriori_gen()

to Lk on each processor independently. CD repeats steps 1 - 3 until no more candidates are

found. CD was implemented on an IBM SP2 parallel computer, which is shared-nothing and

communicates through the High-Performance Switch.

Algorithm 6 CD [Agrawal 1996]
Input:

I, s, D1, D2, …, Dp
Output:

L
Algorithm:

1) C1=I;
2) for k=1;Ck≠∅ ;k++ do begin
 //step one: counting to get the local counts
3) count(Ck, Di); //local processor is i

//step two: exchanging the local counts with other processors
//to obtain the global counts in the whole database.

4) forall itemset X ∈ Ck do begin
5) X.count=∑j=1

p{Xj.count};
6) end

//step three: identifying the large itemsets and
//generating the candidates of size k+1

7) Lk={c ∈ Ck | c.count ≥ s × | D1∪ D2∪ …∪ Dp |};
8) Ck+1=apriori_gen(Lk);
9) end
10) return L=L1" L2 " …" Lk;

3.2.1.2 PDM

PDM (Parallel Data Mining) [Park1995a] is a modification of CD with inclusion of the

direct hashing technique proposed in [Park1995]. The hash technique is used to prune some

candidates in the next pass. It is especially useful for the second pass, as Apriori doesn't have any

pruning in generating C2 from L1. In the first pass, in addition to counting all 1-itemsets, PDM

maintains a hash table for storing the counts of the 2-itemsets. Note that in the hash table we

don't need to store the 2-itemsets themselves but only the count for each bucket. For example,

suppose {A, B} and {C} are large items and in the hash table for the 2-itemsets the bucket

containing {AB, AD} turns out to be small (the count for this bucket is less than the minimum

 27

support count). PDM will not generate AB as a size 2 candidate by the hash technique, while

Apriori will generate AB as a candidate for the second pass, as no information about 2-itemsets

can be obtained in the first pass. For the communication, in the kth pass, PDM needs to exchange

the local counts in the hash table for k+1-itemsets in addition to the local counts of the candidate

k-itemsets.

3.2.1.3 DMA

DMA (Distributed Mining Algorithm) [Cheung1996] is also based on the data parallelism

paradigm with the addition of candidate pruning techniques and communication message

reduction techniques introduced. It uses the local counts of the large itemsets on each processor

to decide whether a large itemset is heavy (both locally large in one database partition and

globally large in the whole database), and then generates the candidates from the heavy large

itemsets. For example, A and B are found heavy on processor 1 and 2 respectively, that is, A is

globally large and locally large only on processor 1, B is globally large and locally large only on

processor 2. DMA will not generate AB as a candidate 2-itemset, while Apriori will generate AB

due to no consideration about the local counts on each processor. For the communication, instead

of broadcasting the local counts of all candidates as in CD, DMA only sends the local counts to

one polling site, thus reducing the message size from O(p2) to O(p). DMA was implemented on a

distributed network system initially, and was improved to a parallel version FPM(Fast Parallel

Mining) on an IBM SP2 parallel machine [Cheung1998].

3.2.1.4 CCPD

CCPD (Common Candidate Partitioned Database) [Zaki1996] implements CD on a

shared-memory SGI Power Challenge with some improvements. It proposes techniques for

efficiently generating and counting the candidates in a shared-memory environment. It groups the

large itemsets into equivalence classes based on the common prefixes (usually the first item) and

generates the candidates from each equivalence class. Note that the grouping of the large itemsets

will not reduce the number of candidates but reduce the time to generate the candidates. It also

introduces a short-circuited subset checking method for efficient counting the candidates for each

transaction.

 28

3.2.2 Task Parallelism Algorithms

The algorithms adopting the task parallelism paradigm include: DD [Agrawal1996], IDD

[Han1997], HPA [Shintani1996] and PAR [Zaki1997]. They all partition the candidates as well

as the database among the processors. They differ in how the candidates and the database are

partitioned. The representative algorithm DD (Data Distribution) [Agrawal1996] is described in

more detail, and for the other algorithms only the different techniques are reviewed.

3.2.2.1 DD

In DD (Data Distribution) [Agrawal1996], the candidates are partitioned and distributed

over all the processors in a round-robin fashion. There are three steps. In step one, each processor

scans the local database partition to get the local counts of the candidates distributed to it. In step

two, every processor broadcasts its database partition to the other processors and receives the

other database partitions from the other processors, then scans the received database partitions to

get global support counts in the whole database. In the last step, each processor computes the

large itemsets in its candidate partition, exchanges with all others to get all the large itemsets, and

then generates the candidates, partitions and distributes the candidates over all processors. These

steps continue until there are no more candidates generated. Note that the communication

overhead of broadcasting the database partitions can be reduced by asynchronous communication

[Agrawal1996], which overlaps communication and computation. The details are described in

Algorithm 7.

Algorithm 7. DD [Agrawal 1996]
Input:

I,s,D1, D2, …, Dp

Output:
L

Algorithm:
1) C1

i⊆ I;
2) for (k=1;Ck

i≠∅ ;k++) do begin
 //step one: counting to get the local counts
3) count(Ck

i , Di); //local processor is i
//step two: broadcast the local database partition to others,
// receive the remote database partitions from others,

 29

// scan Dj(1≤j≤p, j≠i) to get the global counts.
4) broadcast(Di);
5) for (j=1; (j≤p and j≠i);j++) do begin
6) receive(Dj) from processor j;
7) count(Ck

i , Dj);
8) end

//step three: identify the large itemsets in Ci
k,

// exchange with other processors to get all large itemsets Ck,
// generate the candidates of size k+1,
// partition the candidates and distribute over all processors.

9) Lk
i ={c|c∈ Ci

k, c.count ≥ s∗ |D1∪ D2∪ …∪ Dp|};
10) Lk= " i=1

p(Lk
i);

11) Ck+1 = apriori_gen(Lk);
12) Ck+1

i ⊆ Ck+1; //partition the candidate itemsets across the processors
13) end
14) return L = L1" L2 " … " Lk;

3.2.2.2 IDD

IDD (Intelligent Data Distribution) is an improvement over DD [Han1997]. It partitions

the candidates across the processors based on the first item of the candidates, that is, the

candidates with the same first item will be partitioned into the same partition. Therefore, each

processor needs to check only the subsets which begin with one of the items assigned to the

processor. This reduces the redundant computation in DD, as for DD each processor needs to

check all subsets of each transaction, which introduces a lot of redundant computation. To

achieve a load-balanced distribution of the candidates, it uses a bin-packing technique to partition

the candidates, that is, it first computes for each item the number of candidates that begin with

the particular item, then it uses a bin-packing algorithm to assign the items to the candidate

partitions such that the number of candidates in each partition is equal. It also adopts a ring

architecture to reduce communication overhead, that is, it uses asynchronous point to point

communication between neighbors in the ring instead of broadcasting.

3.2.2.3 HPA

HPA (Hash-based Parallel mining of Association rules) uses a hashing technique to

distribute the candidates to different processors [Shintani1996], i.e., each processor uses the same

hash function to compute the candidates distributed to it. In counting, it moves the subset

 30

itemsets of the transactions to their destination processors by the same hash technique, instead of

moving the database partitions among the processors. So one subset itemset of a transaction only

goes to one processor instead of n. HPA was further improved by using the skew handling

technique [Shintani1996]. The skew handling is to duplicate some candidates if there is

available main memory in each processor, so that the workload of each processor is more

balanced.

3.2.2.4 PAR

PAR (Parallel Association Rules) [Zaki1997] consists of a set of algorithms, which use

different candidate partitioning and counting. They all assume a vertical database partition (tid

lists for each item), contrast to the natural horizontal database partition (transaction lists). By

using the vertical organization for the database, the counting of an itemset can simply be done by

the intersection of the tid lists of the items in the itemset. However, they require a transformation

to the vertical partition, if the database is horizontally organized. The database may be selectively

duplicated to reduce synchronization. Two of the algorithms (Par-Eclat and Par-MaxEclat) use

the equivalence class based on the first item of the candidates, while the other two (Par-Clique

and Par-MaxClique) use the maximum hypergraph clique to partition the candidates. Note that in

the hypergraph, a vertex is an item, an edge between k vertices corresponds to an itemset

containing the items associated with the k vertices, and a clique is a sub-graph with all vertices in

it connected. One feature of the algorithms(Par-MaxEclat and Par-MaxClique) is that it can find

the maximal itemsets(the itemsets which are not any subset of the others). The itemset counting

can be done bottom-up, top-down or hybrid. Since the algorithms need the large 2-itemsets to

partition the candidates (either by equivalence class or by hypergraph clique), they use a

preprocessing step to gather the occurrences of all 2-itemsets.

3.2.3 Other Parallel Algorithms

There are some other parallel algorithms which can not be classified into the two

paradigms if strictly speaking. Although they share similar ideas with the two paradigms, they

have distinct features. So we review these algorithms as other parallel algorithms. These parallel

 31

algorithms include Candidate Distribution [Agrawal1996], SH(Skew Handling) [Harada1998]

and HD(Hybrid Distribution) [Han1997].

3.2.3.1 Candidate Distribution

The candidate distributed algorithm [Agrawal1996] attempts to reduce the

synchronization and communication overhead in the count distribution (CD) and data

distribution (DD). In some pass l, which is heuristically determined, it divides the large itemsets

Ll-1 between the processors in such a way that a process can generate a unique set of candidates

independent of the other processors. At the same time, the database is repartitioned so that a

processor can count the candidates it generated independent of the others. Note that depending on

the quality of the candidate partitioning, parts of the database may have to be replicated on

several processors. The itemset partitioning is done by grouping the itemsets based on the

common prefixes. After this candidate partition, each processor proceeds independently,

counting only its portion of the candidates using only local database partition. No communication

of counts or data tuples is ever required. Since before the candidate partition, it can use either the

count distribution or the data distribution algorithm, the candidate distribution algorithm is a kind

of hybrid of the two paradigms.

3.2.3.2 SH

In SH [Harada1998], the candidates are not generated a priori from the previous large

itemsets, which seems different from the serial algorithm Apriori. Instead the candidates are

generated independently by each processor on the fly while scanning the database partition. In

iteration k, each processor generates and counts the k-itemsets from the transactions in its

database partition. Only the k-itemsets all whose k k-1-subsets are globally large are generated,

which is done by checking a bitmap for all the globally large k-1-itemsets. At the end of each

iteration, all processors exchange the k-itemsets and their local counts, obtaining the global

counts of all k-itemsets. The large k-itemsets are then identified and the bitmap for the large

itemsets are also set on each processor. In case of workload imbalance in counting, the

transactions are migrated from the busy processors to the idle processors. In case of insufficient

 32

main memory, the current k-itemsets are sorted and spooled to the disk, and then the new k-

itemsets are generated and counted for the rest of the database partition. At the end of the each

iteration, the local counts of all k-itemsets are combined and exchanged with the other processors

to get the global counts.

SH seems to be based on a different algorithm from Apriori, but it is very close to

Apriori. First, it is iterative as Apriori, i.e., only at the end of an iteration are the new candidates

of increased size generated. The difference from Apriori lies in when the candidates are

generated, that is, SH generates the candidates from the transactions on the fly, while Apriori

generates the candidates a priori at the end of each iteration. Second, the candidates generated by

SH are exactly the same as those of Apriori if the database is evenly distributed. Only if the

database is extremely skewed will the candidates be different. For example, if AB never occurs

together(A and B can still be large items) in database partition i, i.e., its count is zero, SH will not

generate AB as a candidate in the second pass on processor i. But if AB occurs together once, AB

will be generated as a candidate by SH. Therefore, we can classify SH into the data parallelism

paradigm with skew handling and insufficient main memory handling.

3.2.3.3 HD

HD (Hybrid Distribution) was proposed in [Han1997], which combines both paradigms.

It assumes the p processors are arranged in a two dimensional grid of r rows and p/r columns.

The database is partitioned equally among the p processors. The candidate set Ck is partitioned

across the columns of this grid(i.e., p/n partitions with each column having one partition of

candidate sets), and the partition of candidate sets on each column are duplicated on all

processors along each row for that column. Now, any data distribution algorithm can be executed

independently along each column of the grid, and the global counts of each subset of Ck are

obtained by performing a reduction operation along each row of the grid as in the data

parallelism paradigm. The assumed grid architecture can be viewed as a generalization of both

paradigms, that is, if the number of columns in the grid is one, it reduces to the task parallelism

paradigm, and if the number of rows in the grid is one, it reduces to the data parallelism

paradigm. By the hybrid distribution, the communication overhead for moving the database is

reduced, as the database partitions only need to be moved along the columns of the processor

 33

grid instead of the whole grid. HD can also switch automatically to CD in later passes to further

reduce communication overhead.

3.2.4 Discussion

Both data and task paradigms have advantages and disadvantages. They are appropriate

for certain situations. The data parallelism paradigm has simpler communication and thus less

communication overhead, it only needs to exchange the local counts of all candidates in each

iteration. The basic count distribution algorithm CD can be further improved by using the hash

techniques (PDM), candidate pruning techniques (DMA) and short-circuited counting (CCPD).

However, the data parallelism paradigm requires that all the candidates fit into the main memory

of each processor. If in some iteration there are too many candidates to fit into the main memory,

all algorithms based on the data parallelism will not work (except SH) or their performance will

degrade due to insufficient main memory to hold the candidates. SH tries to solve the insufficient

main memory by spooling the candidates to disk (called a run in SH) when there is insufficient

main memory. One possible problem with SH will be that there may be too many runs on disk,

thus summing up the local counts in all runs will introduce a lot of disk I/O. Another problem

associated with SH is the computation overhead to generate the candidates on the fly, as it needs

to check whether all the k-1subsets of the k-itemsets in each transaction are large or not by

looking up the bitmap of the k-1 large itemsets, while Apriori only checks the itemsets in the join

of two Lk-1.

The task parallelism paradigm was initially proposed to efficiently utilize the aggregate

main memory of a parallel computer. It partitions and distributes the candidates among the

processors in each iteration, so it utilizes the aggregate main memory of all processors and may

not have the insufficient main memory problem with the number of processors increasing.

Therefore, it can handle the mining problem with a very low minimum support. However, the

task parallelism paradigm requires movement of the database partitions in addition to the large

itemset exchange. Usually the database to be mined is very large, so the movement of the

database will introduce tremendous communication overhead. Thus, it may be a problem when

the database is very large. In the basic data distribution algorithm, as the database partition on

each processor is broadcasted to all others, the total message for database movement is O(p2),

 34

where p is the number of processors involved. IDD assumes a ring architecture and the

communication is done simultaneously between the neighbors, so the total message is O(p). HPA

uses a hash technique to direct the movement of the database partitions, that is, it only moves the

transactions(precisely the subsets of transactions) to the appropriate destination processor which

has the candidates. As the candidates are partitioned by a hash function, the subsets of the

transactions are also stored by the same hash function. So the total message is reduced to O(p).

The performance studies in [Agrawal1996] [Park1995a] [Cheung1996] [Cheung1998],

[Zaki1996] [Han1997] [Shintani1996] for both paradigms show that the data parallelism

paradigm scales linearly with the database size and the number of processors. The task

parallelism paradigm doesn't scale as well as the data parallelism paradigm but can efficiently

handle the mining problem with lower minimum support, which can not be handled by the data

parallelism paradigm or will be handled very insufficiently.

The performance studies in [Han1997] show that the hybrid distribution(HD) has speedup

close to that of CD. This result is very encouraging, as it shows the potential to mine very large

databases with a large number of processors.

3.2.5 Future of Parallel Algorithms

A promising approach is to combine the two paradigms. The hybrid distribution (HD)

[Han1997] is more scalable than the task parallelism paradigm and has lessened the insufficient

main memory problem. All parallel algorithms for mining association rules are based on the

serial algorithm Apriori. As Apriori has been improved by many other algorithms, especially in

reducing the number of database scans, parallelizing the improved algorithms is expected to

deliver a better solution.

4 CLASSIFICATION AND COMPARISON OF ALGORITHMS

To differentiate the large number of algorithms, in the section we provide both a

classification scheme and a qualitative comparison of the approaches. The classification scheme

provides a framework which can be used to highlight the major differences among association

rule algorithms (current and future). The qualitative comparison provides a high level

performance analysis for the currently proposed algorithms.

4.1 Classification

 35

In this subsection we identify the features which can be used to classify the algorithms. The

approach we take is to categorize the algorithms based on several basic dimensions or features

that we feel best differentiate the various algorithms. In our categorization we identify the basic

ways in which the approaches differ. Our classification uses the following dimensions

(summarized in Table 5):

1. Target: Basic association rule algorithms actually find all rules with the desired support

and confidence thresholds. However, more efficient algorithms could be devised if only a

subset of the algorithms were to be found. One approach which has been done to do this is to

add constraints on the rules which have been generated. Algorithms can be classified as

complete (All association rules which satisfy the support and confidence are found),

constrained (Some subset of all the rules are found, based on a technique to limit them), and

qualitative (A subset of the rules are generated based on additional measures, beyond support

and confidence, which need to be satisfied).

2. Type: Here we indicate the type of association rules which are generated (for example

regular (Boolean), spatial, temporal, generalized, qualitative, etc.)

3. Data type: Besides data stored in a database, association rules of a plain text might be

very important information to find out. For example, “data”, “mining” and “decision”

may be highly dependent in an article of knowledge discovery.

4. Data source: Besides market basket data, association rules of data absent in the database

might play significant role for decision purposes of a company.

5. Technique: All approaches to date are based on first finding the large itemsets. There

could, of course, be other techniques which don’t require that large itemsets first be

found. Although to date we are not aware of any techniques which do not generate large

itemsets, certainly this possibility does exist with the potential of improved performance.

However, [Aggrawal1998c] proposed “strongly collective itemsets” to evaluate and find

itemsets. The term “support” and “confidence” are quite difference from large itemset

approach. An itemset I is said to be “strongly collective” at level K if the collective

strength C(K) of I as well as any subset of I is at least K.

6. Itemset Strategy: Different algorithms look at the generation of items differently. This

feature indicates how the algorithm looks at transactions as well as when the itemsets are

 36

generated. One technique, Complete, could generate and count all potential itemsets.

The most common approach is that introduced by (and thus called here) Apriori. With

this strategy, a set of itemsets to count is generated prior to scanning the transactions.

This set remains fixed during the process. A dynamic strategy generates the itemsets

during the scanning of the database itself. A hybrid technique generates some itemsets

prior to the database scan, but also adds new itemsets to this counting set during the scan.

7. Transaction Strategy: Different algorithms look at the set of transactions differently.

This feature indicates how the algorithm scans the set of transaction. The complete

strategy examines all transactions in the database. With the sample approach, some

subset of the database (sample) is examined prior to processing the complete database.

The partition techniques divide the database into partitions. The scanning of the database

requires that the partitions be examining separately and in order.

8. Itemset Data Structure: As itemsets are generated, different data structures can be used

to keep track of them. The most common approach seems to be a hash tree.

Alternatively, a trie or lattice may be used. At least one technique proposes a virtual trie

structure where only a portion of the complete trie is actually materialized.

9. Transaction Data Structure: Each algorithm assumes that the transactions are stored in

some basic structure, usually a flat file or a TID list.

10. Optimization: Many recent algorithms have been proposed which improve on earlier

algorithms by applying an optimization strategy. Various strategies have looked at

optimization based on available main memory, whether or not the data is skewed, and

pruning of the itemsets to be counted.

11. Architecture: As we have pointed out, some algorithms have been designed as

sequential function in a centralized single processor architecture. Alternatively,

algorithms have been designed to function in a parallel manner suitable for a

multiprocessor or distributed architecture.

12. Parallelism Strategy: Parallel algorithms can be further described as task or data

parallelism

 37

Table 5 Classification

DIMENSION VALUES
Target Complete, Constrained, Qualitative
Type Regular, Generalized, Quantitative, etc.

Data type Database Data, Text
Data source Market Basket, Beyond Basket
Technique Large Itemset, Strongly Collective Itemset

Itemset Strategy Complete, Apriori, Dynamic, Hybrid
Transaction Strategy Complete, Sample, Partitioned

Itemset Data Structure Hash Tree, Trie, Virtual Trie, Lattice
Transaction Data Structure Flat File, TID

Optimization Memory, Skewed, Pruning
Architecture Sequential, Parallel

Parallel Strategy None, Data, Task

Figure 5 Classification of Complete, Regular, Itemset Algorithms

Apriori Dynamic Hybrid

Sequential Parallel DIC OAR
 Carma

Complete Sample Partitioned Data Task Hybrid

Apriori
AIS
SETM
OCD
Apriori-TID
Apriori-Hybrid
Carma

Sampling Partitioning
Anti-Skew
SPINC

CD
PDM
DMA
CCPD

DD
IDD
HPA
PAR

SH
HD

 38

Figure 5 shows the classification of some algorithms we have seen so far. We only show

those that generate large itemsets, and are complete and regular. Although all classification

dimensions apply to all types of algorithms, to simplify the viewing, this figure only shows the

major dimensions required to distinguish most algorithms. Algorithms are shown in the leaf

nodes.

4.2 Comparing Algorithms

Here we compare the various algorithms based upon several metrics. Space requirements can

be estimated by looking at the maximum number of candidates being counted during any scan of

the database. We can estimate the time requirements by counting the maximum number of

database scans needed (I/O estimate) and the maximum number of comparison operations (CPU

estimate). Since most of the transaction databases are stored on secondary disks and I/O overhead

is more important than CPU overhead, we focus on the number of scans in the entire database.

Obviously, the worst case arises when each transaction in the database has all items. Let m be the

number of items in each transaction, and Lk the large itemsets with k-items in a database D.

Obviously, the number of large itemsets is 2m. In level-wise techniques (e.g., AIS, SETM,

Apriori), all large itemsets in L1 are obtained during the first scan of the database. Similarly, all

large itemsets in L2 are obtained during the second scan, and so on. The only itemset in Lm is

obtained during the mth scan. All algorithms terminate when no additional entries in the large

itemsets are generated, so an extra scan is needed. Therefore, the entire database will be scanned

at most (m+1) times. Here it can be recalled that Apriori-TID scans the entire database in the

first pass. Then it uses kC rather than the entire database in the (k+1)th pass. However, that does

not help at all in the worst case. The reason is that kC will contain all of the transactions along

with their items during the entire process. On the other hand, the OCD technique scans the entire

database only once at the beginning of the algorithm to obtain large itemsets in L1. Afterwards,

OCD and Sampling use only a part of the entire database and the information obtained in the first

pass to find the candidate itemsets of Lk where 1<k≤ m. In the second scan they compute support

of each candidate itemset. Therefore, there will be 2 scans in the worst case given enough main

memory. The PARTITION technique also reduces the I/O overhead by reducing the number of

database scans to 2. Similarly, CARMA needs at most 2 database scans.

 39

The goodness of an algorithm depends on the accuracy of the number of “true” candidates it

develops. As we have mentioned earlier, all algorithms use large itemsets of previous pass(es) to

generate candidate sets. Large itemsets of previous itemsets are brought into the main memory to

generate candidate itemsets. Again, candidate itemsets are needed to be in the main memory to

obtain their support counts. Since enough memory may not be available, different algorithms

propose different kinds of buffer management and storage structures. AIS proposed that Lk-1 can

be disk-resident if needed. SETM suggested that if kC is too large to fit into main memory,

write it to disk in FIFO manner. The Apriori family recommended to keep Lk-1 on disk and bring

into the main memory one block at a time to find Ck. However, kC should be in the main

memory to obtain support count in both Apriori-TID and Apriori-Hybrid. On the other hand, all

other techniques assumed that there is enough memory to handle these problems. All other

sequential techniques (PARTITION, Sampling, DIC and CARMA) consider a suitable part of the

entire database which can fit in the main memory. The family of Apriori proposed suitable data

structures (hash tree or array) for large itemsets as well as candidate sets which are presented in

Table 6. However, neither AIS nor SETM proposed any storage structures.

Most commercially available implementations to generate association rules rely on the use of

the Apriori technique.

Some algorithms are more suitable for use under specific conditions. AIS does not perform

well when the number of items in the database is large. Therefore, AIS is more suitable in

transaction databases with low cardinality. As we have mentioned earlier, Apriori needs less

execution time than Apriori-TID in earlier passes. On the other hand, Apriori-TID outperforms

Apriori in later passes. Therefore, Apriori-Hybrid shows excellent performance with proper

switching. However, switching from Apriori to Apriori-TID is very crucial and expensive.

Although OCD is an approximate technique, it is very much effective in finding frequent

itemsets with lower threshold support. CARMA is an online user interactive feedback oriented

technique which is best suited where transaction sequences are read from a network.

Table 6 summarizes and provides a means to briefly compare the various algorithms. We

include in this table the maximum number of scans, data structures proposed, and specific

comments.

 40

Table 6 Comparison of Algorithms

Algorithm Scan Data structure Comments

AIS m+1 Not Specified Suitable for low cardinality sparse transaction
database; Single consequent

SETM m+1 Not Specified SQL compatible

Apriori m+1 Lk-1 : Hash table
Ck: Hash tree

Transaction database with moderate cardinality;
Outperforms both AIS and SETM; Base
algorithm for parallel algorithms

Apriori-

TID

m+1 Lk-1 : Hash table
Ck: array indexed by TID

:kC Sequential structure
ID: bitmap

Very slow with larger number of kC ;
Outperforms Apriori with smaller number of

kC ;

Apriori-

Hybrid

m+1 Lk-1 : Hash table
1st Phase:
Ck: Hash tree
2nd phase:
Ck: array indexed by IDs

:kC Sequential structure
ID: bitmap

Better than Apriori. However, switching from
Apriori to Apriori-TID is expensive; Very
crucial to figure out the transition point.

OCD 2 Not specified Applicable in large DB with lower support
threshold.

Partition 2 Hash Table Suitable for large DB with high cardinality of
data;
Favors homogenous data distribution

Sampling 2 Not Specified Applicable in very large DB with lower support.

DIC Depe
nds
on
inter
val
size

Trie Database viewed as intervals of transactions;
Candidates of increased size are generated at the
end of an interval

CARMA 2 Hash Table Applicable where transaction sequences are read
from a Network; Online, users get continuous
feedback and change support and/or confidence
any time during process.

CD m+1 Hash table and tree Data Parallelism.

PDM m+1 Hash table and tree Data Parallelism; with early candidate pruning

DMA m+1 Hash table and tree Data Parallelism; with candidate pruning

 41

Table 6 (cont’d) Comparison of Algorithms

Algorithm Scan Data structure Comments

CCPD m+1 Hash table and tree Data Parallelism; on shared-memory machine

DD m+1 Hash table and tree Task Parallelism; round- robin partition

IDD m+1 Hash table and tree Task Parallelism; partition by the first items

HPA m+1 Hash table and tree Task Parallelism; partition by hash function

SH m+1 Hash table and tree Data Parallelism; candidates generated
independently by each processor.

HD m+1 Hash table and tree Hybrid data and task parallelism; grid parallel
architecture

5 EXTENDED ASSOCIATION RULES

Association rule algorithms presented in previous sections generate all association rules

satisfying given confidence and support requirements. There have been algorithms which either

generate rules under other requirements or extend the basic definition of what an association rule

is. We examine the body of work to extend the basic algorithms in this section.

5.1 Generalized Association Rules

 Generalized association rules use the existence of a hierarchical taxonomy (concept

hierarchy) of the data to generate different association rules at different levels in the taxonomy

[Srikant1995]. Figure 6 shows an example of a taxonomy on market basket data. Here beverage

is further divided into coffee, tea, soft drinks, and juice. Juice is divided into orange, apple,

cranberry, and grape. When association rules are generated, we could generate them at any of the

hierarchical levels present. As would be expected, when rules are generated for items at a higher

level in the taxonomy, both the support and confidence increase. In a given transaction database,

there may be multiple taxonomies for different items and even multiple taxonomies for the same

item. A generalized association rule, X⇒ Y, is defined identically to that of regular association

rule, except that no item in Y can be an ancestor of any in X [Srikant1995]. An ancestor of an

item is one which is above it in some taxonomy. A supermarket may want to find associations

relating to soft drinks in general or may want to identify those for a specific brand or type of soft

 42

drink (such as a cola). The generalized association rules allow this to be accomplished and also

ensure that all association rules (even those across levels in different taxonomies are found.

Figure 6 Market Basket Taxonomy

 The generalized association rule problem is to generate association rules for all levels of

all taxonomies. One approach to do this would be to take each transaction and expand each item

to include all items above it in any hierarchy [Srikant1995]. This naïve approach is quite

expensive and other more efficient algorithms have been proposed. One algorithm, Cumulate,

uses several optimization strategies to reduce the number of ancestors which need to be added to

each transaction [Srikant1995]. Another approach, Stratification, counts itemsets by their levels

in the taxonomy and uses relationships about items in a taxonomy to reduce the number of items

to be counted [Srikant1995]. Several parallel algorithms to generate generalized association

rules have also been proposed [Shintani1998]

When association rules are generated from across different levels in the concept hierarchy,

they are called multiple-level association rules in [Han1995]. The approach here is to generate

large itemsets in a top-down fashion on the concept hierarchy using an Apriori type algorithm.

The notation L[i,j] indicates the level-i (in the concept hierarchy) large-j itemsets. Only the

children of large j-itemsets at level i are considered to be candidates for large j-itemsets at level

i+1. To aid in this process L[i,j] is used to remove small items and transactions with only small

items.

Orange Apple Cranberry Grape

Beverage

Coffee Tea Soft Drink Juice

 43

5.2 Temporal and Spatial Association Rules

Spatial databases contain location information concerning the data being stored. This may

be in the form of latitude-longitude pairs, street addresses, zip codes, or other geographic data.

While spatial data mining examines the same types of problems as traditional data mining,

problem statements and potential solutions may be tailored to the fact that spatial data is

involved. For example, spatial operations (within, near, next to, etc.) can be used to describe

relationships among tuples in the database. A spatial association rule, X⇒ Y, is an association

rule where both X and Y are sets of predicates, some of which are spatial [Koperski1995]. A

spatial association rule holds for a tuple, T, in a database if both predicates, X and Y, are true for

T. Definitions for confidence and support are identical to those for regular association rules.

Suppose that a database contains information about public schools in a particular county. This

database contains data about public facilities (parks, schools, municipal buildings, etc.),

geographic features (rivers, lakes, etc.), private buildings, and public infrastructure (roads,

bridges, etc). The following is a spatial association rule:

Elementary(T) ∧ Near(T,housing development) ⇒ Adjacent to (T,park)

This rule indicates that an elementary school which is near a housing development is also

adjacent to a park. Unlike market basket data, we may need to look at other tuples outside the

one being examined, to determine the validity of a spatial association rule. We only need to look

at a tuple T to see if it is an elementary school as this will be shown in the value for some

attributes. However interpreting the truth of the spatial predicates (near and adjacent to in this

case) may require looking at other tuples in the database (or other databases). Thus determining

the truth of a spatial predicate may be quite difficult and expensive. One approach to improve

the efficiency of mining spatial association rule is a two step technique where the first step

examines approximate satisfaction of spatial predicates by using a coarse interpretation of the

spatial relationships [Koperski1995]. This step serves as a filtering process which can

drastically improve the second step which examines an exact matching of the predicate. The use

of dedicated spatial data structures including R-trees and MBR representations of the spatial

features also improves performance.

 44

Temporal association rules are similar to spatial except that the predicates involve time.

Similarly, spatial-temporal association rules involve both time and space predicates.

5.3 Quantitative Association Rules

Most initial research into association rules has assumed that the data is categorical. The

quantitative association rule problem assumes that data may be both categorical and quantitative

[Srikant1996b]. By dividing quantities into sets of intervals, rules can be derived based on these.

The following is an example of a quantitative association rule:

Customer pays between $3 and $5 for bread ⇒ Pays between $10 and $20 for wine.

For qualitative attributes, the values of the attributes are mapped to a set of consecutive

integers. Quantitative attributes can be partitioned into intervals as well as non-partitioned. In

case of non-partitioned quantitative attributes, the values are mapped to consecutive integers such

that the order of the values is preserved. On the other hand, intervals of partitioned quantitative

attributes are mapped to consecutive integers such that the order of the intervals is preserved.

Table Name: Person
ID Age Married NumCar
1000 21 No 0
2000 23 Yes 1
3000 24 No 1
4000 26 Yes 2
5000 29 Yes 2

Figure 7 Example Table “Person” for Quantitative Attribute [source: Srikant1996a]

Figure 7 shows an example table “Person” with three attributes. Age and NumCar are

quantitative attributes, where Married is a qualitative attribute. It is mentioned in [[Cengiz1997],

Srikant1996a]] that if the quantitative rules problem can be mapped to the Boolean rules

problem, any algorithm for finding Boolean association rules (or regular) can be used to find

quantitative association rules.

 45

ID Age:
20..24

Age:
25..29

Married:
Yes

Married:
No

NumCar
:
0

NumCar:
1

NumCar:
2

1000 1 0 0 1 1 0 0
2000 1 0 1 0 0 1 0
3000 1 0 0 1 0 1 0
4000 0 1 1 0 0 0 1
5000 0 1 1 0 0 0 1

Figure 8 Mapping to Boolean Association Rules Problem [source: Srikant1996a]

Figure 8 shows the mapping for the example given in Figure 7. This simple mapping

approach leads to two problems. At first, if the number of values/intervals for an attribute is

large, the support for any particular values/intervals can be low. This is called the “Minsup”

problem. Secondly, if the number of values/intervals for an attribute is small, there is a

possibility of losing information. That means some rules may not have threshold confidence.

This problem is referred to as the “Minconf” problem. To overcome aforementioned problems,

all possible ranges over values/intervals may be combined when processing each particular

value/interval. That means, combining adjacent values/intervals to avoid the threshold support

problem, and increasing the number of intervals to avoid the threshold confidence problem.

However, this approach leads to two new problems (Higher Execution Time and Many Rules).

High Execution time arises when the number of intervals for an attribute is increased. On the

other hand, we will obtain increased number of rules (we might not be interested in some of

them) if we consider any range that contains the interval satisfying the threshold support. To

avoid the “MinSup” problem, [Srikant1996a] considered ranges over adjacent values/intervals of

quantitative attributes. By introducing a user specified “maximum support” parameter, the

extension of adjacent values/intervals is restricted. The adjacent values/intervals are combined

until the combined support is less than the maximum support. However, any single

interval/value whose support exceeds maximum support is still considered. As a result of this,

the “Higher Execution Time” problem is reduced to a certain extent. In this technique, a

database record is treated as a set of <attribute, integer value> pairs without loss of generality.

 46

The problem of finding frequent itemsets from the database with quantitative attributes is solved

in three steps. At first, decide whether each attribute is to be partitioned or not. If an attribute is

to be partitioned, determine the number of partitions. Then, map the values of the attribute to a

set of consecutive integers. Afterwards, find support of each value of all attributes. As

mentioned earlier, to avoid “Minsup” problem, adjacent values are combined as long as their

support is less than user-specified maximum support. All ranges and values with minimum

support form the set of frequent itemsets. Assuming minimum support of 40%, some large

itemsets with corresponding supports are given in Figure 9.

Itemset Support
{<Age: 20…24>} 60%
{<Age: 25…29>} 40%
{<Married: Yes>} 60%
{<Married: No>} 40%
{<Numcar: 1>} 40%
{<Numcar: 2>} 40%
{<Age: 20…24> and <Married: No>} 40%
{<Age: 25…29> and <Married: Yes>} 40%

Figure 9 Some Large Itemsets of Items Given in Figure 7

[Srikant1996a] introduced the partial-completeness measure to decide whether an

attribute is to be partitioned or not. Partial-completeness measure also assists in determining the

number of partitions. The term “partial-completeness” is explained as follows. Let R be the set

of rules obtained by considering all ranges over the raw values of quantitative attributes. Let R1

be the set of rules obtained by considering all ranges over the partition of quantitative attributes.

The information loss is measured by looking at how far apart the “closest” rules are in R1 when

we go from R to R1. A close rule will be found if the minimum confidence level for R1 is less

than that for R by a certain amount. Mathematically, partial-completeness can be defined as

follows: Let C denote the set of all large itemsets in database D. P is called K-complete with

respect to C, if for every X∈ P there exists a generalization of X, called X´, in P such that:

attributes(X))'(Xattributes⊆ and Support(X') ,support(X)*K≤ where K 1≥

 47

It is mentioned in [Srikant1996a] that for any rule X ⇒ Y, there is a rule X' ⇒ Y' where,

X' and Y' are generalization of X and Y, respectively, and the support of X' ⇒ Y' is almost K

times the support X ⇒ Y. It is also found that equi-depth partitioning minimizes the required

number of partitions. The number of intervals is computed as follows:

No of Intervals =
)1(

2
−× Km

n

Here, n= Number of quantitative attributes, m= Minimum support, and K= Partial Completeness

level = 1+
minsup

2n(maxsup) .

A special type of quantitative association rules is called profile association rules

[Aggarwal1998a, Aggarwal1998b]. Here customer profile data is present on the left hand side of

the association rule statement, while the right hand side contains information about the customer

behavior. Below is an example of a profile association rule

Income > $200,000 ⇒ Home purchase > $400,000

Here we indicate that if an individual has an income over $200,000, then he will purchase a

home worth over $400,000. By linking customer profiles with buying information, a company

can target marketing campaigns based on the demographics stated by the profile (left hand side of

the association rule). With profile rules, the hierarchical nature of profiles (for example income

between $200,000 and $300,000 is a further refinement of the above profile) can be used to

reduce the overhead of generating itemsets. This is similar to the use of the concept hierarchy in

generalized rules. This partitioning of the data may be stored in a special index called an S-Tree

which is similar to and R-Tree. An interesting rule tree is used to store the rules based on the

hierarchical nature of the profiles.

Another type of quantitative rule is called a ratio rule [Korn1998]. These rules identify

relationships between attributes which satisfy a ratio. For example:

Income: Home purchase is 1:2

Notice that the profile association rule above satisfies this ratio restriction. Ratio rules may be

across multiple attributes (not just two).

The standard quantitative association rules assume that the range of data is partitioned into

precise discrete regions. However, the partitioning into more fuzzy regions could yield other

interesting associations. When this is done, the rules are called fuzzy association rules

 48

[Kuok1998]. Suppose that home prices were divided into three discrete regions [0-$99,999],

[$100,000, $299,999], [$300,000,∞). With the normal approach a house would only appear in

one of these three regions. Even though a house might cost $299,999 a transaction with this

value in it would not be considered in rules for house in the third region. A fuzzy association

rule is of the following form.

X is A ⇒ Y is B

Here X and Y are itemsets while A and B are fuzzy set membership functions for the

corresponding attributes in X and Y. To say that X is A is satisfied means that the sum of the

fuzzy membership votes is above a certain threshold [Kuok1998]. The sum of the membership

votes for A divided by the total number of records is called the significance.

5.4 Interval Data Association Rules

In [Srikant1996a], it is observed that the complexity of the search in the formulation of

the association rule problem does not only depend on the number of attributes but also on the

number of values of an attribute. The complexity in mining association rules in relational tables

with large domains is reduced by grouping data together and considering collectively. If an

attribute is linearly ordered then values may be grouped into ranges [Srikant1996a]. For

example, age can be partitioned into ranges (e.g. ranges of 5 years increments) instead of

considering all values of an age attribute. Solutions presented in [Srikant1996a] do not work well

when applied to interval data where separation between data values has meaning [Miller1997].

Consider the example given in Figure 10 and an interval of 20K. We see that there are some

unnecessary intervals which do not contain any values. This problem can be overcome by using

Equi-depth Interval mentioned in [Srikant1996a]. In this method the depth (support) of each

partition is determined by the partial completeness level. Therefore, the intervals are determined

by their relative ordering. For a depth d, the first d values (in order) are placed in one interval,

the next d in the second interval, etc. The density of an interval or the distance between intervals

is not considered. Distance-based interval is introduced in [Miller1997]. This technique is based

on the idea that intervals that include close data values (e.g. [81K, 81K]) are more meaningful

than intervals involving distant values (e.g. [31K, 80K]).

 49

 Salary Interval
18K..38K

Interval
38K..58K

Interval
58K..78K

Interval
78K..98K

18K
30K
31K
80K
81K
82K

1
1
1
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
1
1
1

Figure 10 Partitioning Salary into Several Intervals [source: Miller1997]

5.5 Multiple Min-supports Association Rules

 Previous work surveyed has focused on mining association rules in large databases with

single support. Since a single threshold support is used for the whole database, it assumes that

all items in the data are of the same nature and/or have similar frequencies. In reality, some items

may be very frequent while others may rarely appear. However, the latter may be more

informative and more interesting than the earlier. For example, besides finding a rule bread ⇒

cheese with a support of 8%, it might be more informative to show that wheatBread ⇒

swissCheese with a support of 3%. Another simple example could be some items in a super

market which are sold less frequently but more profitable, food processor and cooking pan

[Liu1999]. Therefore, it might be very interesting to discover a useful rule foodProcessor ⇒

cookingPan with a support of 2%.

 If the threshold support is set too high, rules involving rare items will not be found. To

obtain rules involving both frequent and rare items, the threshold support has to be set very low.

Unfortunately, this may cause combinatorial explosion, producing too many rules, because those

frequent items will be associated with another in all possible ways and many of them are

meaningless. This dilemma is called the “rare item problem” [Liu1999]. To overcome this

problem, one of the following strategies may be followed [Han1995] [Liu1999]: (a) split the

data into a few blocks according to the supports of the items and then discover association rules

in each block with a different threshold support, (b) group a number of related rare items

together into an abstract item so that this abstract item is more frequent. Then apply the

algorithm of finding association rules in numerical interval data.

 50

It is evident that both approaches are ad hoc and approximate. Rules associated with

items across different blocks are difficult to find using the first approach. The second approach

cannot discover rules involving individual rare items and the more frequent items. Therefore, a

single threshold support for the entire database is inadequate to discover important association

rules because it cannot capture the inherent natures and/or frequency differences in the database.

[Liu1999] extended the existing association rule model to allow the user to specify multiple

threshold supports. The extended new algorithm is named as MISapriori. In this method, the

threshold support is expressed in terms of minimum item supports (MIS) of the items that appear

in the rule. The main feature of this technique is that the user can specify a different threshold

item support for each item. Therefore, this technique can discover rare item rules without

causing frequent items to generate too many unnecessary rules.

 Similar to conventional algorithms, the MISapriori generates all large itemsets by

making multiple passes over the data. In the first pass, it counts the supports of individual items

and determines whether they are large. In each subsequent pass, it uses large itemsets of the

previous pass to generate candidate itemsets. Computing the actual supports of these candidate

sets, the MISaprioi determines which of the candidate sets are actually large at the end of the

pass. However, the generation of large itemsets in the second pass differs from other algorithms.

A key operation in the MISapriori is the sorting of the items I in ascending order of their MIS

values. This ordering is used in the subsequent operation of the algorithm.

The extended model was tested and evaluated by using synthetic data as well as real-life

data sets. In the experimental study of this algorithm with synthetic data, three very low LS

values, 0.1%, 0.2%, and 0.3% were used. It has been reported that the number of large itemsets

is significantly reduced by MISapriori method when α is not too large. The number of large

itemsets found by this approach is close to single minsup method when α becomes larger. This

is because when α becomes larger more and more items’ MIS values reach LS. It has also been

argued that the execution time reduces significantly.

5.6 Multimedia Association Rules

Although multimedia databases have become one of the most promising research areas in

the database community, discovering association rules in multimedia databases has not received

 51

much attention. Many relational and object oriented databases have been using multimedia

objects more frequently than the previous years [Zaiane1998]. These multimedia objects include

photo, video, audio, etc. Tremendous use of the global internet has increased the demand of

multimedia objects. It is a necessity to extract these data and find associations among them. An

example of association rule can be:

Image related to ocean ∧ size is big => Color is blue

More research is needed in this area.

5.7 Maximal Association Rules

Maximal association rules allow a stronger statement of association between sets of

attributes than is facilitated with the use of regular association rules. For example, a rule of the

form Butter ⇒ Newspaper indicates that when Butter appears in a transaction so does Newspaper

with some confidence and support. This relationship would be true in a transaction consisting of

t={Newspaper, Butter, Eggs} as well as in a transaction containing only u={Butter, Newspaper}.

Given two itemsets X and L where X⊆ L, X:L is said to be maximal with respect to a tuple t if

t∩L=X. An association rule X ⇒ Y is a maximal association rule if X and Y are maximal sets

[Feldman1997b]. Suppose that there are two categories of items sold at a store: food and

miscellaneous items. Butter and Eggs are categorized as food, while Newspaper is in the

miscellaneous category. Here Butter and Newspaper are both maximal in u, but only Newspaper

is maximal in t. Thus Butter ⇒ Newspaper holds in u but not t. Notice that this support would

be 100% if it were a regular association rule (since it holds for both transactions), but only 50%

as a maximal rule.

5.8 Constraints on Rules

Many algorithms have been proposed to reduce the total number of itemsets generated

based on constraints on the resulting rules. Certainly the support and confidence values put

constraints on the generated rules. Proposed constraints include the following:

a) Recently rules have been defined to be important is they are interesting. Interesting rules

are those which have a greater than expected support and confidence when compared to

 52

what they would be if attributes occurred randomly [Aggarwal1998a] [Tsur1998]

[Srikant1996c].

b) Another measure of goodness has been defined based on a root-mean-square guessing

error [Korn1998]. The guessing error for a specific transaction and attribute within the

transaction is calculated as the difference between the actual value and an estimate of that

value. The overall guessing error is then the root-mean-square of all the guessing errors.

c) The chi-squared correlation test has been proposed to measure association rules

[Brin1997b]. This measure is applicable to generalized association rules involving a

lattice of subsets.

5.9 SQL Extensions

There have been several proposed SQL extensions to facilitate the generation of

association rules. One approach assumes that temporary tables are created [Houtsma1995]

[Houtsma1996]. A new MINE RULE operator is proposed in [Meo1996]. In use, this

operator precedes an SQL SELECT statement. The SELECT statement is terminated with an

EXTRACTING RULES clause which includes the SUPPORT and CONFIDENCE values

requested.

6 MAINTENANCE OF DISCOVERED ASSOCIATION RULES

Most association rule algorithms assume a static database. With these approaches the

algorithm must be performed completely against each new database state to be able to generate

the new set of association rules. In large databases or volatile databases, this may not be

acceptable. There have been many proposals to facilitate the maintenance of association rules.

These approaches are often referred to as incremental updating strategies when only additions to

the transaction database are considered.

The first incremental updating strategy was call Fast Update (FUP) [Cheung1996a]. The

problem with incremental updating is to find the large itemsets for a database D∪ db where both

D and db are sets of transactions and the set of large itemsets, L, for D is already known. FUP is

based on the Apriori algorithm. For each iteration, only db is scanned using the known set of

large itemsets of size k, Lk, from D as the candidates. This is used to remove the candidates

 53

which are no longer large in the larger database, D∪ db. Simultaneously a set of new candidates

is determined. Three variations of this algorithm have subsequently been proposed which create

less candidates, FUP* and FUP2, and are applicable for multi-level association rules, MLUp

[Cheung1996b] [Cheung1997].

Another approach to maintaining association rules is based on the idea of sampling

[Lee1997a]. The algorithm proposed in this paper, Difference Estimations for Large Itemsets

(DELI), uses sampling to estimate the upper bound on the difference between the old and new

sets of association rules. Small changes to the association rule set are ignored. Performance

studies showed the effectiveness of the DELI approach in saving resources.

A third approach determines the large itemsets of the incremental database and only scans

the original database if the negative border of the large itemsets expands from that of the original

database [Thomas1997]. In this situation only one scan over the original database is then

required to find all large itemsets.

7 SUMMARY

Mining Association Rules is one of the most used functions in data mining. Association
rules are of interest to both database researchers and data mining users. We have provided a
survey of previous research in the area as well as provided a brief classification strategy and
comparison of approaches.

8 BIBLIOGRAPHY

[Aggarwal1998a] Charu C. Aggarwal, Zheng Sun, and Philip S. Yu, Online Algorithms for

Finding Profile Association Rules, Proceedings of the ACM CIKM Conference, 1998, pp 86-
95.

[Aggarwal1998b] C. C. Aggarwal, J. L. Wolf, P. S. Yu, and M. Epelman, Online Generation of

Profile Association Rules, Proceedings of the International conference on Knowledge
Discovery and Data Mining, August 1998.

[Aggrawal1998c] Charu C. Aggarwal, and Philip S. Yu, A New Framework for Itemset

Generation, Principles of Database Systems (PODS) 1998, Seattle, WA.

[Agrawal1993] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami, Mining Association

Rules Between Sets of Items in Large Databases, Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data, pp. 207-216, Washington, D.C., May
1993.

 54

[Agrawal1993a] Rakesh Agrawal, Tomasz Imielinski and Arun N. Swami", Data Mining: A

Performance perspective, IEEE Transactions on Knowledge and Data Engineering, Vol.
5, No. 6, December 1993, pp. 914-925.

[Agrawal1994] Rakesh Agrawal and Ramakrishnan Srikant, Fast Algorithms for Mining

Association Rules in Large Databases, Proceedings of the Twentieth International
Conference on Very Large Databases, pp. 487-499, Santiago, Chile, 1994.

Rakesh Agrawal and Ramakrishnan Srikant, Mining Sequential Patterns, Proceedings of the 11th

IEEE International Conference on Data Engineering, Taipei, Taiwan, March 1995,
IEEE Computer Society Press.

Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu Toivonen, and A. Inkeri

Verkamo, Fast Discovery of Association Rules, In Usama M. Fayyad, Gregory Piatetsky-
Shapiro, Padhraic Smyth, and Ramasamy Uthurusamy, editors, Advances in Knowledge
Discovery and Data Mining, pp. 307-328, Menlo Park, CA, 1996. AAAI Press.

[Agrawal1996] Rakesh Agrawal and John C. Shafer, Parallel Mining of Association Rules,

IEEE Transactions on Knowledge and Data Engineering, Vol. 8, No. 6, pp. 962-969,
December 1996.

Roberto J. Bayardo Jr., Rakesh Agrawal, Dimitris Gunopulos, Constarint-Based Rule Mining in

Large, Dense Databases, Proceedings of the 15th International Conference on Data
Engineering, 23-26 March 1999, Sydney, Australia, pp.188-197

[Brin1997a] Sergey Brin, Rajeev Motwani, Jeffrey D. Ullman, and Shalom Tsur, Dynamic

Itemset Counting and Implication Rules for Market Basket Data, Proceedings of the ACM
SIGMOD Conference, pp. 255-264, 1997.

[Brin1997b] Sergey Brin, Rajeev Motwani, and Craig Silverstein, Beyond Market Baskets:

Generalizing Association Rules to Correlations, Proceedings of the ACM SIGMOD
Conference, pp. 265-276, 1997.

[Cengiz1997] Ilker Cengiz, Mining Association Rules, Bilkent University, Department of

Computer Engineering and Information Sciences, Ankara, Turkey, 1997, URL:
http://www.cs.bilkent.edu.tr/~icegiz/datamone/mining.html.

[Chat1997] Jaturon Chattratichat, John Darlington, Moustafa Ghanem, and et. al, Large Scale

Data Mining: Challenges and Responses, Proceedings of the 3th International
Conference on Knowledge Discovery and Data Mining, pp. 143-146, August 1997.

[Chen1996] Ming-Syan Chen, Jiawei Han and Philip S. Yu, Data Mining: An Overview from a

Database Perspective, IEEE Transactions on Knowledge and Data Engineering, Vol. 8,
No. 6, pp. 866-883, 1996.

 55

[Cheung1996] David Wai-Lok Cheung, Jiawei Han, Vincent Ng, Ada Wai-Chee Fu, and

Yongjian Fu, A Fast Distributed Algorithm for Mining Association Rules, Proceedings of
PDIS, 1996.

[Cheung1996a] D. W. Cheung, J. Han, V. T. Ng, and C. Y. Wong, Maintenance of Discovered

Association Rules in Large Databases: An Incremental Updating Technique, Proceedings
of the 12th IEEE International Conference on Data Engineering, pp. 106-114, February
1996.

[Cheung1996b] David W. Cheung, Vincent T. Ng, and Benjamin W. Tam, Maintenance of

Discovered Knowledge: A Case in Multi-level Association Rules, Proceedings of the
Second International KDD Conference, 1996, pp307-310.

[Cheung1996c] David Wai-Lok Cheung, Vincent T. Ng, Ada Wai-Chee Fu, and Yongjian Fu,

Efficient Mining of Association Rules in Distributed Databases, IEEE Transactions on
Knowledge and Data Engineering, Vol. 8, No. 6, pp. 911-922, December 1996.

[Cheung1997] David Wai-Lok Cheung, Sau Dan Lee and Benjamin C. M. Kao, A General

Incremental Technique for Maintaining Discovered Association Rules, pp. 185-194,
Proceedings of the DASFAA, 1997.

 [Cheung1998] David W. Cheung and Yongqiao Xiao, Effect of Data Skewness in Parallel

Mining of Association Rules, Proceedings of the 2nd Pacific-Asia Conference on
Knowledge Discovery and Data Mining, pp. 48-60, Melbourne, Australia, April 1998.

David W. Cheung, Kan Hu and Shaowei Xia, Asynchronous Parallel Algorithm for Mining

Association Rules on a Shared Memory Multi-processors, Proceedings of the tenth
annual ACM symposium on Parallel algorithms and architectures, June 28 - July 2,
1998, Puerto Vallarta, Mexico, 279-288

David W. Cheung, Jiawei Han, Vincent T. Ng and C. Y. Wong, Maintenance of Discovered

Association Rules in Large Databases: An Incremental Updating Technique, Proceedings
of the Twelfth International Conference on Data Engineering, February 26 - March 1,
1996, New Orleans, Louisiana, pp. 106-114.

C. Faloutsos, F. Korn, A. Labrinidis, Y. Kotidis. A. Kaplunovich and D. Perkovi’c, Quantifiable

Data Mining Using Principle Component Analysis, Technical Research Report, TR 97-
25, ISR, National Science Foundation.

[Fayyad1996] Usama M. Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth, From Data

Mining to knowledge Discovery: An Overview, Advances in Knowledge Discovery and
Data Mining, Edited by Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padraic Smyth,
and Ramasamy Uthurusamy, AAAI Press, 1996, pp 1-34.

 56

R. Feldman, Y. Aumann, A. Amir, and H. Mannila, Efficient Algorithms for Discovering
Frequent Sets in Incremental Databases, Proceedings of the 1997 SIGMOD Workshop on
DMKD, May 1997. Tucson, Arizona.

[Feldman1997b] Ronen Feldman, Yonatan Aumann, Amihood Amir, Amir Zilberstein, and

Willi Kloesgen, Maximal Association rules: a New Tool for Mining for Keyword Co-
occurrences in Document Collections, Poster Papers, Knowledge Discovery in Database
(KDD), 1997, Newport Beach, California, USA, pp.167-170.

[Fukuda1996a] Takeshi Fukuda, Yasuhiko Morimoto, Shinichi Morishita and Takeshi

Tokuyama, Mining Optimized Association Rules for Numeric Attributes, PODS ‘96, pp.
182-191, Montreal, Quebec, Canada.

[Fukuda1996b] Takeshi Fukuda, Yasuhiko Morimoto, Shinichi Morishita and Takeshi

Tokuyama, Data Mining Using Two-Dimensional Optimized Association Rules: Scheme,
Algorithms, and Visualization, ACM SIGMOD, June 1996, Montreal, Canada. pp. 13-23.

[Fukuda1996c] Takeshi Fukuda, Yasuhiko Morimoto, Shinichi Morishita and Takeshi

Tokuyama, (SONAR): System for Optimized Numeric Association Rules, Proceedings of
the 1996 ACM SIGMOD International Conference on Management of Data, 4-6 June,
1996, pp. 553.

[Fukuda1996d] T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama, Mining Optimized

Association Rules for Numeric Attributes, Proceedings of the Fifteenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 182-191,
Montreal, Quebec, Canada, 3-5 June 1996.

[Fukuda1996e] Takeshi Fukuda, Yasuhiko Morimoto, Shinichi Morishita and Takeshi

Tokuyama, Constructing Efficient Decision Trees by Using Optimized Numeric
Association Rules, Proceedings of the 22nd International Conference on Very Large
Databases, 1996, pp. 146-155.

[Goebel1999] Michael Goebel, and Le Gruenwald, A Survey of Data Mining and Knowledge

Discovery Software Tools, SIGKDD Explorations, ACM SIGKDD, June 1999, Volume 1,
Issue 1, pp. 20-33.

[Han1995] Jiawei Han and Yongjian Fu, Discovery of Multiple-Level Association Rules from

Large Databases, Proceedings of the 21nd International Conference on Very Large
Databases, pp. 420-431, Zurich, Swizerland, 1995.

[Han1997] Eui-Hong Han, George Karypis, and Vipin Kumar, Scalable Parallel Data Mining

For Association Rules, Proceedings of the ACM SIGMOD Conference, pp. 277-288,
1997.

 57

 [Harada1998] Lilian Harada, Naoki Akaboshi, Kazutaka Ogihara, and Riichiro Take, Dynamic
Skew Handling in Parallel Mining of Association Rules, Proceedings of the 7th
International Conference on Information and Knowledge Management, pp.76-85,
Bethesda, Maryland, USA, 1998.

[Hidb1999] Christian Hidber, Online Association Rule Mining, SIGMOD 1999, Proceedings

ACM SIGMOD International Conference on Management of Data, June 1-3, 1999,
Philadephia, Pennsylvania, pp.145-156.

[Houtsma1995] M. Houtsma and A. Swami, Set-Oriented Mining for Association Rules in

Relational Databases, Proceedings of the 11th IEEE International Conference on Data
Engineering, pp. 25-34, Taipei, Taiwan, March 1995.

[Houtsma1996] M. A. W. Houtsma and A. Swami, Set-Oriented Mining in Relational

Databases, Data and Knowledge Engineering, 1996.

[Imasaki] Kenji Imasaki, Implementation of Count Distribution and Eclat Algorithm a Network

of Workstations: Parallel Algorithms and their Implementation (Project 2). School of
Computer Science, Carleton University, Canada.

[Kamber1997] Micheline Kamber, Jiawei Han, and Jenny Y. Chiang, Metarul-Guided Mining

of Multi-Dimensional Association Rules Using Data Cubes, Poster Papers, KDD 1997,
Newport Beach, California, USA , pp. 207-210.

[Klemettinen1994] Mika Klemettinen, Heikki Mannila, Pirjo Ronkainen, Hannu Toivonen and

A. Inkeri Verkamo, Finding Interesting Rules From Large Sets of Discovered Association
Rules", Proceedings of the Third International Conference on Information and
Knowledge Management (CIKM'94), November 1994, pp. 401-407.

[Koperski1995] K. Koperski and J. Han, Discovery of Spatial Association Rules in Geographic

Information Databases, Lecture Notes in Computer Science, Vol. 951, pp. 47-66, 1995.

[Korn1998] Flip Korn, Alexandros Labrinidis, Yannis Kotidis, and Christos Faloutsos, Ratio

Rules: A New Paradigm for Fast, Quantifiable Data Mining, Proceedings of the 24th
VLDB Conference, 1998.

[Kuok1998] Chan Man Kuok, Ada Fu, Man Hon Wong, Mining Fuzzy Association Rules in

Databases, ACM SIGMOD RECORD, Vol 27, No 1, March 1998.

[Lee1997a] S.D. Lee and David W. Cheung, Maintenance of Discovered Association Rules:

When to Update? Workshop on Research Issues on Data Mining and Knowledge
Discovery (DMKD), May 11, 1997, Tucson, Arizona

 58

[Lee1998] S.D. Lee, David W. Cheung, and Ben Kao, Is Sampling Useful in Data Mining? A
Case in the Maintenance of Discovered Association Rules, Department of Computer
Science, The university of Hong Kong, Hong Kong.

[Lee1998a] S.D. Lee, David W. Cheung, and Ben Kao, Is Sampling Useful in Data Mining? A

Case in the Maintenance of Discovered Association Rules, International Journal on Data
Mining and Knowledge Discovery, Volume 2, Number 3, September 1998, pp. 233-262

[Lin1998] Jun-Lin Lin and M. H. Dunham, Mining Association Rules: Anti-skew Algorithms,

Proceedings of the 14th IEEE International Conference on Data Engineering, Olando,
Florida, February 1998.

[Liu1998] Bing Liu, Wynne Hsu and Yiming Ma, Integrating Classification and Association

Rule Mining, American Association of Artificail Intelligence, KDD1998, pp. 80-86.

[Liu1999] Bing Liu, Wynne Hsu and Yiming Ma, Mining Association Rules with Multiple

Supports, ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD-99), August 15-18, SanDiego, CA, USA.

[Mannila1994] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo, Efficient Algorithms

for Discovering Association Rules, Proceedings of the AAAI Workshop on Knowledge
Discovery in Databases (KDD-94), pp. 181-192, July 1994.

[Meo1996] Rosa Meo, Giuseppe Psaila, and Stefano Ceri, A New Sql-Like Operator for Mining

Association Rules, Proceedings of the 22nd International Conference on Very Large
Databases, pp. 122-133, Mumbai, India, 1996.

[Miller1997] R. J. Miller and Yuping Yang, Association Rules over Interval Data, SIGMOD

1997, Proceedings ACM SIGMOD International Conference on Management of Data,
May 13-15, 1997, Tucson, Arizona, USA, ACM Press, 1997, pp 452-461.

[Moore] Jerome Moore, Eui-Hong (Sam) Han, Daniel Boley, Maria Gini, Robert Gross, Kyle

Hastings, George Karypis, Vipin Kumar, and Bamshad Mobasher, Web Page
Categorization and Feature Selection Using Association Rule and Principle Component
Clustering, Dept. of Computer Science and Engineering, University of Minnesota,
Minneapolis, MN.

[Mueller1995] Andreas Mueller, Fast Sequential and Parallel Algorithms for Association Rule

Mining: A Comparison, Technical Report CS-TR-3515, Dept. of Computer Science,
Univ. of Maryland, College Park, MD, August 1995.

[Ng1998] Raymond T. Ng, Laks V.S. Laksmanan, Jiawei Han and Alex Pang, Exploratory

Mining and Pruning Optimization of Constarinted Association Rules, ACM Sigmoid,
1998, Seattle, WA, USA. p. 13-24.

 59

[Park1995] Jong Soo Park, Ming-Syan Chen, and Philip S. Yu, An Effective Hash Based
Algorithm for Mining Association Rules, Proceedings of the 1995 ACM SIGMOD
International Conference on Management of Data, pp. 175-186, San Jose, California, 22-
25 May 1995.

[Park1995a] Jong Soo Park, Ming-Syan Chen, and PhilipS. Yu, Efficient Parallel Data Mining

for Association Rules, Proceedings of the International Conference on Information and
Knowledge Management, pp. 31-36, Baltimore, Maryland, 22-25 May 1995.

[Sarawagi1998], Sarawagi Sunita, Thomas Shiby, and Agrawal Rakesh, Integrating Mining

with Relational Database Systems: Alternatives and Implications, Proceedings ACM
SIGMOD International Conference on Management of Data, SIGMOD 1998, June 2-4,
1998, Seattle, Washington, USA

[Savasere1995] Ashoka Savasere, Edward Omiecinski, and Shamkant B. Navathe, An Efficient

Algorithm for Mining Association Rules in Large Databases, Proceedings of the 21nd
International Conference on Very Large Databases, pp. 432-444, Zurich, Swizerland,
1995.

[Shintani1996] Takahiko Shintani and Masaru Kitsuregawa, Hash Based Parallel Algorithms for

Mining Association Rules, Proceedings of PDIS, 1996.

[Shintani1998] Takahiko Shintani and Masaru Kitsuregawa, Parallel Mining Algorithms for

Generalized Association Rules with Classification Hierarchy, Proceedings ACM
SIGMOD International Conference on Management of Data, SIGMOD 1998, June 2-4,
1998, Seattle, Washington, USA, pp 25-36.

[Silverstein1997] Craig Silverstein, Sergey Brin, and Rajeev Motwani, Beyond Market Baskets:

Generalizing Association Rules to Dependence Rules, Kluwer Academic Publishers,
Boston. Manufactured in Netherlands.

[Srikant1995] Ramakrishnan Srikant and Rakesh Agrawal, Mining Generalized Association

Rules, Proceedings of the 21nd International Conference on Very Large Databases, pp.
407-419, Zurich, Swizerland, 1995.

[Srikant1996a] Ramakrishnan Srikant and Rakesh Agrawal, Mining Quantitative Association

Rules in Large Relational Tables, Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data, pp. 1-12, Montreal, Quebec, Canada, 4-6 June
1996.

[Srikant1996b] Ramakrishnan Srikant, Fast Algorithms for Mining Association Rules and

Sequential Patterns, Ph.D Dissertation, 1996, University of Wisconsin, Madison.

[Srikant1996c] Ramakrishnan Srikant, Quoc Vu and Rakesh Agrawal, Mining Association Rules

with Item Constraints, American Association for Artificial Intelligence, 1997.

 60

[Tank1998] Jian Tang, Using Incremental Pruning to Increase the Efficiency of Dynamic Itemset

Counting for Mining Association Rules, Proceedings of the 7th International Conference
on Information and Knowledge Management, pp. 273-280, Bethesda, Maryland, USA,
1998.

[Thomas1997] Shiby Thomas, Sreenath Bodagala, Khaled Alsabti and Sanjay Ranka, An

Efficient Algorithm for the Incremental Updation of Association Rules in Large
Databases, p. 263, Proceedings of the Third International Conference on Knowledge
Discovery and Data Mining (KDD-97), 1997, p. 263.

[Toivonen1996] Hannu Toivonen, Sampling Large Databases for Association Rules,

Proceedings of the 22nd International Conference on Very Large Databases, pp. 134-
145, Mumbai, India, 1996.

[Tsur1998] Dick Tsur, Jeffrey D. Ullman, Serge Abiteboul, Chris Clifton, Rajeev Motwani,

Svetlozar Nestorov, and Arnon Rosenthal, Query Flocks: a Generalization of
Association-Rule Mining, Proceedings ACM SIGMOD International Conference on
Management of Data, SIGMOD 1998, June 2-4, 1998, Seattle, Washington, USA.

[Tunk1999] Anthony K. H. Tung, Hongjun Lu, Jiawei Han and Ling Feng, Breaking the Barrier

of Transactions: Mining Inter-Transaction Association Rules, KDD 1999, pp. 297-301.

[Xiao1999] Yongqiao Xiao and Margaret H Dunham, Considering Main Memory in Mining

Association Rules, Proceedings of DaWak, 1999.

[Zaiane1998] Osmar R. Zaiane, Jiawei Han, Ze-Niam Li, and Joan Hou, Mining Mutimedia

Data, Intelligent Database System Research Laboratory, School of Computer Science,
Simon Fraser University, Burneaby, BC, Canada

[Zaki1996] Mohammed Javeed Zaki, Mitsunori Ogihara, Srinivasan Parthasarathy, and Wei Li,

Parallel Data Mining for Association Rules on Shared-Memory Multiprocessors,
Technical Report TR 618, University of Rochester, Computer Science Department, May
1996.

[Zaki1996a] Mohammed Javeed Zaki, Srinivasan Parthasarathy, Wei Li and Mitsunori Ogihara,

Evaluation of Sampling for Data Mining of Association Rules, University of Rochester,
Computer Science Department TR 617, May 1996

[Zaki1997] Mohammed Javeed Zaki, Srinivasan Parthasarathy, Mitsunori Ogihara, and Wei Li,

New Parallel Algorithms for Fast Discovery of Association Rules, Data Mining and
Knowledge Discovery, Vol. 1, No. 4, pp. 343-373, December 1997.

 61

[Zaki1997a] Mohammed Javeed Zaki, Srinivasan Parthasarathy, and Wei Li, A Localized
Algorithm for Parallel Association Mining, Proceedings of the 9th ACM Symposium on
Parallel Algorithms and Architectures, 1997.

[Zaki1999] Mohammed Javeed Zaki, Parallel and Distributed Association Mining: A Survey,

IEEE Concurrency, October-December 1999.

APPENDIX A: Sample Dataset

1) DatGen from Dataset Generator
DataGen is a computer code that creates data for user specified constraints. For example, data

type can be sequential or random.
URL: http://www.datasetgenerator.com/source/
Language: C
Vendor: Data Generator
Cost: Free
Contact Info: melli@cs.sfu.ca; Phone/fax: (604) 291-3045

2) Quest Synthetic Data Generation Code
 Quest synthetic Data Generation Code can be used to find large itemsets with/without
taxonomies. It can also be used to obtain sequential patterns. There are two possible output
formats for the data file: 1) Binary <CustID, TransID, NumItems, List-Of-Items> and 2)
ASCII<CustID, TransID, and Item>
URL: http://www.almaden.ibm.com/cs/quest/demos.html
Functionality: Finding Large Itemsets as well as sequential pattern
Platform: UNIX
Language: C++
Cost: Free to download
Vendor: IBM Almaden Research Center
Contact Info: srikant@almaden.ibm.com

APPENDIX B: Sample Code

1) Magnum Opus for small datasets
Magnum Opus can be used to find association rules from a small dataset (up to 1000

entity) .
URL: http://www.rulequest.com/download.html
Functionality: Finding Association Rules
Platform: Windows 95/98/NT
Language: C

http://www.datasetgenerator.com/source/
mailto:melli@cs.sfu.ca
http://www.almaden.ibm.com/cs/quest/demos.html
mailto:srikant@almaden.ibm.com
http://www.rulequest.com/download.html

 62

Cost: Free to download
Vendor: Rulequest Research
Contact Info: quinlan@rulequest.com ; Phone:+61 2 9449 6020; Fax: +61 2 9440 9272

APPENDIX C: Products

1) Intelligent Miner for Data from IBM
 Intelligent Miner for Data from IBM can be used to identify and extract hidden

information in data, uncovering associations, patterns, and trends through a process of knowledge
discovery.
URL: http://www-4.ibm.com/software/data/iminer/fordata/index.html
Platforms: AIX, OS/390, OS/400, Solaris and Windows NT.
Vendor: IBM
Cost: 60,000 (approx)
Status: Commercial
Contact Info: E-mail: ibm_direct@vnet.ibm.com ;
 Phone: 1-800-IBM-CALL
 Fax: 1-800-2IBM-FAX

2) Intelligent Miner for Text from IBM

Intelligent Miner for Text can be used to extract necessary business information from a
text data. It can also be used for searching text.
URL: http://www-4.ibm.com/software/data/iminer/fortext/index.html
Platforms: AIX, OS/390, Solaris and Windows NT
Vendor: IBM
Cost: Unknown
Status: Commercial
Contact Info: Visit Web site at www.software.ibm.com/data/iminer/fortext

3) Enterprise Miner from SAS
Enterprise Miner, an integrated software product for data mining mounted with graphical user

interface (GUI), provides user to explore information from a massive database.
URL: www.sas.com
Platforms: AIX/6000, CMS, Compaq Tru64 UNIX, HP-UX, IRIX, Intel ABI, MVS, OS/2,

OpenVMS Alpha, OpenVMS Vax, Solaris, Windows
Vendor: SAS Institute, Cary, NC, USA.

 Cost: Not available.
Status: Commercially Developed
Contact Info: SAS Institute Inc. SAS Campus Drive Cary, NC 27513-2414, USA

mailto:quinlan@rulequest.com
http://www-4.ibm.com/software/data/iminer/fordata/index.html
mailto:ibm_direct@vnet.ibm.com
http://www-4.ibm.com/software/data/iminer/fortext/index.html
http://www-4.ibm.com/software/data/iminer/fortext
http://www.sas.com/

 63

4) MineSet from SGI

Using MineSet can be used to understand the complex patterns, relationships, and
anomalies deeply hidden in a database.
URL: http://www.sgi.com/software/mineset
Platforms: Windows NT, Windows 98, Windows 95 and IRIX
Vendor: Silicon Graphics
Cost: Seat- US$995+, Server (Windows NT)- US$35,000+ and IRIX- US$50,000+
Status: Commercially Developed
Contact Info: Mark Olson , phone 415-933-2874, fax 415-932-2874
 Email: mineset@sgi.com,
 URL: http://www.sgi.com/software/mineset/contact.html

4) Clementine from SPSS

It consists of a number of tools to discover hidden rules in a user-friendly environment.
URL: www.spss.com/software/clementine
Platforms: Unix, WinNT
Vendor: SPSS Inc.
Cost: Non Known
Status: Commercially Developed
Contact Info: Phone: 1 (800) 521-1337, Fax: 1 (800) 841-0064

5) Siftware: DBMiner
DBMiner, an interactive mining of multiple-level knowledge in large relational databases,

can be used to perform a wide variety of tasks. For example: generalization, characterization,
association, classification, and prediction.
URL: http://db.cs.sfu.ca/DBMiner
Platform(s): Windows (95, NT), Unix
Status: Commercial
Cost: US$999.00
Contact: Jiawei Han, School of Computing Science
 Simon Fraser University, Burnaby, B.C, Canada V5A 1S6
 Telephone: (604)291-4411; Fax: (604)291-3045; Email: han@cs.sfu.ca

6) Classification Based on Association (CBA)

CBA is a data Mining tool developed at School of Computing, National University of
Singapore. Its main algorithm was presented as a plenary paper "Integrating Classification and
Association Rule Mining" in the 4th International Conference on Knowledge Discovery and Data
Mining (KDD-98).
URL: http://www.comp.nus.edu.sg/~dm2/p_overview.html
Platforms: Windows 95, 98, NT 4.0
Vendor: National University of Singapore

http://www.sgi.com/software/mineset/
mailto:mineset@sgi.com
http://www.spss.com/software/clementine
http://db.cs.sfu.ca/DBMiner
http://www.comp.nus.edu.sg/~dm2/p_overview.html

 64

Cost: Academic Version (Non-Commercial use): FREE; For commercial use:
$1000.00

Status: Research Prototype
Contact Info: dm2@comp.nus.edu.sg

7) XpertRule Miner,

XpertRule Miner is a multipurpose data mining tool that supports the discovery of
associations in both "case" and "transaction" data.
URL: http://www.attar.com/pages/info_xm.htm
Platforms: Microsoft Windows 95, 98 or NT
Vendor: Attar Software
Cost: US$ 4995
Status: Commercial
Contact Info:
In the USA, Canada and Mexico: Email: info@attar.com

Tel: 978 456 3946
Free call 800 456 3966
Fax: 978 456 8383

For the rest of the World: Email: info@attar.co.uk
Phone: 0870 606 0870 (inside the UK), +44 870 606 0870
Fax: 0870 604 0156 (inside the UK), +44 870 604 0156

8) Magnum Opus (Association rule mining tools from RuleQuest) [Goebel1999]
 Magnum Opus can be used to find user specified maximum number of association rules from
a substantial database containing both qualitative and numeric data.
URL: http://www.rulequest.com/MagnumOpus-info.html
latforms: Windows 95, 98, NT 4.0 or later
Vendor: Rulequest Research
Cost: US$740 (Single Computer)
Status: Commercial
Contact Info: Email: quinlan@rulequest.com

Phone: +61 2 9449 6020
Fax: +61 2 9440 9272

 9) Interestingness Analysis System (IAS) [Goebel1999]
 ISA can be used find interesting association rules after analyzing the discovered rules by
allowing user’s domain knowledge.
URL: http://www.comp.nus.edu.sg/~dm2/index.html
Vendor: Data Mining II, School of Computing, NUS, Singapore
Cost: Free for non-commercial use
Status: Research Prototype
Contact Info: dm2@comp.nus.edu.sg

mailto:dm2@comp.nus.edu.sg
http://www.attar.com/pages/info_xm.htm
mailto:info@attar.com
mailto:info@attar.co.uk
mailto:quinlan@rulequest.com

 65

APPENDIX D: Notation

Notation Description
I Set of items
Id Item (literal, attribute)
m Number of items
D Transaction database
S Support
� Confidence
T Tuple in D

X,Y Itemsets
X⇒ Y Association rule

L Set of large itemsets
l Large itemset

Lk Set of large itemsets of size k
lk Large itemset of size k
Ck Candidate sets of size k

kL Set of large itemsets of size k and the TID containing them
Ck Set of candidate itemsets of size k and the TID containing them
Di Partition i for database D
Xi Itemset for partition Di
Li Set of large itemsets for partition Di
Ci Set of candidate itemsets for partition Di
p Number of partitions

	INTRODUCTION
	ASSOCIATION RULE PROBLEM
	BASIC ALGORITHMS
	In this section we provide a survey of existing algorithms to generate association rules. Most algorithms used to identify large itemsets can be classified as either sequential or parallel. In most cases, it is assumed that the itemsets are identified a
	Sequential Algorithms
	AIS
	SETM

	Consider the example given in Table 4 to illustrate the apriori_gen(). Large itemsets after the third pass are shown in the first column. Suppose a transaction contains {Apple, Bagel, Chicken, Eggs, DietCoke}. After joining L3 with itself, C4 will be
	Large Itemsets in the third pass (L3)
	Item
	3.1.4	Apriori-TID
	
	
	Here it is noted that the work involved in generating Ck+1 does not depend on the size of database, rather on the size of Lk. Also, one can compute several families of Ck+1, Ck+2, . . . , Ck+e for some e>1 directly from Lk. The time complexity for dete

	Item
	3.2.4	Discussion
	3.2.5	Future of Parallel Algorithms

	CLASSIFICATION AND COMPARISON OF ALGORITHMS
	5.2	Temporal and Spatial Association Rules
	5.3 	Quantitative Association Rules
	
	
	Table Name: Person

	5.5 	Multiple Min-supports Association Rules
	6 MAINTENANCE OF DISCOVERED ASSOCIATION RULES
	SUMMARY
	BIBLIOGRAPHY
	[Lee1997a] S.D. Lee and David W. Cheung, Maintenance of Discovered Association Rules: When to Update? Workshop on Research Issues on Data Mining and Knowledge Discovery (DMKD), May 11, 1997, Tucson, Arizona
	APPENDIX A: Sample Dataset
	APPENDIX B: Sample Code
	APPENDIX C: Products
	Cost:			Non Known

	APPENDIX D: Notation

