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Abstract

Adaptive clustering uses external feedback to im-
prove cluster quality; past experience serves to speed up
execution time. An adaptive clustering environment is
proposed that uses Q-learning to learn the reward val-
ues of successive data clusterings. Adaptive clustering
supports the reuse of clusterings by memorizing what
worked well in the past. It has the capability of ex-
ploring multiple paths in parallel when searching for
good clusters. In o case study, we apply adaptive clus-
tering to instance-based learning relying on o distance
function modification approach. A distance function
adaptation scheme that uses external feedback is pro-
posed and compared with other distance function learn-
ing approaches. Experimental results indicate that the
use of adaptive clustering leads to significant improve-
ments of instance-based learning techniques, such as k-
nearest neighbor classifiers. Moreover, as a by-product
a new instance-based learning technique is introduced
that classifies examples by solely using cluster repre-
sentatives; this technique shows high promise in our
experimental evaluation.

1 Introduction

A clustering algorithm finds groups of objects in a
predefined attribute space. Since the objects have no
known prior class membership, clustering is an unsu-
pervised learning process. A clustering algorithm op-
timizes some explicit or implicit criterion inherent to
the data. The squared summed error, for example, is a
criterion whose optimization is the primary concern of
the k-means clustering algorithm [11]. A large amount
of work, as will be discussed in Section 2, details the
limitations of these algorithms; the main criticism is

that these criteria are excessively simplistic and do not
accurately capture the user’s understanding of the true
nature of the data.

This paper introduces a novel data mining technique
we term adaptive clustering. The central idea is to use
feedback and past experience to guide the search to-
ward better clusters. An adaptive clustering environ-
ment is proposed that modifies the weights of a distance
function based on environmental feedback and employs
Q-learning [15] to learn the reward values of successive
data clusterings. In particular our approach employs a
traditional reinforcement learning framework, in which
states consist of a set of cluster representatives and a
set of distance function weights and actions are modi-
fications of distance function weights.

Since the application of a reinforcement learning
(RL) algorithm to clustering is unusual, it is worth-
while to discuss our reasons for this fusion of ideas.
The goal of weight-based distance function learning is
to find the weights that induce a clustering that best
meets externally defined objectives. Since this is clearly
an optimization problem, researchers have applied opti-
mization algorithms, such as hill-climbing, to this task.
The objective of adaptive clustering, however, extends
the objective of distance function learning to support
relearning. In most optimization tasks, the search algo-
rithm terminates when the best weights are found. An
adaptive clustering environment, however, is a contin-
uously running process that solves different but similar
clustering tasks in an environment with dynamic data
and potentially interactive evaluations.

An adaptive clustering algorithm should relearn in
response to changes in evaluation or data, concentrate
on actions that have high expected value, and assign
incoming reward to the states and actions that led to
the reward. Algorithms with these properties are the
goal of reinforcement learning (RL) research [8, 12, 15].



Reinforcement learning algorithms are often applied in
environments in which state transitions and external
rewards are subject to change. [13]. Moreover, RL
algorithms assume that an agent can control which ac-
tions to apply in a particular state but cannot control
which state it visits and reward it receives as the result
of applying a particular action. Agents receive rewards
when traversing the state space, and RL algorithms,
such as Q-learning, learn which actions lead to the best
long-term expected reward [15].

In summary, this paper centers on adaptive cluster-
ing. Our proposed adaptive clustering framework mod-
ifies the distance function based on external feedback
with the goal to obtain better clusters. A novel dis-
tance function modification scheme is proposed for this
purpose and is compared with other distance function
learning approaches. Moreover, given the similarities
between the goal of adaptive clustering and reinforce-
ment learning, we investigate the application and mod-
ification of techniques that originate in reinforcement
learning for the task of adaptive clustering. The pa-
per is organized as follows. Section 2 discusses related
work. Section 3 introduces the idea of adaptive cluster-
ing in more detail, and introduces an environment for
adaptive clustering that implements this idea. Section
4 introduces a framework that applies adaptive cluster-
ing to instance-based learning and Section 5 provides
an experimental evaluation of the proposed framework.
Section 6 concludes the paper.

2 Related Work
2.1 Clustering

2.1.1 Unsupervised Clustering

A traditional unsupervised clustering algorithm maxi-
mizes a known criterion function, such as the squared
summed error. Given a set of n objects O the algorithm
seeks for a set of k clusters X = {cy,...,c;} each with
a cluster representative 7; that minimize the following
error function:

k
E(X) = Y Y (0-7)

1=1 o€c;

The k-means algorithm [11] uses centroids as cluster
representatives, whereas the k-medioids algorithm [9]
uses objects that belong to O as representatives.

T think that the formula is correct because it refers to the
squared difference between two vectors rather than using a dis-
tance function we have yet to define. We could write it as:
(o — 75) - (0 — 7;) referring to the inner (dot) product between
the difference of the two vectors.

The k-means and other partitioning algorithms typ-
ically use Euclidean or Manhattan distance metrics.
Many extensions to these and other partitioning al-
gorithms attempt to employ more sophisticated dis-
tance metrics. Another group of approaches attempts
to learn the distance metrics. The approach explored
in this paper learns attribute weights with respect to
the following object distance function:

d
d(0i,0;) = Y wiloi, — o5
=1

where o; and o; are d-dimensional objects and w =
(w1, ...,wq) is a weight vector whose components are
non-negative and 27:1 w; = 1. The formula defines
the distance between two objects as a weighted sum
of the differences between two objects with respect to
their attributes; when all the weights are equal the dis-
tance is exactly the Manhattan distance.

2.1.2 Supervised Clustering

Supervised clustering is applied to classified examples
using criterion functions that emphasize class purity.
Most approaches seek clusters that are pure (i.e., all or
at least most examples in a cluster belong to the same
class). One group of approaches adapt distance func-
tions with the goal of obtaining purer clusters. The
LVQ algorithm modifies a distance function based on
the performance of the classifier [10]. Since a support
vector machine finds separating hyperplanes in a larger
feature space, the hyperplane function can be trans-
formed into a distance function [5, 4]. Another group of
approaches directly integrate supervised learning with
a traditionally unsupervised clustering algorithm us-
ing fitness functions that are based on the class purity
within a cluster [6].

2.1.3 Semi-Supervised Clustering

Semi-supervised clustering algorithms adapt the clus-
tering based on background knowledge that usually
consists of a small set of classified examples. Most
work in this area relies on the preferences of a user
to inform the algorithm whether or not the clustering
is useful. One application uses semi-supervised clus-
tering for content-based image retrieval, requesting a
user to tell if two images should or should not belong
to the same cluster. Based on a series of evaluation ex-
amples, the algorithm adapts the clusters to satisfy the
constraints that were imposed by the user [3]. Other
work learns a distance metric based on pairs of well-
separated examples. Each pair of examples has a dis-
tance label that indicates that these examples should



be far apart or close together. With this information,
the distance function is adapted so that the shape of
the clusters satisfies these constraints [16].

2.2 Reinforcement Learning

Reinforcement learning (RL) lies between unsuper-
vised and supervised learning because it expects feed-
back for its solutions rather than the correct answer [8].
RL algorithms typically assume the existence of a state
space, a set of actions, and feedback. The state space
is the set of all possible situations. The environment
presents the true state to the learner which executes
one of a the set of actions in the environment. The
environment or a critic provides feedback which is typ-
ically in the form of a scalar feedback signal to indicate
whether or not the actions were good. RL algorithms
are often used for control of simple processes.

One of the most popular reinforcement learning al-
gorithms is the Q-learning algorithm [15]. This algo-
rithm maintains a table for each state-action pair that
contains the learner’s perception of the value of the
pair. The value is essentially an exponential average
of rewards that the learner has received. By learning
the rewards of (state, action) pairs, the learner takes
action based on an estimate of the long-term reward it
expects to receive given its current knowledge. Main-
taining this table presents a practical difficulty when
the state space is large. The amount of memory that
the learner must maintain grows with the number of
states s and actions a; the space complexity is O(sa)
for Q-learning. These problems greatly impede the use
of this simple RL algorithm in large state spaces.

Since RL algorithms like Q-learning are expensive
to implement in large state spaces, a more complicated
RL algorithm called prioritized sweeping has been pro-
posed [12]. This algorithm presumes that in a large
state space, maintaining a value estimate for individual
states makes learning unnecessarily slow. Its solution
is to only apply Q-learning to selected states during
each interaction with the environment. The states are
updated based on a priority related to their value and
recent, frequency of activation.

3 Adaptive Clustering

In brief, adaptive clustering uses the prioritized-
sweeping variant of the Q-learning algorithm to guide
the search for better clusters based on expected exter-
nal feedback. This section details our approach.
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Figure 1. The adaptive clustering environ-
ment.

3.1 Clustering Environment Model

To apply an algorithm intended for reinforcement
learning environments, we must transform the adaptive
clustering environment into a reinforcement learning
environment. One can make clustering a reinforcement
learning problem with states, actions, and rewards in
a possibly non-deterministic environment as illustrated
in Figure 1. In the environment, the clustering algo-
rithm uses its current distance function to form a clus-
tering on the data, and the centroids of the resulting
clustering are state information to an RL algorithm.
The objective function evaluates the clustering and re-
turns a reward. Given its current state and reward, the
algorithm selects a weight-changing action to apply to
the distance function. It then performs a few iterations
of the clustering algorithm using the new distance func-
tion. This process repeats for a fixed number of itera-
tions. In general, the objective function must combine
the influence of multiple objectives into a single scalar
value. The current implementation uses information
gain as described in Section 4.1.

The state space consists of pairs of cluster repre-
sentatives and distance function weights. Clustering
algorithms usually operate in real-valued domains, but
the Q-learning algorithm we employ requires discrete
states. The discretization step divides the range of a
variable into discrete intervals. Since adaptive clus-
tering utilizes an existing partition-based clustering al-
gorithm that relies on normalized data in the interval
[0, 1], the preprocessing step can effectively assume that
each of the coordinates lie between 0 and 1. Given k
cluster representatives each of which is a point in a d-
dimensional space with m attribute values, the number
of states is m?*+1); the additional 1 is for the weight



vector of the distance function. The length of the state
vector s is d(k + 1) and has the following form:

s = (Flvvfkaw)

= (7711,...,fld;...;fkl,...,fkd;wl,...,wd)

where r; ; is the jth coordinate value of the ith cen-
troid and the optional weights. This large state space
presents some practical difficulties that we address in
Section 3.3.

Given a state, the learner can take one of several
actions. The action either increases or decreases a sin-
gle attribute’s weight. Given the old weight vector w
of length d, the action uses the following formula to
generate the new weight vector w’:

~ W; + Awl 7 =1
w; = .,
¢ w; 1 £
r Wy
v, = =a
>y Wi

where i* is the index of the attribute whose weight will
be changed, the constant A € [.25,.5] is a randomly
chosen percent change of the target weight, and the last
equation is the renormalization of the weights. Given
d attributes, the learner chooses one of 2d actions that
increases or decreases the weight of an attribute by
adding or subtracting Aw;.

3.2 Search Strategy

In a traditional reinforcement learning environment,
agents are only allowed to perform actions in the cur-
rent state; thus, it is not possible for an agent to jump
from one state to another state that has been visited
in the past. In adaptive clustering, however, it is possi-
ble to search multiple paths in parallel and to support
more sophisticated forms of exploration that perform
actions on previously visited states.

In our current implementation, the search process
uses the Q-learning algorithm to estimate the value of
applying a particular weight change action to a par-
ticular state. The search algorithm maintains an open
list L = {S1,...,8)|} of search states each of which
consists of:

S; =

(s,a,v)

where s is the state vector from the environment, a
is the action to execute, and v is the Q-value of the
state-action pair according to value iteration. The al-
gorithm reads the Q-value of each state-action pair in
the search state and keeps the top |L| most valuable
states for execution. This search algorithm is an ex-
ample of a local beam search in which the algorithm

expands states based on their values rather than re-
wards [14].

As an example, Figure 2 further illustrates the
search strategy. The figure assumes that the open list
is of size 2. We assume that the open-list currently con-
tains states S1 and Sy corresponding to state vectors s;
and sq, respectively. There is only one attribute in the
example, so there are only two actions—increase or de-
crease the one weight. In search step 1, the algorithm
creates a new open list that contains all single-action
successors of the search states in its current open list.
The bottom-row states contain the current state and
the action to execute in that state. The algorithm looks
up the Q-value of each of the 2d bottom-row states and
then keeps the states having the largest value (shown
in bold). The reinforcement learning agent will apply
the selected action in each of the two states that re-
main in the opening list. The system returns a reward
value for each transition and the prioritized sweeping
algorithm performs value iteration on all states in the
new open list at the end of the search step. The search
continues until a fixed-number of steps have elapsed,
and it retains the state with the highest reward value
as the current best solution.

3.3 Complexity Concerns

From the previous discussion, it is obvious that the
state space is very large. However, this does not present
significant difficulty for the adaptive clustering algo-
rithm. The reason for this is that the state does not
change much. A change in the weights will only change
the clustering when it causes one or more objects to
be assigned to different clusters. The clustering only
changes the cluster representatives—to the precision of
the discretization-when the new objects cause a sig-
nificant shift in the distribution of the objects in the
cluster. The result of these infrequent changes is that
only a very small portion of the state space is actually
reachable. Adaptive clustering emphasizes exploiting
states that have been visited before and received high
rewards rather than generating novel states.

Despite the small portion of the state space that the
algorithm explores, its size is still exponential in the
dimensionality and number of values in the discretiza-
tion of an attribute. As noted in Section 2.2, the ta-
ble lookup method of the original Q-learning algorithm
does not scale well in space or time for these large state
spaces. Therefore, we use the prioritized sweeping algo-
rithm that employs a priority update heuristic to give
preference to updating the utility of frequently visited
paths that have a high surprise value [12]. A path with
a high surprise value is a path that leads to a state for
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Parameters: |L| =2,d=1
Assume: V1,2 > V2,1 > V1,1 > V22

Figure 2. The adaptive clustering search strategy.

which the actual reward is significantly different from
the estimated reward. By employing this heuristic, the
algorithm does not waste time updating the utilities of
state-action pairs whose predicted reward matches the
actual reward or that rarely occur.

The priority heuristic of the prioritized sweeping al-
gorithm complements our beam search strategy well.
It is important to note that the likelihood of perform-
ing value iteration on a state depends on the absolute
difference between the change in the expectation of re-
ward given the obtained reward. Therefore, for ex-
ample, if the obtained reward causes the expectation
to change from 5 to 3 or 7, the algorithm will update
states with the same priortity. This makes sense in
the context of the beam search strategy we employ: if
there are significant changes in the utility of currently
explored paths, we would prefer to search the paths
that suddenly appear to be better rather than worse
and not to waste time performing value iteration on
paths for which our predictions are correct or for paths
that are not currently explored.

4 Experimental Evaluation

The experiments investigate if adaptive clustering
can find better clusterings with respect to an exter-
nally defined objective function. Our experimental
evaluation uses a popular objective function known as
information gain. With this objective function, the
clusterings and distance function weights that adap-
tive clustering learns can enhance existing classifica-
tion algorithms. The comparison of the accuracy of
the enhanced classifiers with the original classifiers will
demonstrate the benefit of adaptive clustering. As a
by-product, a new instance-based classifier will be in-
troduced that, as our experimental results will show, is

generally useful for instance-based learning.
4.1 Objective Function

The experiments use k-means as the underlying clus-
tering algorithm which uses centroids as cluster repre-
sentatives and creates clusters by assigning objects in
a dataset to the nearest centroid [11]. The objective
function R determines the worth of a particular clus-
tering as the percent information gain of the objects
in the clusters with respect to the original unclustered
data according to the following formula [14]:

R(X) = R({c1,...,ck})
]i} Ci
B H(CL,0) =%, ‘\o\‘ * H(CL, c;)
B H(CL,0)
k
where 0= U c;ande; Nejz =0
i=1
H(CL,V) = — > p(cl,V)log,p(cl,V)
cleCL
where
is of cl
o V) = {o] o€V Aois of class cl € CL}|

{oloeV}

where O is the original dataset, X is a clustering on
O, c¢; is one of the k mutually exclusive and exhaustive
subsets of O that result from the clustering algorithm,
and H(CL,V) is the entropy with respect to the distri-
bution of classes ¢/ € CLin V. H(CL,V) is computed
by iterating over the individual classes in the data set.
In summary, information gain computes the weighted
average of the entropy with respect to the class distri-
bution in each cluster.

Let us assume that we have 2 distance functions d;,,;:
and dpetter for the dataset illustrated in Figure 3 that
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Figure 3. Clusterings for two different dis-
tance functions.

consists of 13 examples of which 5 belong to the class
identified by a square and 8 belong to the class identi-
fied by a circle. We apply the k-means clustering algo-
rithm with £ = 3 to the dataset and obtain the 2 de-
picted clusterings. Obviously, the information gain for
the second clustering that used distance function dpetter
is much higher than the information gain for the first
clustering, because all clusters only contain examples of
a single class. Most importantly, using a distance func-
tion with high information gain function in conjunction
with a k-nearest neighbor classifier allows us to obtain
a classifier with high predictive accuracy. For example,
if we use a 3-nearest neighbor classifier with distance
function dpeser it will have 100% accuracy with respect
to leave-one-out cross-validation, whereas several ex-
amples are misclassified if d;,;; is used.

4.2 Procedure

The experiments in this section test the adaptive
clustering algorithm with several different parameter
settings. The first parameter k, is the numbers of clus-
ters generated by the clustering algorithm and is a mul-
tiple of the number of classes, C. The second parameter
is the size of the open list |L|. If the size is set to 1,
the search model reduces to a traditional reinforcement
learning algorithm, in which actions are applied to the
current state.

In each of the state encodings, the states should not
be used in their continuous form. Many of the datasets
for the experiment include numeric attributes whose
cluster centroids may contain many significant digits.
The Q-learning algorithm that we use assumes that
the states are discrete and distinct from each other.
To accommodate the algorithm, each attribute value

and each weight first pass through a discretization filter
that uses the following formula to filter an attribute
value v into v':

o' = [100v]

The constant 100 is not completely arbitrary since the
data has already been normalized so that each attribute
and weight lies in the interval [0,1]; thus, v should
capture the first two or three significant digits of each
attribute making the number of values per attribute
m = 100.

After the process of building the model on the train-
ing data, testing it is relatively simple. The experiment
learns the attribute weights and then uses them with
one of two instance-based classifiers: 1-NN [14] and
NCC. The 1-NN classifier is the one nearest-neighbor
classifier. The Nearest Centroid Classifier (NCC) clus-
ters the training data, retains the cluster centroids,
and assigns to the centroid the most common class in
the cluster. At each incoming point, the NCC finds
the nearest centroid and assigns its class to the point.
This algorithm seems simplistic but has been shown
to be useful for certain datasets [7]. The experimen-
tal procedure is to apply adaptive clustering to several
datasets from the UCI machine learning repository [1].
Each test of adaptive clustering performs 10 runs of
cross-validation on each of the datasets. Each run of
cross-validation consists of 20 iterations each of which
is run for a randomly created initial set of clusters.
The weight vector with the highest reward is is sent as
a parameter to the 1-NN and NCC classifiers to classify
the examples in the test set. After an iteration is com-
pleted, the open list is cleared. Each iteration consists
of 50 steps in the learning process. Each step expands
state-action pairs based on value and follow the search
process described in Section 3.2.

In particular, we tested the parameter settings listed
in Table 1 for the 1-NN and NCC classifiers; e.g. key
“1.60” indicates that in the particular experiment k was
set to the number of classes C in the dataset and the
open list had size 60. We also show the average accu-
racy obtained using two other distance function learn-
ing algorithms that do not use adaptive clustering. The
first distance function learning algorithm [7] employs a
weight-updating heuristic that changes weights based
on class density information in clusters. The second
distance function learning algorithm [2] uses random-
ized hill climbing to search for good distance func-
tion weights. The approach selects a randomly created
weight vector as the current weight vector, creates m
(m = 30 was used in the experiments) new weight vec-
tors in the neighborhood of the current weight vector,
and selects the weight vector with the highest value for



Key | Clusters k | Open List Size |L|
11 C 1
1,30 C 30
1,60 C 60
5,60 5C 60

Table 1. Legend for interpreting the results.

the objective function R as the new current weight vec-
tor. This process terminates if there is no improvement
with respect to objective function R. The algorithm
is then restarted with a new randomly created weight
vector until a predefined time limit is reached.

5 Experimental Results

Tables 2, 3, 4, 5, and 6 show the average and stan-
dard deviation of the accuracy results for the param-
eters tested in the experiment compared against sev-
eral base classifiers for a benchmark consisting of UCI
datasets [1]. The open and closed circles indicate statis-
tical significance using the paired t-test of significance
with significance level 0.10 for the 10 runs.

Table 2 compares a 1-NN classifier having a distance
function that considers all attributes to have the same
weight with the same classifier with learned weights.
First, adaptive clustering achieved consistent improve-
ment in accuracy for open list sizes greater than one.
The diabetes dataset which was significantly worse
with open list size 1 became not significantly worse
with a larger open list. On average, the results im-
prove over all the data sets; furthermore, the results
tend to improve with the size of the open list. In sum-
mary, the capability to explore multiple paths in par-
allel when searching for good distance functions leads
to better accuracies for the tested classifiers. More-
over, increasing the number of clusters from C to 5C
increases the average accuracy for all datasets further.

Tables 3 and 4 compare the traditional 1-NN clas-
sifier with learned weights from an algorithm that em-
ploys a density-based weight-updating heuristic [7], a
randomized hill-climbing algorithm (RHC), and the
adaptive clustering algorithm. The results show a sub-
stantial improvement in several of the tested datasets
over the two distance function learning algorithms. For
the vehicle and glass datasets, the improvement is most
obvious.

Table 5 compares the NCC classifier using equal
weights with the same classifier after learning weights.
Interestingly, using adaptive clustering leads to a quite
dramatic increase in accuracy: the average accuracy
over the datasets tested improved by more than 8%.

Since this classifier makes its decision based only on
the centroid of the cluster, even a small change in the
distance between points and centroidshas a significant
impact. Several of the datasets had a very large dif-
ference. Notably, the accuracy for the vowel dataset
improved from 12% to over 99%.

Most importantly, the NCC classifier with learned
weights using £ = 5C and |L| = 60 achieved an av-
erage accuracy of 81.78% which is 0.52% higher than
the average accuracy for the traditional 1-NN classi-
fier of 81.26%. This interesting result suggests that
adaptive clustering sufficiently improves cluster qual-
ity so that by just using cluster representatives instead
of all objects in the dataset, one can achieve a better
accuracy than the 1-NN classifier as shown in Table 6.
For a training set of n examples with C' < n classes,
the NCC classifier compares each incoming point with
O(C) points instead of the O(n) comparisons usually
necessary with the 1-NN classifier without more so-
phisticated indexing methods. In the glass dataset, for
example, the traditional 1-NN classifier that uses all
214 x 0.9 = 193 training examples to classify an ex-
ample (10-fold cross validation only uses 90% of the
examples for training) achieves an accuracy of 69.95%,
whereas the NCC classifier that uses the learned dis-
tance function with just six training examples achieves
accuracies of 72.94% and 73.50% for open list sizes of
30 and 60.

In summary the experimental results demonstrate
that adaptive clustering can improve the quality of
the clusters and the distance metric to improve two
instance-based classifiers. Compared to the 1-NN al-
gorithm without learned weights, adaptive clustering
yields significantly better results for several datasets.
On average, it outperforms the traditional 1-NN classi-
fier. As a distance function learning algorithm for clas-
sification, adaptive clustering outperforms two other
distance function learning approaches. Finally, on a
more direct evaluation of utility of the clustering, adap-
tive clustering substantially improves the NCC classi-
fier in all but a few datasets. The improvement makes
this relatively simple classification algorithm compara-
ble in accuracy with the 1-NN classifier.

6 Conclusion

Adaptive clustering learns attribute weights for clus-
tering under externally defined objectives. Users of
clustering algorithms often have some idea what a good
clustering of a dataset should be. Unfortunately, users
often have problems in quantifying their ideas. Adap-
tive clustering uses external feedback to find cluster-
ings that better meet these objectives. Recent work



Dataset 1NN 1,1 1,30 1,60 5,60

breast-cancer 68.58+1.82  68.58+1.82 68.58+1.82 68.58+1.82 68.58+1.82
breast-cancer-w  95.65+0.34  95.38+0.57 95.49+0.39 95.28+0.32 95.64+0.44
credit-rating 81.58+0.65  81.8640.83 81.7440.57 81.77+0.72 81.8440.87
diabetes 70.62+0.84  69.294+0.97e¢  69.75+1.18e¢  70.12+1.11 69.914+1.28
german-credit 71.63+0.68  71.284+0.73e¢  70.92:+0.80e  71.20+0.64e  71.4240.60
glass 69.95+0.93  68.89+2.00 72.20£1.890  72.01+£2.56 76.26+£2.180
heart-c 75.70+£0.84  76.62+1.030  76.59+1.21 76.65+0.880  76.72+1.070
heart-h 78.33+£1.06  78.32+1.34 78.40+1.11 77.86+£1.62 78.43+1.67
heart-statlog 76.15+0.88  76.63+1.59 77.41+1.340  77.26+1.11 77.37+£0.860
ionosphere 87.10+£0.49  87.24+0.88 88.24+0.880  87.21+0.91 88.52+1.120
sonar 86.17+0.84  85.79+1.93 86.124+1.85 86.07+1.48 86.224+1.05
vehicle 69.59+0.67 69.14+0.89 68.83+1.09¢  68.59+1.25 70.55+1.120
vote 92.23+0.50  92.2340.50 92.2340.50 92.23+0.50 92.2340.50
vowel 99.05+0.14  98.224+0.51e¢  99.15+0.190  99.27+0.260  99.0540.24
Z00 96.55+0.50 96.55+0.50 96.55+0.50 96.55+0.50 96.55+0.50
Average 81.26 81.07 81.48 81.38 81.95

o, e statistically significant improvement or degradation

Table 2. Results comparing the 1-NN classifier with and without weights from adaptive clustering.

Dataset 7 11 1,30 1,60 5,60
diabetes 72.05+1.13 69.29L0.07e 69.75L1.18¢ 70.12L1.11e 69.91L1.28e
glass 49.4143.06  68.89+2.000  72.20+1.890  72.01+2.560  76.26-:2.180
heart-c 78.834+1.66  76.62+£1.03¢ 76.59+1.21e  76.65:0.88e  76.72::1.07e
heart-h 79.364+1.60 78.32+1.34  78.40+1.11  77.86+1.62  78.43+1.67
heart-statlog ~ 82.78+1.20  76.63+£1.59e  77.41+1.34e  77.26:1.11e  77.37+0.86e
ionosphere 85.19+1.30  87.24+0.880  88.24+0.880  87.2140.910  88.52+1.120
vehicle 53.54+2.73 69.1410.890 68.83+1.090  68.59+1.250  70.55+1.120

o, e statistically significant improvement or degradation

Table 3. Results comparing improvements to the 1NN classifier with weights learned by a related
impurity-based weight updating algorithm and adaptive clustering [7].

Dataset RAC 11 1,30 1,60 5,60

diabetes 74511078 60.2910.97e 69.75L1.18e 70.12L11.11e  69.01L1.28e
glass 51.5541.75 68.89+£2.000 72.20+1.890 72.014£2.560  76.26+2.180
heart-c 79.18+£1.70  76.62+£1.03e  76.59+1.21e  76.651:0.88e  76.72+1.07e
heart-h 80.154+1.27 78.32+1.34e  78.40+1.11  77.86+1.62e¢  78.43+1.67
heart-statlog ~ 82.63+1.47 76.63+£1.59e  77.41+1.34e  77.26:1.11e  77.37+0.86e
ionosphere 83.74+1.58 87.24+0.880c 88.24+0.880 87.21:+0.91c  88.52:1.120
vehicle 57.061+3.67 69.14+0.890 68.83+1.090 68.59+1.250  70.55+1.120

o, e statistically significant improvement or degradation

Table 4. Results comparing improvements to the 1NN classifier with weights learned by a randomized
hill-climbing algorithm and adaptive clustering.

Dataset NCC 1,1 1,30 1,60 5,60

breast-cancer 72.25L1.52 68.58L1.82¢ 68.58L1.82¢ 68.58L1.82¢ 68.58L1.82e
breast-cancer-w  96.41£0.33  95.58-:0.38¢  95.48+0.27e  95.581:0.48¢  95.75--0.34e
credit-rating 79.33+0.69  81.61+0.680 81.77+0.940  81.5540.680  81.48+1.010
diabetes 70.18+£0.99  69.36:1.11  69.78+1.21  69.87+2.09  69.77-0.62
german-credit 69.474+0.52  71.31+0.860  71.1740.700  71.3740.920  71.09-1.090
glass 64.53+2.60 69.18+1.61c 72.94+2.490 73.50+2.490  75.95+1.730
heart-c 78.20+1.94  76.62+0.78  76.65+0.83  76.79+0.61  76.39+1.30e
heart-h 81.10+1.25 78.43+1.78e¢  78.09+0.97e¢  78.14+1.6le  77.95+1.72e
heart-statlog 78.74+1.74 75.81+£1.05¢ 77.04+1.23  77.48+1.21  76.70-+1.30e
ionosphere 86.21+0.87 87.1940.87  88.38+1.130  87.7241.470  88.23+0.940
sonar 63.214+2.06 85.64+1.330 86.61+1.420 86.36+1.530  86.27+1.460
vehicle 54.74+1.57 69.03+£1.280 68.47+1.030  68.25+1.740  70.66+1.520
vote 90.53+0.68  92.23+0.500  92.23+0.500  92.2340.500  92.23+0.500
vowel 12.2840.94 98.024£0.400  99.184+0.280  99.1840.250  99.11+0.210
200 92.784+1.32  96.55+0.500  96.55+0.500  96.55+0.500  96.55--0.500
Average 72.67 81.01 81.53 81.54 81.78

o, e statistically significant improvement or degradation

Table 5. Results comparing the NCC classifier with and without weights from adaptive clustering.



Dataset 1-NN NCC 1,30 1,60 5,60
breast-cancer 68.58+1.82 72.25+1.520 68.58+1.82 68.58+1.82 68.58+1.82 68.58+1.82
breast-cancer-w 95.65+0.34 96.41+0.330 95.58+0.38 95.48+0.27 95.58+0.48 95.75+0.34
credit-rating 81.58+0.65 79.33+0.69e 81.61+0.68 81.77+0.94 81.55+0.68 81.48+1.01
diabetes 70.62+0.84 70.18+0.99 69.36+1.11e 69.78+1.21 69.87+2.09 69.771+0.62e
german-credit 71.63+0.68 69.47+0.52¢ 71.31+0.86e 71.17+0.70e 71.37+£0.92 71.09+1.09e
glass 69.95+0.93 64.53+2.69e¢ 69.18+1.61 72.94+2.490 73.50+2.490 75.95+1.730
heart-c 75.70+0.84 78.29+1.940 76.62+0.780 76.65+0.830 76.79+0.610 76.39+1.30
heart-h 78.33+1.06 81.10+1.250 78.43+1.78 78.09+0.97 78.14+1.61 77.95+1.72
heart-statlog 76.15+0.88 78.74+1.740 75.81+1.05 77.04+1.23 77.48+1.210 76.70+1.30
ionosphere 87.10+0.49 86.21+0.87 87.19+0.87 88.38+1.130 87.72+£1.47 88.23+0.940
sonar 86.17+0.84 63.21+£2.06e 85.64+1.33 86.61+1.42 86.36+1.53 86.27+1.46
vehicle 69.59+0.67 54.74+1.57e 69.03+1.28 68.47+1.03e 68.25+1.74e 70.66+1.52
vote 92.23+0.50 90.53+0.68e 92.23+0.50 92.23+0.50 92.23+0.50 92.23+0.50
vowel 99.05+0.14 12.281+0.94e 98.02+0.40e 99.18+0.28 99.18+0.250 99.11+0.21
Z00 96.55+0.50 92.78+1.32e 96.55+0.50 96.55+0.50 96.55+0.50 96.55+0.50

o, e statistically significant improvement or degradation

Table 6. Results comparing the 1NN classifier against the NCC classifier and its improvements with

adaptive clustering.

in semi-supervised and supervised clustering demon-
strates that the alteration of attribute weights in a dis-
tance metric can help to address user needs. Most of
those techniques, however, require the user to assess
cluster quality at a very low level of granularity. In
adaptive clustering, on the other hand, it is sufficient
to assign a reward to the clustering as a whole.

We discussed the results of a case study that applied
adaptive clustering to learn distance function weights
to maximize externally defined objectives. In partic-
ular, adaptive clustering was used to enhance existing
instance-based classifiers based using information gain
as the objective function. Using the learned weights,
the 1-NN classifier achieves a statistically significant
improvement in accuracy for several datasets in the
UCI machine learning repository [1]. With the learned
weights, even a classifier that only uses the cluster rep-
resentatives to classify incoming instances can, on av-
erage, meet or beat the much more costly 1-NN clas-
sifier. Based on its improvements to the accuracy, the
technique can find more informative clusters and rep-
resentatives in this domain.

Future work will apply adaptive clustering to less
contrived domains. Interesting potential applications
include diverse applications such as information re-
trieval, spatial data mining, and multi-agent meta-
learning.
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