Benchmark TSP Project COSC 6368

Specification last updated on October 4, 2p (Discussion on Cost Functions added on Nov. 15, 2004).

Assumption: Cities are numbered 0,…,n-1 (n is the number of cities for the problem); moreover, you can assume that all cities are connected with the cost of traveling from one city to another city being defined by a cost function. In this project we will use the cost functions c1, c2, and c3 that are defined below.
Benchmark Elements: 3 cost functions c1, c2, and c3 are used in the project; typical values for n (#-of-cities) include: 5, 15, 30, 45.

c1(x,y)= if x=y then 0

 else if x<3 and y<3 then 1

 else if x<3 then 200

 else if y<3 then 200

 else mod(x,7)= mod(y,7) then 2

 else |x-y|+3

c2(x,y)= if x=y then 0

 else if x+y>30 then |x-y|

 else if x+y>15 then (|x-y|**2)+10

 else 2*|x-y|+10

c3(x,y)= if x=y then 0

 else (x+y)**2

Example Cost Computations(n=5):

Cost(0-1-2-3-4,c1)= 1+1+200+4+200=406

Cost(0-1-2-3-4,c3) = 1 + 9 + 25 +49 +16=100

Cost(0-2-4-1-3,c3) = 4+ 36 +25 +16 +9=90

What results to report?
Run your programs for the cost functions c1, c2, and c3 and the following values for n: 5, 15, 30, 45. Additionally, if feasible, run your program for c1 for n=80. The best solutions found and their cost and wall clock time needed for those 13 test cases should be included in your report; if your were not able the results due to time limitations, space limitations, program error, report TL, SL, PE for the particular test case. The running of the program should be limited to 20 minutes for each test case; if your program needs more than 20 minutes to complete a test-case report ‘TL’. However, for the c1,n=80 test case report TL, if your program didn’t find a solution after 3 hours.
Program Demos:
There will be a demo of your program; we will run your program for a few cost function/n pairs --- other n-values might be used when testing your program, but the cost functions will be limited to c1, c2, and c3. The demos will be scheduled in the second half of October 2004.
Academic Honesty:
Reporting false results or solutions that were not obtained by running your programs is an academic honesty violation.

Thoughts on Good Solutions for c1 and c3
Cost Function c1
Characteristics of good solutions with respect to c1: (0-1-2 in some order)-(block of numbers with same mod 7)7 with small diff. at boundaries; mod 7 blocks should be ascending or descending
 order to minimize boundary cost e.g:
2-1-0-7-14-21-22-15-8-9-16-23-24-17-10-3-4…
cost c1: we obtain 2+ 2x200+ 2x(#mod7-lineups) + 6x4; for example for n=10 we obtain 2+400+6x4=426 or for n=13 we get 2+400+3x2+4x6=432; in general, cost for optimal solutions for n>9 is: 402+(n10)*2+4*6=406 + 2*n
Cost Function c3
To minimize the cost we try to avoid large squares; e.g. for n=45 a good solution could be something like this
:
Sol1=0-44-2-42…20-24-22-21-23-19-25-…-1-43 In general, x and y are “good” neighbors
 if (x+y)(n due to the fact that 2*x2 < (xo)2 + (x+o)2 with o being an offset; e.g. 10*10+30*30=1000>800=2x20x20
c3(Sol1)= 11*44*44 + 11*46*46 + 43*43 + 11*44*44 + 10*42*42 +43*43=87206
Alternatively, we can try to keep the sum equal to 45/44 getting a somewhat “unmatched” city 22 at the end e.g.
Sol2=0-44-1-43-2…21-23-22; in this case we obtain

c3(Sol2)= 22x44x44 + 22x45x45 + 22x22= 22x(45x45 + 44x44 + 22)=87636. In general, we obtain: (n-1)/2 * (n**2 + (n-1)**2 + (n-1)/2) for this approach.
� mod(7,x)=6 followed by mod(7,x)=5 followed by…

� We do not claim that this solution is optimal, but that it is pretty close to the optimal solution.

� Having a lot of medium high squares is better than having a combination of low and high squares.

