164

Chapter 5. Adversarial Sean!

pLY
MINIMAX VALUE

MAX

MIN

A A A A A A
3 12 8 4 5 2

()
&~
=N

Figure 5.2 A two-ply game tree. The A nodes are “MAX nodes,” in which it is MAX’s
turn to move, and the V nodes are “MIN nodes.” The terminal nodes show the utility values
for MAX; the other nodes are labeled with their minimax values. MAX’s best move at the root
is a1, because it leads to the state with the highest minimax value, and MIN’s best reply is b;,
because it leads to the state with the lowest minimax value.

MIN, then MAX’s moves in the states resulting from every possible response by MIN to thoy
moves, and so on. This is exactly analogous to the AND—OR search algorithm (Figure 4.1|
with MAX playing the role of OR and MIN equivalent to AND. Roughly speaking, an optin
strategy leads to outcomes at least as good as any other strategy when one is playing &
infallible opponent. We begin by showing how to find this optimal strategy.

Even a simple game like tic-tac-toe is too complex for us to draw the entire game tre
on one page, so we will switch to the trivial game in Figure 5.2. The possible moves for MA
at the root node are labeled ay, a2, and a3. The possible replies to a; for MIN are by, by,
bs, and so on. This particular game ends after one move each by MAX and MIN. (In gani
parlance, we say that this tree is one move deep, consisting of two half-moves, each of which
is called a ply.) The utilities of the terminal states in this game range from 2 to 14.

Given a game tree, the optimal strategy can be determined from the minimax value
of each node, which we write as MINIMAX(n). The minimax value of a node is the utility
(for MAX) of being in the corresponding state, assuming that both players play optimally
from there to the end of the game. Obviously, the minimax value of a terminal state is jusl
its utility. Furthermore, given a choice, MAX prefers to move to a state of maximum valug,
whereas MIN prefers a state of minimum value. So we have the following:

MINIMAX(s) =

UTILITY (s) if TERMINAL-TEST(s)
MaXge Actions(s) MINIMAX(RESULT(s,a)) if PLAYER(s) = MAX
Millye Actions(s) MINIMAX(RESULT(s,a)) if PLAYER(s) = MIN

Let us apply these definitions to the game tree in Figure 5.2. The terminal nodes on the botton
level get their utility values from the game’s UTILITY function. The first MIN node, labeled
B, has three successor states with values 3, 12, and 8, so its minimax value is 3. Similarly,
the other two MIN nodes have minimax value 2. The root node is a MAX node; its successor
states have minimax values 3, 2, and 2; so it has a minimax value of 3. We can also identily

Ty
Optimal Decisions i Clugy _

the minimax decision at/
the state with the highes/
This definition of
maximizes the worst-¢
casy lo show (Exercif
opponents may do t
against optimal op’

(())

5.2.1 The mi

‘I'hc minimax

11 uses a simp

implementir

of the tree.

unwinds.

left node

8, respe

up value o . Wr

Finally, we take thc . g
The minimax algortu..

If the maximum depth of the tree 1.

time complexity of the minimax algorithm 1,

algorithm that generates all actions at once, or O(m,

one at a time (see page 87). For real games, of course, the ..

but this algorithm serves as the basis for the mathematical analysis «

practical algorithms.

5.2.2 Optimal decisions in multiplayer games

Many popular games allow more than two players. Let us examine how to extend the mis
idea to multiplayer games. This is straightforward from the technical viewpoint, but
some interesting new conceptual issues.

First, we need to replace the single value for each node with a vector of values
example, in a three-player game with players A, B, and C, a vector (v4,vB, Uc) is assor
with each node. For terminal states, this vector gives the utility of the state from each pl:
viewpoint. (In two-player, zero-sum games, the two-element vector can be reduced to a :
value because the values are always opposite.) The simplest way to implement this is tc
the UTILITY function return a vector of utilities.

Now we have to consider nonterminal states. Consider the node marked X in the
tree shown in Figure 5.4. In that state, player C chooses what to do. The two choice:
to terminal states with utility vectors (v4 =1,vp =2,vc =6) and (v4 =4,vp=2,v¢c
Since 6 is bigger than 3, C should choose the first move. This means that if state X is rez
subsequent play will lead to a terminal state with utilities (v4 =1,vp =2,vc =6). F
the backed-up value of X is this vector. The backed-up value of a node n is always the

- @€ €.



