11)Neural Networks

Assume we have the perceptron that is depicted in Fig. 1 that has two regular inputs, X1 and X2, and an extra fixed input X3, which always has the value 1. 


The perceptron's output is given as the function: 

Out= If (w1*X1 + w2*X2 + w3*X3) > 0 then 1 else 0

Note that using the extra input, X3, we can achieve the same effect as changing the perceptron's threshold by changing w3. Thus, we can use the same simple perceptron learning rule presented in our textbook to control this threshold as well. 
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A. We want to teach the perceptron to recognize the function X1 XOR X2 with the following training set: 

	X1 
	X2 
	X3 
	Out 

	1 
	1 
	1 
	0 

	0 
	1 
	1 
	1 

	1 
	0 
	1 
	1 

	0 
	0 
	1 
	0



Show the change in the weights of the perceptron for every presentation of a training instance. Assume the initial weights are: w1=0.3, w2=0.3, w3=0.4 Important: Do the iterations according to the order of the samples in the training set. When you finish the four samples go over them again. You should stop the iterations once you get convergence, or when the values you get indicate that there will be no convergence. In either case explain your decision to stop the iterations. Assume in your computations that the learning rate  is 0.3.

	Sample# 
	X1 
	X2 
	X3 
	Output 
	True_Out 
	Error 
	w1 
	w2 
	w3 

	0 
	
	
	
	
	
	
	0.3 
	0.3 
	0.4 

	1 
	1 
	1 
	1 
	
	0 
	
	
	
	

	2 
	0 
	1 
	1 
	
	1 
	
	
	
	

	3 
	1 
	0 
	1 
	
	1 
	
	
	
	

	4 
	0 
	0 
	1 
	
	0 
	
	
	
	

	5 
	1 
	1 
	1 
	
	0 
	
	
	
	

	6 
	... 
	... 
	... 
	... 
	... 
	... 
	... 
	... 
	

	7 
	
	
	
	
	
	
	
	
	


	8 
	
	
	
	
	
	
	
	
	

	... 
	
	
	
	
	
	
	
	
	


Answer:

Wj = Wj+αAj(T-O);

O= If (w1*X1 + w2*X2 + w3*X3) > 0 then 1 else 0

1st Iteration:

x1 = 1, x2=1, x3=1, w1 = 0.3, w2 = 0.3, w3 = 0.4, T=0,

O= 0.3*1+0.3*1+0.4*1 = 1>0 => O= 1  
w1 = 0.3+0.3*1(0-1) = 0

w2 = 0.3+ 0.3*1*(0-1) = 0

w3 = 0.4+0.3*1*(0-1) = 0.1
2nd Iteration:
x1=0,  x2 = 1, x3=1, w1 = 0, w2 = 0, w3 = 0.1, T = 1,

O= 0*0+0*1 + 0.1*1 = 0.1 >0 => O=1

W1= 0+0.3*0*(1-1) = 0

W2 = 0+0.3*1*(1-1) = 0

W3 = 0.1 + 0.3*1*(1-1) = 0.1

3rd Itertion
x1=1, x2=0, x3=1, w1 = 0, w2 = 0, w3 = 0.1, T=1,

O = 0*1 +0*0+0.1*1 = 0.1 >0 => O = 1

W1 = 0+ 0.3*1*(1-1) = 0

W2 = 0+ 0.3*0*(1-1) = 0

W3 = 0.1+0.3*1*(1-1) = 0.1

4th Iteration:

x1=0, x2=0, x3=1, w1 = 0, w2 = 0, w3 = 0.1, T=0,

O = 0*0 +0*0 +0.1*1 = 0.1 >0 => O=1

W1 = 0+0.3*0*(0-1) =0

W2 = 0+0.3*0*(0-1) = 0;

W3 = 0.1+0.3*1*(0-1) = -0.2
5th Iteration
x1=1, x2=1, x3=1, w1=0, w2=0, w3=-0.2, T=0,

O= 0*1+0*1+1*(-0.2) = -0.2<0 => O = 0

W1= 0+0.3*1*(0-0) = 0

W2= 0+0.3*1*(0-0) = 0

W3 = -0.2+0.3*1*(0-0) = -0.2

6th iteration:

x1=0, x2=1, x3=1, w1=0, w2=0, w3=-0.2, T=1

O = 0*0+0*1+(-0.2)*1 = -0.2<0 => O = 0

W1 = 0+ 0.3*0*(1-0) = 0

W2 = 0+0.3*1*(1-0) = 0.3

W3 = -0.2+0.3*1*(1-0) = 0.1

7th iteration:

x1=1, x2=0, x3=1, w1=0, w2=0.3, w3=0.1, T=1

O = 0*1+0.3*0+0.1*1 = 0.1 >0 => O=1

W1 = 0+0.3*1*(1-1) = 0

W2 = 0.3+0.3*0*(1-1) = 0.3

W3 = 0.1+0.3*1*(1-1) = 0.1

8th iteration:

x1=0, x2= 0, x3=1, w1=0, w2=0.3, w3 = 0.1, T=0

O = 0*0 + 0.3*0+0.1*1 = 0.1>0 => O =1

W1 = 0+0.3*0*(0-1) = 0

W2 = 0.3+0.3*0*(0-1) = 0.3

W3 = 0.1+0.3*1*(0-1) = -0.2

……

The results are not convergent. Because the threshold perceptron is a linear separator and can represent the linearly separable functions. But XOR is not linearly separable. Based on the Perceptron Cycling Theorem (If the training data is not linearly separable, the Perceptron learning algorithm will eventually repeat the same set of weights and threshold at the end of some epoch and therefore enter an infinite loop). Clearly there is no way for a threshold perceptron to learn this function. This problem is not convergent, which means can not use single layer neural network to represent XOR relationship.
B. This time, instead of being limited to a single perceptron, we will introduce hidden units and use a different activation function. Our new network is depicted in Fig. 2. Assume that the initial weights are w14 = 0.3, w15 = 0.1, w24 = 0.2, w25 = 0.6, w34 = 0.1, w35 = 0.1, w36 = 0.1, w46 = 0.5, and w56 = 0.2. The training set is the same as in (A). Use =0.2 as your learning rate. Show what the new weights would be after using the backpropagation algorithm for two updates using just the first two training instances. Use g(x) = 1/(1+e**(-x)) as the activation function; that is g'(x)=(e**(-x))/(1+e**(-x))**2).

	S# 
	X1 
	X2 
	X3 
	Out 
	True_Out 
	Error 
	w14 
	w15 
	w24 
	w25 
	w34 
	w35 
	w36 
	w46 
	w56 

	0 
	
	
	
	
	
	
	0.3 
	0.1 
	0.2 
	0.6 
	0.1 
	0.1 
	0.1 
	0.5 
	0.2 

	1 
	1 
	1 
	1 
	
	0 
	
	
	
	
	
	
	
	
	
	

	2 
	0 
	1 
	1 
	
	1 
	
	
	
	
	
	
	
	
	
	


Answer:

1st Iteration:

x1 = 1, x2 = 1, x3 = 1, w14=0.3, w15=0.1, w24=0.2, w25=0.6, w34=0.1, w35=0.1, w36=0.1, w46=0.5, w56=0.2, T=0

a4 = g(x1*w14+x2*w24+x3*w34)

     = g(0.3+0.2+0.1) = g(0.6) =1/(exp(-0.6)+1) = 0.646

a5 = g(x1*w15+x2*w25+x3*w35)

     = g(1*0.1+1*0.6+1*0.1)=g(0.8) = 1/(exp(-0.8)+1) = 0.690

a6 = g(a4*w46+a5*w56+x3*w36)

     = g(0.5*0.646+0.2*0.690+0.1*1) = g(0.561) = 1/(exp(-0.561)+1) = 0.637

delta6 = Error*a6*(1-a6) = (0-0.637)*0.637*(1-0.637) = -0.147

delta5 = delta6*w56*a5*(1-a5) = -0.147*0.2*0.690*(1-0.690) = -0.0063

delta4 = delta6*w46*a4*(1-a4) = -0.147*0.5*0.646*(1-0.646) = -0.0168

w14 = w14+ x1*delta4 = 0.3+0.2*1*(-0.0168) = 0.29664

w15 = w15+ x1*delta5 = 0.1+0.2*1*(-0.0063)= 0.09874
w24 = w24+ * x2*delta4 = 0.2+0.2*1*(-0.0168) = 0.19664

w25 = w25+ *x2*delta5 = 0.6+0.2*1*(-0.0063) = 0.59874

w34 = w34 + *x3*delta4 = 0.1+0.2*1*(-0.0168) = 0.09664

w35 = w35 + *x3*delta5 = 0.1+0.2*1*(-0.0063) = 0.09874

w36 = w36+ * x3*delta6 =0.1+ 0.2*1*(-0.147) = 0.0706

w46 = w46 +  *a4*delta6 = 0.5+0.2*0.646*(-0.147) = 0.481

w56 = w56 + * a5* delta6 = 0.2+ 0.2*0.690*(-0.147) = 0.1797

2nd Iteration:

x1 = 0, x2=1, x3= 1, w14 = 0.29664, w15= 0.09874, w24= 0.19664, w25 = 0.59874, w34= 0.09664, w35= 0.09874, w36 = 0.0706, w46 = 0.481, w56= 0.1797

a4 = g(w14*x1+w24*x2+w34*x3) = g(0.29664*0+0.19664*1+0.09664*1) = g(0.29328) = 1/(exp(-0.29)+1) = 0.573

a5 = g(w15*x1+w25*x2+w35*x3) = g(0.09874*0+0.59874*1+0.09874*1) = g(0.68748) = 1/(exp(-0.70)+1) = 0.668

a6 = g(w46*a4+w56*a5+w36*x3) = g(0.481*0.573+0.1797*0.668+0.0706*1) = g(0.466) = 1/(exp(-0.466)+1) = 0.614

delta6 = error*a6*(1-a6) = (1-0.614)*0.614*(1-0.614) = 0.0915

delta4 = delta6*w46*a4*(1-a4) = 0.0915*0.481*0.573*(1-0.573) = 0.01077

delta5= delta6*w56*a5*(1-a5) = 0.0915*0.1797*0.668*(1-0.668) = 0.00365

w14 = w14+ x1*delta4 = 0.29664+0.2*0*delat4 = 0.29664

w15 = w15+ x1*delta5 = 0.09874
w24 = w24+ * x2*delta4 = 0.19664+0.2*1*0.01077 = 0.19879

w25 = w25+ *x2*delta5 = 0.59874+0.2*1*0.00365 = 0.59947

w34 = w34 + *x3*delta4 = 0.09664+0.2*1*0.01077 = 0.09879

w35 = w35 + *x3*delta5 = 0.09874+ 0.2*1*0.00365 = 0.09947

w36 = w36+ * x3*delta6 = 0.0706+0.2*1*0.0915 = 0.08889

w46 = w46 +  *a4*delta6 = 0.481+0.2*0.573*0.0915 = 0.4915

w56 = w56 + * a5* delta6 = 0.1797+ 0.2*0.668*0.0915 = 0.192

