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ABSTRACT 
Traditional regression analysis derives global relationships 
between variables and neglects spatial variations in variables. 
Hence they lack the ability to systematically discover regional 
relationships and to build better models that use this regional 
knowledge to obtain higher prediction accuracies. Since most 
relationships in spatial datasets are regional, there is a great need 
for regional regression methods that derive regional regression 
functions that reflect different spatial characteristics of different 
regions. This paper proposes a novel regional regression 
framework that first discovers interesting regions showing strong 
regional relationships between the dependent and the independent 
variables, and then builds a prediction model with a regional 
regression function associated with each region. Interesting 
regions are identified by running a representative-based clustering 
algorithm that maximizes an externally plugged in fitness 
function. In this work, we propose two fitness functions: an R-
squared based fitness function and an AIC-based fitness function 
to handle overfitting better. We evaluate our framework in two 
case studies; (1) identifying causes of arsenic contamination in 
Texas water wells and (2) Boston Housing dataset determining 
spatially varying effects of house properties on house prices. We 
demonstrated that our framework effectively identifies interesting 
regions and builds better prediction systems that rely on regional 
models.   

Categories and Subject Descriptors 
H.2.8. [Database Applications]: Spatial databases and GIS, Data 
Mining  

General Terms 
Algorithms, Design, and Experimentation 

Keywords 
Spatial Data Mining, Regression Analysis, Regional Knowledge 
Discovery, Regional Regression, Clustering. 

 
 

1. INTRODUCTION 
Regression analysis has been extensively used in many scientific 
fields to discover relationships and dependencies among variables 
and many variations of regression analysis have been proposed in 
the literature [2]. In spatial data mining, regression analysis can be 
used to discover spatial relationships and to build models for 
prediction. In geo-referenced datasets, most relationships exist at 
regional level not global level. Since often this type of spatial or 
regional relationships are not explicitly represented in geo-
referenced datasets, one major task in spatial data mining is to 
develop techniques and methodologies to automate the extraction 
of interesting and useful regional patterns, and to build better 
models that reflect the spatially varying characteristics of geo-
referenced data. Moreover, capturing regional variation will lead 
to a deeper understanding of important relationships that are 
embedded in a spatial dataset. For example, a global linear 
regression analysis on housing prices in a city would derive 
coefficients that measures each attribute’s contribution to the price 
of a house.  However, coefficients tend to vary from one region to 
another; for example, the attribute have_pool might have a 
coefficient of 9,000 in a city wide regression analysis which 
indicates that having a pool adds $9,000 to the house value, when 
in reality depending on the neighborhood, the pool adds value 
between $5,000 and $50,000 to the house price, and its 
contribution differs regionally; e.g. it is much lower for houses in 
some underdeveloped parts of the city. We claim that 
understanding these regional variations will not only lead to more 
accurate prediction models, but will also provide regional 
background knowledge concerning which attributes have a 
significant impact on house prices in which regions. Therefore it 
is desirable to develop methods that capture this spatial variation 
and extract regional knowledge from spatial datasets. This type of 
regional knowledge is crucial for domain experts who seek to 
obtain a deeper understanding of regional variations in 
relationships among variables in geo-referenced datasets.  

Some local regression methods have been proposed in the 
literature but most use pre-defined region boundaries like zip 
codes, county limits, or grid structures based on spatial coordinate 
systems. However, in spatial data mining, regional patterns often 
do not coincide with predefined geographic boundaries and 
important spatial relationships might not be discovered due to 
dilution. For example, proximity to a river might significantly add 
to the value of the house; but, if census blocks are used as regions, 
this pattern will not be detected especially if the pre-defined 
regions contain a lot of houses that are not very close to the river. 
In general, such relationships can only be discovered by methods 
that seek for regions on their own that reflects the underlying 
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structure of the data, e.g. regions that contain houses with similar 
relationships between dependent and independent variables.  

This paper proposes a Regional Regression framework called 
REG^2  (pronounced as REG-squared) that focuses on 
discovering regional regression functions that are associated with 
contiguous areas in the subspace of the spatial attributes which we 
call regions. Figure 1 shows an example of discovered regions 
along with their regional regression functions and region 
representatives where the regional regression function for region 
10 is given as an example. First, interesting regions are discovered 
by running a representative-based clustering algorithm that 
maximizes an externally plugged-in fitness function; next, 
regional knowledge is extracted from the obtained subspaces 
(regions). We developed two fitness functions: a R-squared-based 
fitness function (RsqFitness) and an AIC-based (Akaike’s 
Information Criterion) fitness function (AICFitness). The two 
fitness functions are used to guide the search for regions with 
strong regional linear relationships between the response variable 
and the independent variables. 

 
 

The main contributions of the paper include: 

1. A regional regression framework that employs representative-
based clustering to discover interesting regions and their 
associated regional regression functions, without using any 
predefined region boundaries.  
2. An AIC-based and an Rsq-based fitness function to guide the 
search for regions with highly accurate regression functions. 

3. A correlation-based methodology to evaluate the performance 
of the employed fitness functions and to select fitness function 
parameters automatically. 

4. An experimental evaluation of the framework in a case study 
that centers on indentifying causes of arsenic contamination in 
Texas water wells and on Boston Housing dataset determining 
spatially varying effects of house properties on house prices.  

The remainder of the paper is organized as follows: In section 2, 
we discuss related work. Section 3 provides a detailed discussion 
of our region discovery framework, the AIC-based fitness 
function and R-squared based fitness function. Section 4 presents 
the experimental evaluation, and section 5 concludes the paper. 

2. RELATED WORK 
2.1 Regression Analysis and AIC 
Regression Analysis has been extensively used in many scientific 
fields to discover linear relationships and dependencies among 
variables and many variations of regression analysis exists in the 
literature [2]. OLS is the best known of all regression techniques, 
which provides a global model of the variable of the interest that 
needs too be understood or predicted. R2 is a measure of the 
extent to which the total variation of the dependent variable is 
explained by the model. In general, increasing the number of 
independent variables involved in regression will lead to a higher 
R2 value. R2 alone is not a good measure for goodness of fit of a 
model since it only deals with the bias of the regression model, 
and ignores the complexity of a model and its associated variance, 
and is therefore prone to overfitting. Consequently, several 
information criteria have been developed that take the complexity 
of the employed model into consideration, with. Akaike's 
Information Criterion (AIC)[1] being one of the most popular 
information criteria to measure the goodness of fit of an estimated 
statistical model. AIC provides a balance between bias and 
variance, and is estimated using the following formula: 

2 log ( ) 2AIC L kθ= − +


    (1) 

where ( )L θ


is the maximized likelihood function, θ


is the 

maximum likelihood estimate of the parameter vector θ under the 
model and k is the number of the independent parameters of the 
model. Assuming that the errors are normally distributed, the AIC 
formula becomes; 

2 [ln(2 . / ) 1]AIC k n SSE nπ= + +    (2) 

where SSE is the Residual Sum of Squares which is called as RSS 
in some literature and n is the number of objects. McQuarrie and 
Tsai [19] define a special variation of AICu for small regions; 

ln
2u

SSE n kAIC
n k n k

+
= +

− − −
   (3) 

Increasing the number of free parameters to be estimated 
improves the goodness of fit, regardless of the number of free 
parameters in the data generating process. Hence AIC not only 
rewards goodness of fit, but also includes a penalty that is an 
increasing function of the number of estimated parameters. This 
penalty discourages overfitting. The preferred model is that with 
the lowest AIC value. In summary, the AIC methodology attempts 
to find the model that best explains the data with a minimum of 
free parameters. 

2.2 Regression Trees  
Regression Trees are another local statistical prediction model 
which recursively partitions data into small partitions and then fit 
a simple model to these small partitions. The early Classification 
and Regression Tree (CART) algorithm [4] selects the split 
variable and split value that minimizes the weighted sum of the 
variances of the target values in the two subsets. The selection of 
first attribute to split in regression trees dramatically affects the 
resulted regions and that causes lack of flexibility. Since data is 
split greedily using a top-down approach, regions in regression 
trees are rectangular. Regression trees also aim to find local 
statistics, but our approach is more flexible since it employs an 
externally plugged-in fitness function to be maximized rather than 
evaluation variance of splitting on a single attribute like 

Figure 1. Discovered Regions and Regression Functions 



regression trees employ and also performs wider non-greedy 
search; moreover, shapes of regions that can be discovered by our 
approach can be convex polygons, which represent Voroinoi cells 
whereas regression trees are limited to discovery rectangle shape 
regions since they discover regions by recursively splitting trees 
into 2 sub-trees in a top down fashion. Our approach, on the other 
hand, searches for the optimal set of regions iteratively by 
modifying region representatives maximizing an external, plug-in 
fitness function. 

2.3 Geographically Weighted Regression 
Geographically weighted regression (GWR) [15] is an instance-
based, local spatial statistical technique used to analyze spatial 
non-stationarity. GWR generates maps used in exploring and 
interpreting spatial non-stationarity. Instead of calibrating a 
single regression equation, GWR generates a separate 
regression equation for a set of observation points that are 
usually determined using a grid structure. Each equation is 
calibrated using a different weighting of the observations 
contained in the data set, based on the proximity of 
observations to observation points. Each GWR equation may 
be expressed as: 

0 ( , ) ( , )i i i k i i ik i
k

y u v u v xβ β ε= + +∑           (4) 

where (ui ,vi) denotes the coordinates of the ith point and βk(ui, vi) 
is a realization of continuous function βk(u, v) at point i [21]. 
Using OLS, the parameters for a linear regression model can 
be obtained by solving:  

1( )T TX X X Yβ −=                            (5) 
Similarly, the parameter estimates for GWR may be solved 
using a weighting scheme: 

1( , ) ( ( , ) ) ( , )T T
i i i i i iu v X W u v X X W u v yβ −=       (6) 

The weight assigned to each observation is based on a distance 
decay function (wij) centered on observation i. Recently, GWR 
has been used in many research works for investigating a 
variety of topical areas, including climatology [5], urban 
poverty [18], environmental justice [20], and the ecological 
inference problem [7].  
GWR is similar to our approach especially in aiming to 
capture the spatial variance of attributes over space which in 
GWR is called spatial non-stationarity. Our approach, on the 
other hand, does not use any observation points, predefined 
grid structures but it discovers polygon-shaped regions.  In 
general, GWR assumes autocorrelation and will have problems 
for spatial datasets where patterns change sharply. For example, if 
we have two neighboring regions that are characterized by very 
different regression functions, GWR will have significant errors 
near the boundary of the two regions, because it uses multiple 
regression functions of nearby observation points and not a single 
region-specific regression function as does our approach. In 
general, in our approach a regression function is assigned to 
each region where coefficient estimates are similar, reflecting the 
existence of similar pattern of dependency between the dependent 
and independent variable in a particular region. 

2.4 Cluster-Wise Regression (CLR) 
The cluster-wise regression technique incorporates cluster 
analysis into the OLS regression analysis. The simplest 
cluster-wise regression is a 2-cluster linear regression, which 
was introduced by Spath [25, 26, 27], and was further 
developed by other researchers. In summary, instead of using 
the classical homogeneity or separation criterion, cluster-wise 
regression is based on the accuracy of a linear regression 
model associated to each cluster using the sum of squared 
prediction errors for each object in a cluster. This technique has 
many applications, due to its being well suited to market 
segmentation and product pricing [21, 16].   
The mathematical formulation of CLR is: 

2
0

1 1 1
( )

n K m

e ik i jk ij k
i k j

Min z y b x b
= = =

= − +∑∑ ∑    (7) 

given; 

1
1 1...

K

ik
k

z i n
=

= ∀ =∑  and 

{0,1} 1.... 1... .ikz i n k K∈ ∀ = ∀ =  

where xij and yi are respectively the value of the variable j and the 
value of the dependent variable for the observation i. bjk is the jth 
regression coefficients for the cluster k and zij is a binary variable 
that equals 1 if and only if the observation i belongs to cluster k. n 
is the number of observations, m the number of independent 
variables considered and K the number of clusters. The main 
objective of CLR is to minimize the sum of squared prediction 
error for each object using the equation of the cluster that the 
object belongs to. Our approach is similar but our framework tries 
to minimize AIC of each region rather than only the prediction 
error and capability. Moreover, our approach searches for the 
optimal number of regions rather that assuming that the correct 
number of regions is known in advance and supports arbitrary, 
plug-in fitness functions which provide flexibility and 
extensibility. More importantly, as demonstrated in [6] by Brusco 
et al., CLR has tremendous potential for overfitting since 
minimizing the sum of the error sums of squares for the within-
cluster regression models makes no effort to distinguish the error 
explained by the within-cluster regression models from the error 
explained by the clustering process. 

3. METHODOLOGY 
We now introduce the components of our regional regression 
framework, shown in Figure 2. The framework discovers 
interesting regions by running a representative-based clustering 
algorithm that maximizes an externally plugged in fitness 
function. Regional representatives and regional regression 
functions are associated with regions to support prediction . 
 
 
 
 
 
 

 Figure 2. Regional Regression (REG2) Framework 



3.1 Region Discovery Framework 
We employ the region discovery framework that was proposed in 
[13, 14]. The objective of region discovery is to find interesting 
places in spatial datasets—regions occupying contiguous areas in 
the spatial subspace. In this work, we extend this framework to 
extract regional regression functions. The framework incorporates 
domain knowledge into domain-specific plug-in fitness functions 
that are maximized by the clustering algorithm. The framework 
employs a reward-based evaluation scheme to evaluate the quality 
of the discovered regions. Given a set of regions R={r1,…,rk} with 
respect to a spatial dataset O ={o1,…,on}, the fitness of R is 
defined as the sum of the rewards obtained from each region rj (j 
= 1,… ,k): 

1
( ) = [ ( , )] ( )* ( )

k

j j
j

q R sum r j i r size r βψ
=

= ∑   (8) 

where i(rj) is the interestingness of the region rj—a quantity based 
on domain interest, reflecting the degree to which the region is 
“newsworthy.” Fitness functions are the core components in the 
framework, as they capture a domain expert’s notion of 
interestingness. The framework seeks for a set of regions R such 
that the sum of rewards over all of its constituent regions is 
maximized. In general, the parameter β controls how much 
premium is put on region size. The size (rj)β component in q(R), 
(β≥1) increases the value of the fitness nonlinearly with respect to 
the number of objects in the region rj. ψ(r,j) is the reward of the 
region and region reward is proportional to its interestingness, but 
given two regions with the same value of interestingness, a larger 
region receives a higher reward to reflect a preference given to 
larger regions. Rewarding region size non-linearly ensures 
merging neighboring regions whose coefficient estimates are 
similar reflecting existence of similar pattern of spatial variance of 
attributes within each region. 

3.2 CLEVER Algorithm 
We employ the CLEVER [13] clustering algorithm to find 
interesting regions in the experimental evaluation. CLEVER is a 
representative-based clustering algorithm that forms clusters by 
assigning objects to the closest cluster representative and seeks for 
the optimal set of representatives with respect to q(R). The 
algorithm starts with a randomly created set of representatives and 
employs randomized hill climbing by sampling s neighbors of the 
current clustering solution as long as new clustering solutions 
improve the fitness value. To battle premature convergence, the 
algorithm employs re-sampling: if none of the s neighbors 
improves the fitness value, then t more solutions are sampled 
before the algorithm terminates. After CLEVER terminates region 
representatives and their associated regression functions are 
returned.   

3.3 R-squared Fitness Function (RsqFitness) 
The natural question in assessing the estimated model is: How 
well does it fit the data? In our framework we need a fitness 
function that will be optimized by the clustering algorithm that 
reflects the main characteristic of good regression models: high 
accuracy. In regression analysis one of the most popular 
evaluation measures is R-squared (R2). Our approach uses the 
following R2-based interestingness measure: 

 
 
 

Definition 1:  (Rsq-based Interestingness – iRsq (r) )  
 

1
( ) =

0
Rsq

SSEif n MinRegSize
i r SST

if n MinRegSize

 ≥ −

 <

                        (9) 

R2 mathematically is equal to 1-SSE/SST. SSE is Sum of Squares 
of Residuals or Errors and SST is Total Sum of Squares and they 
are defined as: 

2

1
( )

n

i i
i

SSE y y
−

= −∑  and 2

1
( )

n

i
i

SST y y
−

= −∑  

The RsqFitness function then becomes: 

1
( ) = ( )* ( )

k

Rsq Rsq j j
j

q R i r size r β

=
∑   (10) 

MinRegonSize is a controlling parameter to battle the tendency 
towards having very small size regions with maximal variance in 
regression analysis so that we do not end up with regions with a 
few objects that have very high R2 values. The experiments 
conducted using the R-sq-based fitness function suggest that using 
R-sq alone frequently leads to lower prediction accuracies on 
unseen example due to overfitting. We need a better model 
selection criterion to balance the tradeoff between bias and the 
variance. Therefore we developed another fitness function that is 
based on an information criterion, namely AIC.  

3.4 AIC-based Fitness Function (AICFitness) 
Akaike’s Information Criterion (AIC) is one of the most 
commonly used measures of goodness of an estimated model. We 
prefer to use AIC because it takes model complexity into 
consideration; moreover, we believe AIC takes the number of 
observations more effectively into consideration; there are many 
variations of AIC including AICu which is used for small size 
data which we believe is good fit for small size regions.  Since 
lower AIC value indicates a better model and our framework tries 
to maximize the fitness function, we will use 1/AIC as the 
interestingness measure. We use AICu if the number of object is 
less than a predefined threshold th, as defined in equation (3). Our 
work employs the interestingness measure in definition 2 to assess 
the strength of relationships between the dependent variable and 
the independent variables in a region r (also see Section 2.1 for 
further explanation): 

Definition 2:  (AIC-based Interestingness – iAIC (r) )  
1

2 [ln(2 . / ) 1]
( ) = 1

ln
2

AIC

if n th
k n SSE n

i r
if n th SSE n k

n k n k

π
 ≥ + +


< + +
− − −

           (11) 

AICFitness function then becomes: 

1

( ) = ( )* ( )
k

AIC AIC j j
j

q R i r size r β

=
∑   (12) 

Our fitness function repeatedly applies Regression analysis during 
the search for the optimal set of regions, minimizing the AIC 
value in that region. Having an externally plugged in AIC-based 
fitness function enables the clustering algorithm to probe for the 



optimal partitioning and encourages the merging of two regions 
that exhibit structural similarities. 

3.5 The Prediction Schema  
 The value of the dependent variable for an object is determines as 
follows:  first, the model finds the closest region representative 
using a 1-nearest neighbor query and then using the regression 
function associated with this region it predicts the value of the 
dependent variable. The pseudo-code of this schema is illustrated 
in figure 3. ΒOr is the regression intercept value for the region r 
and βjr is the regression equation slope coefficient for the 
independent variable j in region r. SSE_TE is the Residual Sum of 
Squares of testing-set and SSE_TR is the Residual Sum of Squares 
of training-set. 
 

 

 

 

 

 

 

 

 

 
4. EXPERIMENTAL EVALUATION 
4.1 Objectives and Design of the Experiments 
One important objective of experimental evaluation is to evaluate 
the benefits of employing representative-based clustering to 
discover regional regression functions. Another important 
objective is to compare the performances of various fitness 
functions, such as AICFitness and RsqFItness functions with 
respect to prediction accuracy.  In Section 4.2, a correlation-based 
methodology for fitness function parameter selection is 
introduced. We also assess how the regions found using our 
approach compare with regions that are selected randomly.  
In order to evaluate the true performance of our methodologies 
and to make fair comparisons, our experimental benchmark is 
composed of four steps. First, we apply OLS regression on the 
global data. Then we use our framework to discover regions and 
regional regression functions using both R-sq-based fitness 
function and AIC-based fitness function. We compare the R2 
value of newly discovered regions vs. global R2 and also, more 
importantly, the Residual Sum of Squares (SSE) of new results vs. 
global SSE to determine the total accuracy improvement.  
One could argue that any method that divides data into sub-
regions increases the R2 value and reduces the SSE value, since 
smaller numbers of objects are involved. This is true to some 
extent but to show that the regions discovered by our framework 
are significantly better than randomly selected regions, we also 
run experiments where regions are randomly discovered without 
using any fitness functions. This step is repeated five times and 
the average of the SSE is taken to be fair to the random region 
discovery. So each dataset was evaluated using the following four 
benchmarks for each parameter setting: 1) Global Regression, 2) 

Random Regions, 3) R-sq Fitness Function, 4) AIC-based fitness 
function. We have used 5-fold cross validation to determine 
prediction accuracy in the experiments. The SSE values presented 
in tables or figures represent the values from all 5 folds. 

4.2 Parameter Selection Methodology 
Utilizing AIC addresses overfitting within a region, but we still 
must deal with “global overfitting,” which can be attributed to 
having too many regions in regional regression model. The fitness 
function parameter β is used to control the number of regions to 
be discovered and thus overall model complexity. The challenge 
is to find a good value for β  for a given dataset that strikes the 
right balance between underfitting and overfitting for a given 
dataset. By choosing larger β values model complexity can be 
penalized, if this desirable for the particular application. This 
raises the question how we can determine good values for β and 
other fitness function parameters which is the subject of the 
remainder of this section. In order to find best parameter 
combinations we have developed a parameter selection 
methodology which is based on giving preference for fitness 
functions that demonstrate a high negative correlation between 
region reward and the region prediction error on unseen data. N-
fold cross validation is used to assess the prediction error on 
training and test data. Below, we describe in how this correlation 
(and others involving training accuracy) are computed in detail:  
Let 

- ψ be the region reward function  
- CRV the set of training-set test-set pairs to be used in n-fold 
cross-validation  
- O(r) be the set of objects belonging to region r 
- SSE_TE(r) be the test-set sum of squares error of r 
- SSE_TR(r) be the training-set sum of squares error of r 
- |r| be the number of training set objects belonging to r 
FOR EACH (training-set, test-set)-pair in CRV DO 
  1. Compute Regions R using training-set; 

  2. FOR EACH region r∈R  DO 
a. determine number of objects of the test-set that belong to r;      
b. determine SSE error for training set and test set objects in r 
c.STORE(ψ(r),SSE_TE(r)*|r|) & TS-OBJECTS(r)|,SSE_TR(r)) 

  3. Compute correlations between the stored entries in the table 
Basically we determine for each test set of each folding which 
objects belong to which region, and then we determine the 
prediction error for those objects using SSE1 and compute the 
correlation2 between regional rewards and regional prediction 
errors which are expected to be negative since higher rewarded-
regions are expected to have lower errors. Table 1 and Table 2 
report average correlations between regional rewards and regional 
predictions errors using different values of β. 

                                                                 
1 Some normalization have to performed to cope with size 

discrepancies between training set objects belonging to a region 
(which determine rewards) and test set objects belonging to a 
region (which determine the error on unseen example).   

2 Additionally, we compute correlations between regional training 
accuracy and regional testing accuracy and region rewards. 

   for each object in new_set 
   { 

-find closest region representative; 
-retrieve the regression function coefficients associated 
with the region (β0r and βjr for all j’s); 
-estimate the predicted value of dependent variable (ŷ) by 
using these coefficients; 
-using observed value of dependent variable(y) and 
predicted value (ŷ) estimate SSE_TE(REG2); 
-do same using global model SSE_TE(GL) 

   } 
- output the regional and global RSS (SSE) for new_set 

Figure 3. The pseudo-code for prediction schema 



 

 

The correlation estimates suggest that there is a negative 
correlation among regional reward assigned to a region and its 
prediction error which is an indication of the capability of our 
framework to identify highly correlated regions that capture and 
minimize the spatial variation among attributes. Table 3 lists 
experiments that will be discussed in the remainder of the paper, 
whose parameters have been selected using the previously 
described parameter selection methodology. The datasets used in 
the experiments are both real datasets and are explained next. 
 

4.3 A Real World Case Study: Texas Water 
Wells Arsenic Project  
Arsenic is a deadly poison, and long-term exposure to even very 
low arsenic concentrations can cause cancer [28]. Therefore, it is 
extremely crucial to understand factors that cause high arsenic 
concentrations to occur. In particular, we are interested in 
identifying other attributes that contribute significantly to the 
variance of arsenic concentration. Datasets used in the 
experiments were created using the Texas Water Department 
Ground Water Database [28] that samples Texas water wells 
regularly. The datasets were generated by cleaning out duplicate, 
missing and inconsistent variables and aggregating the arsenic 
amount when multiple samples exist.  

Our dataset has 3 spatial and 10 non-spatial attributes. Longitude, 
Latitude and Aqufier ID are the spatial attributes and Arsenic(As), 
Molybdenum(M), Vanadium(V), Boron(B), Fluoride(F), 

Silica(SiO2), Chloride(Cl), Sulfate(SiO4) are 8 of the non-spatial 
attributes which are chemical concentrations. The other 2 non-
spatial attributes are Total Dissolved Solids (TDS) and Well 
Depth (WD). The dataset has 1,653 objects.  

4.4 Boston Housing Data-Corrected 
We also evaluated our framework using the corrected version of 
Boston Housing Data which contains 506 census tracts of Boston 
from the 1970 census. We use the corrected version since this 
version includes additional spatial information including 
Longitude and Latitude. The dataset was taken from the StatLib 
library[27] maintained at Carnegie Mellon University.  
We used MEDV – the median value of homes in USD 1000's as 
the target (dependent) variable and 8 of other variables as 
independent variables. These variables include CRIM-crime rate, 
NOX-nitric oxides concentration, RM- average number of rooms, 
AGE-proportion of owner-occupied units built prior to 1940, 
RAD-index of accessibility to radial highways, TAX-property tax 
rate, PTRATIO-pupil-teacher ratio, B-black proportion population, 
and LSTAT- percentage of lower status of the population. We 
omitted some less important attributes from this regression. 

4.5 Arsenic Dataset Results 
4.5.1 SSE Improvements 
The total Sum of Square of Residuals (SSE) for the global model, 
Rsq fitness, AIC fitness and the model with randomly discovered 
regions is shown in figure 4. This SSE values are the Sum of 
Square of Residuals estimated from the training data. 
As shown in the figure, both models with R-sq fitness function 
and AIC-based fitness function reduce SSE significantly. For 
example, where global SSE is 76,134 the model with RsqFitness 
model reduces it to 31,578 and the model with AIC-fitness 
reduces it to 26,974. SSE that the model using randomly  
discovered regions produces is 52,716 which still is an 
improvement over global model as expected since lower number 
of objects are involved but both our models outperforms Random 
model as well. In order to illustrate the SSE improvement better, 
the improvements in percentages are shown in table 4. 
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Arsenic Dataset Beta Values 

AICFitness Function 1.01 1.05 1.1 1.25 

Corr(Reward, SSE_TR)  -0.287 -0.224 -0.265 -0.307 

Corr(Reward, SSE_TE)  -0.189 -0.112 -0.211 -0.165 

Boston Housing Data Beta Values 

AICFitness Function 1.01 1.03 1.1 1.7 

Corr(Reward, SSE_TR)  -0.392 -0.258 -0.48 -0.502 

Corr(Reward, SSE_TE) -0.2 -0.206 -0.377 -0.329 

Common 
parameters 

Beta 
Values(β) 

Fitness 
Function Dataset 

Exp# 1 1.01 RsqFitness Arsenic 

Exp# 2 1.03 RsqFitness Arsenic 

Exp# 3 1.05 RsqFitness Arsenic 

Exp# 4 1.1 RsqFitness Arsenic 

Exp# 5 1.01 AICFitness Arsenic 

Exp# 6 1.03 AICFitness Arsenic 

Exp# 7 1.05 AICFitnes Arsenic 

Exp# 8 1.1 RsqFitness Arsenic 

Exp# 9 1.03 Both Boston Housing 

Exp# 10 1.05 Both Boston Housing 

Exp# 11 1.1 Both Boston Housing 

Exp# 12 1.7 Both Boston Housing 

Figure 4. SSE values of four models 

Table  3. Final set of experiments and parameters used 

Table 1. Reward & Prediction Error Correlations in Arsenic  

Table 2. Reward & Prediction Error Correlations - Housing 



 
 
 
 
 
 
 
 

The results show that using randomly selected regions slightly 
improves the accuracy which is expected due to involvement of 
less objects. But both the models generated by our framework 
reduce prediction error significantly. RsqFitness reduces the error 
by a percentage of high 50s and AICFitness model reduces by 
almost 70% and produces the best results. The comparison of 
these three models is sketched in figure 5 for comparison.  

 

 

 

4.5.2 R2 and AIC value improvements  
The discovered regions illustrate great improvements in R2 values. 
R2 value was 0.6812 for the global data which means 68.12% of 
the arsenic variation can be explained by other 7 chemical 
variables for Texas-wide data. The R2 values for the top 10-
ranked regions in experiment 2 are given in Table 5. As can be 
seen from the table, our framework discovers regions that show 
high correlation; and in these 10 regions, on average 95% of 
arsenic variation can be explained using other chemical variables. 
For example, R2 value increased from 68% to 98.11% in Region 
34 with 195 water wells, which indicates that in this region there 
exist stronger correlations between arsenic and the chemicals. The 
R2 improvements with random region model are also estimated 
for each experiment. There is some improvement as expected 
since the regions are much smaller than global, but improvements 
are much less than the improvements provided by the RsqFitness 
model. The R2 values for the top 10-ranked regions using Random 
region model in experiment 2 are given in Table 6 as an example 
and they will not be provided for other experiments due to limited 
space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 

 

The high R2 values of regions in Table 5 indicates that our 
framework successfully discovers regions along with their 
regional regression functions which represent better model 
compared to linear regression applied to global data. The average 
R2 values of regions in Table 5 is 0.802 which means on average 
only around 80% of the arsenic variation can be explained by 
other chemicals. Besides, the high R2 value of Region 37 and 
Region 19 dominate the average, otherwise the improvement 
observed in all other regions can be accepted as insignificant. We 
now provide the AIC value improvements in Table 7.  
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Beta Values Random R-sq 
Fitness 

AIC-
Fitness 

1.01 31% 59% 65% 

1.03 22% 64% 68% 

1.05 26% 57% 69% 

1.1 32% 37% 69% 

Region R2 Value Size 
Texas 68.12% 1655 

Region 34 98.11% 195 
Region 27 98.05% 24 
Region 1 96.34% 20 
Region 35 95.84% 100 
Region 20 95.16% 31 
Region 3 94.81% 25 
Region 22 94.75% 92 
Region 20 94.46% 22 
Region 33 93.27% 30 
Region 6 91.16% 72 

Region R2 Value Size 
Texas 68.12% 1655 
Region 37 96.80% 47 
Region 19 89.50% 26 
Region 34 84.40% 26 
Region 44 82.00% 80 
Region 6 79.10% 34 
Region 3 78.10% 42 
Region 8 75.80% 33 
Region 1 73.70% 52 
Region 13 71.90% 34 
Region 40 71.00% 32 

Region AIC Value Size 
Texas 11,426 1655 
Region 20 3.857 22 
Region 10 14.954 21 
Region 40 28.021 27 
Region 17 32.754 29 
Region 35 36.846 43 

Table 7. AIC value improvements in Arsenic 
Dataset  

Figure 5. SSE improvements over Global Regression 

Table 4. SSE Improvements over Global Model Table 5. R2 value improvements using REG2 

Table 6. R2 value improvements using Random Regions 



Again since lower AIC value indicates better model, in fitness 
function 1/AIC was the fitness value to be maximized. AIC values 
in discovered regions show great improvement compared to 
global AIC. Since the AICFitness model provides best accuracy as 
far as Residual Sum of Squares goes as shown in Table 4, these 
improvements also indicate the regions of captures spatial 
variation and minimize the variation within each region (clusters).  

4.6 Boston Housing Dataset Results 
4.6.1  SSE Improvements 
The SSE values of Boston Housing data for the 4 models 
described previously is shown in figure 6. As shown in the figure, 
both models with R-sq fitness function and AIC-based fitness 
function reduce SSE significantly. For example in an experiment 
with Beta value of 1.01, global SSE is 10,444 and the model with 
R-sq fitness reduces it to 2,056 and the model with AIC-fitness 
reduces it to 1,916. SSE that the model using randomly discovered 
regions produces is 4,165 for these experiments and more than 
7,000 in 2 of experiments. SSE improvements in percentages are 
shown in table 8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

The SSE_TR improvements in the Boston Housing dataset 
experiments are much better than Arsenic Dataset since this 
dataset has more correlation and more spatial variance so the 
search for regions to minimize AIC or maximize Rsq value 
provides better regions and as a result better prediction accuracy. 

As far as SSE_TE is concerned Boston Housing Data also 
performs better than Arsenic dataset. Due to space limitation all 
results are not provided but table 9 exemplifies SSE_TE(REG2) 
and SSE_TE(GL) calculations which was described in  prediction 
schema in section 3.5. As shown in the table, our framework 
discovers regions and their regional regression coefficients that 
perform better prediction compared to the global model. In many 
regions better prediction is provided and the percentage of such 
regions is also provided in Table 9. Some regions with very high 
prediction error reduces the overall prediction accuracy 
improvement but still there is a significant 27% reduction in 
testing error which is open for improvement for future work. 
 

 

4.7 Discussion of Regional Characteristics 
Global and regional regression results show that the relationship 
of the arsenic concentration with other chemical concentrations 
spatially varies and is not constant over space, which provides a 
motivation for regional knowledge discovery. In other words, 
there are significant differences in arsenic concentrations in water 
wells across various regions in Texas. Some of these differences 
are found to be due to the varying impact of the independent 
variables on the arsenic concentration. In order to exemplify this 
we will compare the global regression model with the regression 
function of a particular region. The result of the global regression 
and regional regression of region 10 are shown in Tables 10 and 
11, respectively which followed by a discussion these results. 
 

 
 
 
 
 
 
 
 
 
 
 
 

The global OLS regression result suggests that Molybdenum, 
Vanadium, Boron, and Silica increase the arsenic concentration, 
but Sulfate and Fluoride decrease it Texas-wide. Moreover, 
Chloride (Cl) and Sulfate (SiO4) are not significant for global 
predictors of arsenic concentration but in some regions for 
example region 10 they are significant. Conversely, Boron, 
Fluoride, and Silica are globally significant and highly correlated 
with arsenic, but this is not the case in region 10. This information 
is crucial to domain experts who seek to determine the controlling 

Beta 
Values 

Random  
Regions 

R-sq 
Fitness 

AIC-
Fitness 

1.01 60% 81% 82% 

1.03 58% 77% 80% 

1.1 31% 70% 81% 

1.7 27% 55% 83% 

β SSE_TE 
(GL) 

SSE_TE 
(REG2) 

SSE 
Improve-

ment 

% of regions 
better 

prediction 
1.1 17,182 12,566 27% 72% 

1.7 20,028 14,799 26% 65% 

As Coef. Std.Er t P>|t| 

Mo 0.101 0.0204 4.95 0 

V 0.211 0.0048 43.55 0 

B 0.0027 0.0003 9.49 0 

Fl -0.6693 0.159 -4.34 0 

SiO2 0.0726 0.0115 6.3 0 

Cl 0.0008 0.0008 0.97 0.331 

SiO4 -0.001 0.0007 -1.87 0.062 

const -1.696 0.4902 -3.46 0.001 

R-squared –Value:                                 68% 

Adjusted R-squared Value                 68% 

Figure 6. SSE Values of 4 models for Boston Housing Data 
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Table 8. SSE_TR improvements in Boston Housing Data 

Table  10. Regression Result for Global Data 

Table 9. SSE_TE improvements in Boston Housing Data  



factors for arsenic pollution, as it can help reveal hidden regional 
patterns and special characteristics for this region. For example, in 
this region, high arsenic level is highly correlated to high Sulfate 
and Chloride levels, which is an indication of external factors that 
play a role in this region, such as a nearby chemical plant or toxic 
waste. Our framework is able to successfully detect such hidden 
regional associations between attributes. The global and regional 
regression results show that the relationship of arsenic 
concentration with other chemical concentrations spatially varies, 
and is not constant over space. In addition, there are unexplained 
differences that are not accounted for by our independent 
variables, which might be due to external factors, such as toxic 
waste or the proximity of a chemical plant 
 

 
 
 
 
 
 
 
 
 
 
 

4.8 Implementation Platform and Efficiency 
The components of the framework described in this paper were 
developed using an open-source, Java-based data mining and 
machine learning framework called Cougar^2[9], which has been 
developed by our research group [11]. All experiments were 
performed on a machine with 1.79 GHz of processor speed and 
2GB of memory. The parameter β is the most important factor in 
determining the run time. The run times of the experiments with 
respect to the β values used are shown in Figure 7.  

 
 
 

In arsenic dataset the β value of 1.05 takes longer than 1.1 or 1.5 
but it provides better results as far as SSE improvements and 
better testing and training set error correlation are concerned. So 
the time is consumed in exploring better solutions.  
The Boston Housing dataset experiments take less time mainly 
because of two reasons: 1) it has fewer objects 2) more 
importantly as results provided in section 4 suggest this dataset 
has more correlation and more spatial variance so the search for 
regions to minimize AIC or maximize Rsq value takes less time 
compared to Arsenic data. We observed that more than 80% of the 
computational resources are allocated for determining regional 
fitness values when discovering regions. Even though our 
framework repeatedly applies regression analysis to each explored 
region combination until no further improvement occurs, it is still 
efficient compared to approaches in which regression is applied 
and models were compared that many times using other statistical 
tools.  

5. CONCLUSION 
This paper proposes a novel regression framework for spatial 
datasets, which focuses on discovering regional regression 
functions that are associated with contiguous areas in the subspace 
of the spatial attributes that we call “regions.” Unlike other 
research that employs local or global regression, our approach 
emphasizes regional patterns and provides a comprehensive 
methodology to help discover them. The proposed framework 
discovers regions by employing representative-based clustering 
algorithms that maximize AIC-based or Rsq-based fitness 
functions; next, regional knowledge (regression functions in our 
case) is extracted from the obtained regions. In general, different 
discovered regions capture different relationships between 
dependent and independent variables. This regional knowledge is 
crucial for domain experts for understanding the underlying 
structure of the data.  
We also developed a generic correlation-based methodology to 
evaluate and select fitness functions and parameters of fitness 
functions for a given dataset. This capability is critical to help deal 
with overfitting in regional regression for more accurate 
prediction. Compared to competing approaches, our approach 
does not assume that regions are a priori given, and provides 
sophisticated clustering techniques to find “good” regions; 
moreover, we provide a methodology to deal with overfitting and 
for selecting fitness functions that are suitable for the given data. 
We claim that none of the competing approaches address both 
issues in their proposed frameworks. 
Our proposed framework was tested and evaluated in a real world 
case study that analyzes regional correlation patterns among 
arsenic and other chemical concentrations in Texas water wells. 
The framework was also tested on the corrected version of the 
Boston Housing dataset. We demonstrated that our framework can 
effectively and efficiently identify highly correlated regions, along 
with the regional regression functions which capture the spatial 
variation of attributes better than global models and builds better 
models for prediction.  

We plan to develop other versions of AICFitness function where 
the fitness function is scaled to penalize “bad” regions more 
harshly. We also plan to investigate other information criteria like 
ICOMP [3] and BIC [23] and regional regression approaches that 
use validation sets to get a better handle on overfitting. 
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Boston Housing RsqFitness Boston Housing AICFitness

As Coef. Std.Er t P>|t| 

Mo 0.7297 0.2731 2.67 0.013 

V 0.234 0.031 7.52 0 

B -0.007 0.004 -1.74 0.094 

Fl -4.996 3.4254 -1.46 0.156 

SiO2 -0.071 0.0886 -0.8 0.428 

Cl 0.0138 0.0071 2.91 0.066 

SiO4 -0.019 0.0142 -3.34 0.192 

const 7.3982 4.0134 1.84 0.076 

R-squared –Value                             95.03% 

Adjusted R-squared Value            93.73% 

Figure 7. Run Times vs. β Values 

Table  11. Regression Result for Region 10 
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