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Abstract. Representative-based clustering algorithms are quite popular due to 
their relative high speed and because of their sound theoretical foundation. On 
the other hand, the clusters they can obtain are limited to convex shapes and 
clustering results are also highly sensitive to initializations. In this paper, a 
novel agglomerative clustering algorithm called MOSAIC is proposed which 
greedily merges neighboring clusters maximizing a given fitness  
function.  MOSAIC uses Gabriel graphs to determine which clusters are 
neighboring and approximates non-convex shapes as the unions of small 
clusters that have been computed using a representative-based clustering 
algorithm. The experimental results show that this technique leads to clusters of 
higher quality compared to running a representative clustering algorithm stand-
alone. Given a suitable fitness function, MOSAIC is able to detect arbitrary 
shape clusters. In addition, MOSAIC is capable of dealing with high 
dimensional data. 

Keywords: Post-processing, hybrid clustering, finding clusters of arbitrary 
shape, agglomerative clustering, using proximity graphs for clustering. 

1   Introduction 

Representative-based clustering algorithms form clusters by assigning objects to the 
closest cluster representative. k-means is the most popular representative-based 
clustering algorithm: it uses cluster centroids as representatives and iteratively 
updates clusters and centroids until no change in the clustering occurs. k-means is a 
relatively fast clustering algorithm with a complexity of O(ktn), where n is the 
number of objects, k is the number of clusters, and t is the number of iterations. The 
clusters generated are always contiguous. However, when using k-means the number 
of clusters k has to be known in advance, and k-means is very sensitive to 
initializations and outliers. Another problem of k-means clustering algorithm is that it 
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cannot obtain clusters that have non-convex shapes [1]: the shapes that can be 
obtained by representative-based clustering algorithms are limited to convex 
polygons. 

In theory, agglomerative hierarchical clustering (AHC) [2] is capable of detecting 
clusters of arbitrary shape. However, in practice, it performs a very narrow search, 
merging the two closest clusters without considering other merging candidates and 
therefore often misses high quality solutions. Moreover, its time complexity is O(n2) 
or worse. Finally, many variations of AHC obtain non-contiguous clusters. [3] 

 
 

(a) Input                (b) Output 
 
Fig. 1. An illustration of MOSAIC’s approach 
 

This paper proposes a hybrid clustering technique that combines representative-
based with agglomerative clustering trying to maximize the strong points of each 
approach. A novel agglomerative clustering algorithm called MOSAIC is proposed, 
which greedily merges neighboring clusters maximizing a given fitness function and 
whose implementation uses Gabriel graphs [4] to determine which clusters are 
neighboring. Non-convex shapes are approximated as the union of small convex 
clusters that have been obtained by running a representative-based clustering 
algorithm, as illustrated in Fig. 1. Creating mosaics in art is the process of assembling 
small pieces to get a sophisticated design. Similarly, the proposed MOSAIC algorithm 
pieces convex polygons together to obtain better clusters.  
 

1. Run a representative-based clustering algorithm to create a 
large number of clusters. 

2. Read the representatives of the obtained clusters. 
3. Create a merge candidate relation using proximity graphs. 
4. WHILE there are merge-candidates (Ci ,Cj) left  

BEGIN 
Merge the pair of merge-candidates (Ci,Cj), that    
enhances fitness function q the most, into a new  
cluster C’ 
Update merge-candidates: 
∀C Merge-Candidate(C’,C) ⇔  
  Merge-Candidate(Ci,C) ∨  Merge-Candidate(Cj,C)  

    END 
RETURN the best clustering X found. 

 
Fig. 2. Pseudo code for MOSAIC 

 



Relying on proximity graphs the MOSAIC conducts a much wider search which, 
we claim, results in clusters of higher quality. Moreover, the expensive, 
agglomerative clustering algorithm is only run for usually less than 1000 iterations; 
therefore, the impact of its high complexity on the overall run time is alleviated, 
particularly for very large data sets. Furthermore, the proposed post-processing 
technique is highly generic in that it can be used with any representative-based 
clustering algorithm, with any proximity graph and with any cluster evaluation 
function. Fig. 2 gives the pseudo code of the proposed MOSAIC algorithm.    

In summary, MOSAIC merges pairs of neighboring clusters maximizing an 
externally given fitness function q, and this process is continued until only one cluster 
is left. Finally, the best clustering is determined and returned. Using cluster 
representatives obtained from a representative-based clustering algorithm as an input, 
a proximity graph is generated to determine which of the original clusters are 
neighboring and a merge-candidate relation is constructed from this proximity graph. 
When clusters are merged, this merge-candidate relation is updated incrementally 
without any need to regenerate proximity graphs.  

The main contributions of the paper are; 
− It introduces a hybrid algorithm that combines strong features of representative-

based clustering and agglomerative clustering. 
− The algorithm provides flexibility by enabling to plug-in any fitness functions 

and is not restricted to any specific cluster evaluation measure. 
− The algorithm conducts a much wider search, compared to traditional 

agglomerative clustering algorithms, by considering neighboring clusters as 
merge candidates. 

The organization of our paper is as follows. Section 2 describes MOSAIC in more 
detail. Then the performance study of MOSAIC and the comparative study with 
DBSCAN and k-means are explained in section 3. Related work is reviewed in 
Section 4, and a conclusion is given in Section 5 respectively. 

2   Post-Processing with MOSAIC 

This section discusses MOSAIC in more detail. First, proximity graphs are introduced 
and their role in agglomerative clustering is discussed. Next, an internal cluster 
evaluation measure will be discussed that will serve as a fitness function in the 
experimental evaluation. Finally, MOSAIC’s complexity is discussed  

2.1   Using Gabriel Graphs for Determining Neighboring Clusters  

Different proximity graphs represent different neighbor relationships for a set of 
objects. There are various kinds of proximity graphs [5], with Delaunay graphs [6] 
(DG) being the most popular ones. The Delaunay graph for a set of cluster 
representatives tells us which clusters of a representative-based clustering are 
neighboring and the shapes of representative-based clusters are limited to Voronoi 
cells, the dual to Delaunay graphs. 



Delaunay triangulation (DT) [7] is the algorithm that constructs the Delaunay 
graphs for a set of objects. Unfortunately, using DT for high dimensional datasets is 

impractical since it has a high complexity of )( 2
d

nΟ  (when d>2), where d is the 
number of dimensions of a data set. Therefore, our implementation of MOSAIC uses 
another proximity graph called Gabriel graphs (GG) [4] instead, which is a sub-graph 
of the DG. Two points are said to be Gabriel neighbors if their diametric sphere does 
not contain any other points. The pseudo code of an algorithm that constructs the GG 
for a given set of objects is given in Fig. 3. Constructing GG has a time complexity 
of )( 3dnΟ  but faster, approximate algorithms ( )( 2dnΟ ) to construct GG exist [8]. 

 
Let R = {r1, r2,…, rk}, be a set of cluster representatives 
FOR each pair of representatives (ri, rj),  
  IF for each representative rp , the following inequality  

      ),(),(),( 22
pjpiji rrdrrdrrd +≤  

      where p � i, j and rp ∈  R, is true, 
  THEN ri and rj are neighboring.  
d(ri, rj) denotes the distance of representatives ri and rj. 

 
Fig. 3. Pseudo code for constructing Gabriel graphs. 

 
Gabriel graphs are known to provide good approximations of Delaunay graphs 

because a very high percentage of the edges of a Delaunay graph are preserved in the 
corresponding Gabriel graph [9]. MOSAIC constructs the Gabriel graph for a given 
set of representatives, e.g. cluster centroids in the case of k-means, and then uses the 
Gabriel graph to construct a boolean merge-candidate relation that describes which of 
the initial clusters are neighboring. This merge candidate relation is then updated 
incrementally when clusters are merged. The illustration of the Gabriel graph 
construction in MOSAIC is shown in Fig. 4 in which cluster representatives are 
depicted as squares, objects in a cluster a represented using small blue circles, and 
clusters that have been obtained by a representative algorithm are visualized using 
doted lines. 

 
 

 
Fig. 4. Gabriel graph for clusters generated by a representative-based clustering algorithm 



2.2   Cluster Evaluation Measures for Traditional Clustering 

Many evaluation measures have been proposed in the literature [2]. In this paper, we 
use Silhouettes [10] which is an internal evaluation measure that has been widely used 
to assess cluster quality. Silhouettes is a popular cluster evaluation technique that 
takes into consideration both cohesion and separation. The definition of Silhouettes is 
as follows: 
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In the formula (1), bi is average dissimilarity of an object oi to all other objects oj in 

the same cluster. ai is minimum of average dissimilarity of an object oi to all objects oj 
in another cluster (the closest cluster). To measure quality not for one object but entire 
clustering, we use average of Silhouettes over whole dataset. The fitness function 
q(X) is defined as follows: 
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where n is the number of objects in a dataset.  

2.3   Complexity 

The time complexity of our proposed hybrid clustering algorithm depends on two 
factors: the complexity of the representative-based clustering algorithm and of the 
MOSAIC algorithm itself. Analyzing MOSAIC’s complexity, we already discussed 

that the cost for constructing the Gabriel Graph is O(k3). After that, we have to merge 
the k vertices of the Gabriel Graph. Basically, a Delaunay Graph is a planar graph; 
since a Gabriel Graph is a connected subset of a Delaunay Graph, we have that the 
number e of edges of our GG is k-1 ≤ e ≤ 3k-6. This means that the number of edges e 
in the graph is always linear with respect to the number of vertices: e=O(k). Thus, at 
the ith iteration, O(k)-i new merge-candidates are created for the newly created cluster 
that have to be evaluated, which adds up to O(k2) fitness function evaluations: (O(k-1) 
+ O(k-2) + . . . + 1). Putting this all together, we obtain a time complexity of the 
MOSAIC algorithm of: O(k3 + k2*(O(q(X)))  where O(q(X)) is the time complexity 



of the fitness function. A lower complexity for MOSAIC can be obtained if the fitness 
of a particular clustering can be computed incrementally during the merging stages 
based on results of previous fitness computations.  

3 Experiments 

We compare MOSAIC using the Silhouettes fitness function with DBSCAN and k-
means2. Due to space limitations we are only able to present a few results; a more 
detailed experimental evaluation can be found in [3]. We conducted our experiments 
on a Dell Inspiron 600m laptop with a Intel(R) Pentium(R) M 1.6GHz processor with 
512 MB of RAM. We set up three experiments that use the following datasets: an 
artificial dataset called 9Diamonds[11] consisting of 3,000 objects with 9 natural 
clusters, Volcano[11] containing 1,533 objects, Diabetes[12] containing 768 objects, 
Ionosphere[12] containing 351 objects, and Vehicle[12] containing 8,469 objects.  
 
Experiment 1: The experiment compares the clustering results generated by running 
k-means with k=9 with MOSAIC for the 9Diamonds dataset. 
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(a) Clusters created 
by k-means with  
k = 9 

(b) MOSAIC 
clusters’ input 
generated by k-
means with k = 100 

(c) MOSAIC output 
with k = 9 

(d) DBSCAN with 
MinPts = 35 and  
ε = 0.05 

 
Fig. 5. Experimental results for the 9Diamonds dataset 

 
Discussion: As shown in Fig. 5 (a), k-means is not able to discover the natural 
clusters. MOSAIC, on the other hand, is able to discover the natural clusters by 
iteratively merging the sub-clusters that have been depicted in Fig. 5 (b) by 
maximizing the Silhouettes fitness function: the clustering with the highest fitness 
value is displayed in Fig. 5 (c). 
  
Experiment 2: The experiment compares the clustering results generated by 
MOSAIC and DBSCAN for two two-dimensional datasets: 9Diamonds and Volcano.  
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Discussion: To use DBSCAN, we have to choose values for two parameters: MinPts 
and ε. One challenge of this experiment is to find proper values for those parameters. 
First, we used the procedure that has been proposed in the original paper [13] to select 
values for MinPts and ε. Unfortunately, this procedure did not work very well: 
DBSCAN just created a single cluster for both datasets tested. Therefore, relying on 
human intuition, we employed a manual, interactive procedure that generated 80 pairs 
of parameters for DBSCAN. The parameters selected by the second procedure lead to 
much better results. We observed that ε values that produce better clustering results 
are much smaller than those suggested by analyzing the sorted k-dist graph. Fig. 5 (d) 
depicts one of the best clustering results obtained for DBSCAN for the 9Diamonds 
dataset. MOSAIC correctly clusters the dataset while DBSCAN reports a small 
number of outliers in the left corner of the bottom left cluster.  

Volcano is a real world dataset that contains chain-like patterns with various 
densities. In general, DBSCAN and MOSAIC produced results of similar quality for 
this dataset. Fig. 6 depicts a typical result of this comparison: MOSAIC does a better 
job in identifying the long chains in the left half of the display (Fig. 6 (a)), whereas 
DBSCAN correctly identifies the long chain in the upper right of the display (Fig. 6. 
(b)). DBSCAN and MOSAIC both fail to identify all chain patterns.  
  

 
(a) MOSAIC 

 
(b) DBSCAN with MinPts = 5 and ε = 0.02 

 
Fig. 6. Experimental results of MOSAIC and DBSCAN on Volcano dataset 

 
Experiment 3: This experiment compares MOSAIC and k-means on three high 
dimensional datasets: Vehicle, Ionosphere, and Diabetes. The quality of clustering 
results is compared using the Silhouettes cluster evaluation measure. MOSAIC’s 
input were 100 clusters that have been created by running k-means. Next, MOSAIC 
was run and its Silhouette values were averaged over its 98 iterations. These 
Silhouette values were compared with the average Silhouette values obtained by 
running k-means with k = 2 – 99. Table 1 summarizes the findings of that experiment. 



Table 1.  Information for the high dimensional datasets and experimental results 

Dataset Number 
of objects 

Number of 
dimensions 

Average Silhouette 
coefficient of k-means 

Average Silhouette 
coefficient of MOSAIC 

Vehicle 8,469 19 0.20013 0.37157 
Ionosphere 351 34 0.2395 0.26899 
Diabetes 768 8 0.23357 0.24373 

 
Discussion: MOSAIC outperforms k-means quite significantly for the Vehicle dataset 
and we see minor improvements for the Ionosphere and Diabetes datasets. 

4   Related Work 

Discovering arbitrary shape clusters is very important in many domains such as hot 
spot detection, region discovery and spatial data mining. Jiang [1] proposes spatial 
clustering techniques that employ hierarchical clustering accompanied by tree-like 
diagrams and claim that this is a beneficiary for visualizing cluster hierarchies at 
different levels of detail. Anders [14] developed an unsupervised graph-based 
clustering algorithm, called Hierarchical Parameter-free Graph Clustering (HPGCL) 
for spatial data analysis. Various proximity graphs are used to define coarse-to-fine 
hierarchical segmentation of data.  

Density-based clustering methods [13, 15, 16, and 17] have been found to be 
efficient for discovering dense arbitrary shaped clusters, such as the ones in the 
9Diamonds dataset. The main drawbacks of density-based clustering algorithms are 
their need for parameters tuning, and their usually poor performance for datasets with 
varying density. Moreover, they do not seem to be suitable for high dimensional data.  

There has been significant research centering on hybrid clustering. CURE is a 
hybrid clustering algorithm that integrates a partitioning algorithm with an 
agglomerative hierarchical algorithm [18]. CURE agglomeratively merges the two 
clusters that have the closest pair of representatives, and updates mean and a set of 
representative points. CHAMELEON [19] provides a sophisticated two-phased 
clustering algorithm. In the first phase, it uses a multilevel graph partitioning 
algorithm to create an initial set of clusters and in the second phase it iteratively 
merges clusters maximizing relative inter-connectivity and relative closeness. 
MOSAIC also relies on two-phase clustering but it has a major advantage over 
CHAMELEON and CURE by being able to plug-in any fitness function and not being 
restricted to evaluate clusters based on inter-connectivity and closeness. Lin and 
Zhong [20 and 21] propose hybrid clustering algorithms that combine representative-
based clustering and agglomerative clustering methods. However they employ 
different merging criteria and perform a narrow search that only considers a single 
pair of merge candidates. Surdeanu [22] proposes a hybrid clustering approach that 
combines agglomerative clustering algorithm with the Expectation Maximization 
(EM) algorithm. 



5 Conclusion 

This paper proposes a novel approach that approximates arbitrary-shape clusters 
through unions of small convex polygons that have been obtained by running a 
representative-based clustering algorithm. An agglomerative clustering algorithm 
called MOSAIC is introduced that greedily merges neighboring clusters maximizing 
an externally given fitness function. Gabriel graphs are used to determine which 
clusters are neighboring. We claim that using proximity graphs increases the number 
of merge candidates considerably over traditional agglomerative clustering algorithms 
that only consider “closest” clusters for merging, resulting in clusters of higher 
quality. MOSAIC is quite general and can be used with any representative-based 
clustering algorithm, any proximity graph, and any fitness function. Moreover, we 
claim that MOSAIC can be effectively applied to higher dimensional data. 

MOSAIC also has some similarity with agglomerative grid-based clustering 
algorithms; both approaches employ micro-clusters which are grid-cells in their 
approach and convex polygons in our approach and greedily merge neighboring 
clusters. However, our approach is much more general by supporting more variety of 
shapes and it allows for convex polygons of different sizes. On the other hand, for a 
given grid structure it is easy to determine which clusters are neighboring, which is 
not true for our approach. 

We conducted experiments whose results suggest that using MOSAIC in 
conjunction with k-means can significantly improve cluster quality. Using Silhouettes 
function as a fitness function we also compared MOSAIC with DBSCAN; both 
algorithms obtained results of similar quality for most datasets tested. However, 
before using DBSCAN we had to spend significant efforts for parameter tuning which 
is not the case when using MOSAIC which only requires a single input parameter: the 
fitness function.  

However, based on our initial experimental results, we don’t believe that the 
Silhouettes function is the best possible fitness function to find arbitrary shape 
clusters. Consequently, in our current research we investigate to find more suitable 
fitness functions for this purpose. 
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