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a b s t r a c t

Feature-based hot spots are localized regions where the attributes of objects attain high values. There is

considerable interest in automatic identification of feature-based hot spots. This paper approaches the

problem of finding feature-based hot spots from a data mining perspective, and describes a method that

relies on supervised clustering to produce a list of hot spot regions. Supervised clustering uses a fitness

function rewarding isolation of the hot spots to optimally subdivide the dataset. The clusters in the

optimal division are ranked using the interestingness of clusters that encapsulate their utility for being

hot spots. Hot spots are associated with the top ranked clusters. The effectiveness of supervised

clustering as a hot spot identification method is evaluated for four conceptually different clustering

algorithms using a dataset describing the spatial distribution of ground ice on Mars. Clustering solutions

are visualized by specially developed raster approximations. Further assessment of the ability of

different algorithms to yield hot spots is performed using raster approximations. Density-based

clustering algorithm is found to be the most effective for hot spot identification. The results of the hot

spot discovery by supervised clustering are comparable to those obtained using the G� statistic, but the

new method offers a high degree of automation, making it an ideal tool for mining large datasets for the

existence of potential hot spots.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Spatial datasets abound in geosciences, making it difficult for
the research community to turn all this data into knowledge. One
solution is to apply spatial data mining techniques to geospatial
datasets in order to automatically discover interesting relations or
places that may exist in the dataset. Existing works on spatial data
mining (Koperski and Han, 1995; Munro et al., 2003; Huang et al.,
2004, 2006; Zhang et al., 2004) tend to focus on discovering
systematic relations between spatial variables. For example, in a
spatial co-location problem (Huang et al., 2004, 2006; Zhang et al.,
2004), the goal is to find subsets of features that are located
together in spatial proximity, throughout the spatial extent of the
dataset. In other words, the goal is to discover globally valid
proximity relationships between certain features. On the other
hand, less attention has been given to the discovery of feature-
based hot spots in spatial datasets. The term ‘‘hot spots’’ is most
often used to describe clustered point-event patterns. Such hot
spots are determined only by arrangement of the objects’ spatial
coordinates without taking into account the attribute values of

the data. However, in this paper, we are concerned with feature-
based hot spots—localized regions of high or low attribute values.

Multi-feature hot spots—places where multiple features attain
values from the tails of their respective distributions—are of
special interest. Multi-feature-based hot spots are interesting
because they may indicate a rare local process or an unlikely set of
circumstances that forces several features to have non-average
values sync with one another. For example, in a dataset describing
spatial distribution of temperature, humidity, and vegetation
cover across a given area, a region may be found that is
characterized by high temperature, low humidity, and dense
vegetation cover. Such a place is worthy of closer examination, as
this particular combination of variables is unexpected (vegetation
is usually poor in hot and dry places). Closer examination may
reveal an a priori unknown factor that accounts for such a
combination (possibly irrigation).

The presently popular method of finding feature-based hot
spots in spatial datasets relies on the G� statistic (Getis and Ord,
1992; Ord and Getis, 1995). The G� statistic detects local pockets
of spatial association. The value of G� depends on an a priori given
scale of the packets and is calculated for each object individually.
Graphical visualization of the results of G� calculations reveals hot
spots (aggregates of objects with values of G� higher than
expected) and cold spots (aggregates of objects with values of
G� lower than expected). Note that such aggregates are not
formally-defined clusters, as the G�-based method has no built-in
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clustering capabilities. Instead, hot spots are inferred from
visualization, utilizing the ability of the human brain to isolate
‘‘clusters’’ in an image.

Our proposed method offers an alternative approach for
identification of hot spots. It does not rely on local statistics;
instead, it is rooted in data mining methodology, and, in
particular, takes advantage of the notion of supervised clustering.
Supervised clustering (Eick et al., 2004) uses a fitness function in
order to maximize the purity of the clusters. The fitness function
is constructed to reward aggregated objects having non-average
values of their features. When subjected to such a fitness function,
the clustering procedure is guided toward a solution that
emphasizes hot spots. Thus, in our method hot spots are identified
as formal clusters of objects—visualization is not necessary for
their recognition. This makes our method especially useful in the
context of automated mining of large datasets for identifying
potentially interesting hot spots. For example, in the presence of
multiple features, our method can be set up to compile a database
of all possible hot spots, including hot spots of individual features,
all combinations of double-feature hot spots, etc.

Methods of finding geometrically defined hot spots have
been investigated in the past both explicitly and implicitly.
Because the geometrically defined hot spots are clusters with
respect to spatial coordinates, their detection lies at the heart of
spatial data mining and has been investigated in Murray and
Estivill-Castro (1998), Openshaw (1998) and Miller and Han
(2001). More explicitly, detection of hot spots using a variable
resolution approach (Brimicombe, 2005) was investigated in
order to minimize the effects of spatial superposition. In Tay
et al. (2003), a region-growing method for the discovery of hot
spots was described, which selects seed points and then grows
clusters from these seed points by adding neighboring points as
long as a density threshold condition is satisfied. Definition of hot
spots was extended in Williams (1999) and Kulldorff (2001) to
cover a set of entities that are of some particular, but crucial,
importance to the experts. This is a feature-based definition,
somewhat similar to, but less specific than, what we are using in
the present paper. This definition was applied to relational
databases of spatio-temporal domain to find important nuggets
of information. As mentioned earlier, an approach to identifying
feature-based hot spots based on local statistics was developed in
Getis and Ord (1992) and Ord and Getis (1995). Finally, in Eick
et al. (2006), feature-based hot spots are defined in a similar
sense, as in this paper, but their discovery is limited to single-
feature datasets.

The overall framework of using the concept of supervised
clustering for the identification of hot spots is presented in Section
2.1. Section 2.2 presents a description of four conceptually
different clustering algorithms considered for use within the
supervised framework. We report on the effectiveness of our
method in Section 3 by evaluating a case study pertaining to the
spatial distribution of ground ice on Mars. The optimal clustering
solutions are subjected to detailed statistical analysis, with the
aim of identifying the clustering algorithm best suited to the task
of finding hot spots. In Section 4, we present an ancillary method
aimed at transforming a clustering solution into a segmentation
solution. The difference between a cluster and a segment is that
whereas a cluster is a set of objects, a segment is defined as a
polygon that has an area and transparent neighborhood relations
with other segments. Thus, a segmentation solution can be
subjected to additional statistical analysis that is not practical
for a clustering solution; the result of such an analysis allows for
additional discrimination between different clustering algorithms.
For the end user, the segmentation solution provides more
effective visualization, and facilitates a query of identified hot
spots by additional attributes related to the properties of the area

they occupy. Discussion and future work directions are given in
Section 5.

2. Supervised clustering methodology

2.1. Framework

The relevant dataset consists of point objects, each character-
ized by a list of real-valued features. The basic tenet of our
approach is to use a clustering algorithm to divide a dataset O into
a set of clusters X ¼ fc1; . . . ; ckg, ci � O, in such a way as to
maximize a fitness function qðXÞ. The clusters are disjointed and
contiguous but not exhaustive; some objects in O may not be
assigned to any cluster. The number of clusters, k, is either set a

priori or the best value of k is determined by clustering algorithms,
depending on the capabilities of clustering techniques.

For the task of hot spot identification, the fitness function must
be constructed to reward isolation of hot spots. We propose the
following fitness function q:

qðXÞ ¼
X
c2X

ðiðcÞ � kckbÞ (1)

where iðcÞ is the interestingness measure of a cluster c—a quantity
designed to reflect the degree to which clusters can be considered
hot spots. The region ‘‘size’’ (number of objects in the cluster) is
denoted by kck, and the quantity ðiðcÞ � kckbÞ is a ‘‘reward’’ given
to a cluster c. A cluster reward is proportional to its interesting-
ness, but a bigger cluster receives a higher reward than a smaller
cluster having the same value of interestingness to reflect a
preference given to larger clusters. The premium put on the size of
the cluster is controlled by the user-determined value of the
parameter b40. We seek a clustering solution X such that the sum
of rewards over all of its constituent clusters is maximized.

2.2. Interestingness of clusters

An entry in a geospatial dataset has the form
ðhspatialcoordinatesi; hfeature1i; . . . ; hfeaturemiÞ, where m is the
number of features. The numerical values of the features come
from their respective distributions, which could have quite
different functional forms. Therefore, it is necessary to normalize
the values of different features to a common meaning. The two
most important properties of any distribution are its center ðSÞ,
which indicates the location of the bulk of the data, and its scale
ðsÞ, which indicates dispersion around the center. For features
having bell-shaped distributions, S and s are easily estimated
using the mean and standard deviation, respectively. However,
mean and standard deviation are biased estimates of S and s for
features with skewed distributions of their values. Thus, in
general, S and s should be calculated using more robust statistical
estimators. For S, a robust estimator is the trimmed mean
calculated by discarding a certain percentage of the lowest and
the highest values. Note that the median is a particular example of
the trimmed mean. For s, a number of robust estimators are used,
including the median absolute deviation (MAD) as well as Sn and
Qn estimators introduced by Rousseeuw and Croux (1993).

Regardless of the method used to estimate S and s, the feature
values are transformed into their z-scores, zj ¼ ðxj � SjÞ=sj,
j ¼ 1; . . . ;m. Strictly speaking, the term ‘‘z-score’’ is used only in
the context of S being the mean and s being the standard
deviation, but an extension of that term to data normalization
using any estimate of the center and the scale is quite natural. The
z-score is the number of scales of a given feature value above or
below its center. In this case, the centers of all features are
transformed to 0; the positive values of z indicate upward
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deviations from the centers, whereas the negative values of z

indicate downward deviations from the centers. The objects in the
transformed database, O ¼ ðhspatial coordinatesi; hz1i; . . . ; hzmiÞ, are
normalized inasmuch as the same values of different transformed
features indicate the same amount of relative deviations from the
locations of their centers.

Our approach employs an interestingness function i on top of
the transformed dataset O: for a given set of m features, the
interestingness of an object o 2 O is measured by zðoÞ defined as
follows:

zðoÞ ¼ z1ðoÞ � � � � � zmðoÞ. (2)

Objects with jzðoÞjb0 are in locations where the features have
values from the tails of their respective distributions. The
interestingness of a cluster is computed as the average interest-
ingness of the objects belonging to it

iðcÞ ¼

So2czðoÞ

kck

����
����� zth

� �
if

So2czðoÞ

kck

����
����4zth;

0 otherwise:

8<
: (3)

In Eq. (3), the threshold zth is introduced to weed out (possibly
large) regions with iðcÞ close to 0, so they do not contribute to
the fitness function qðXÞ. The interestingness threshold zth

prevents solutions from containing only large clusters of low
interestingness.

2.3. Clustering algorithms

Our method works with any clustering algorithm, but not all
the clustering algorithms are expected to be equally suitable for
the discovery of hot spots. We evaluate which of the major
approaches to clustering yields the best results. To this end we
adapt four different algorithms with our fitness function qðXÞ

(Eq. 1) exemplifying representative-based, agglomerative, grid-
based, and density-based approaches to clustering.

Representative-based clustering algorithms. Representative-
based clustering algorithms, sometimes called prototype-based
clustering algorithms in the literature, construct clusters by
seeking a set of representatives; clusters are then created by
assigning objects in the dataset to the closest representatives. We
use a modification of the ‘‘partition around medoid’’ (PAM)
algorithm (Kaufman and Rousseeuw, 1990), which we refer to as
SPAM (Supervised PAM). SPAM starts its search with a randomly
created set of representatives, and then greedily replaces
representatives with non-representatives as long as qðXÞ im-
proves. SPAM requires a number of clusters, k, to be set a priori.

Agglomerative algorithms. Due to the fact that representative-
based algorithms construct clusters using nearest neighbor
queries, the shapes of clusters that can be discovered are limited
to convex polygons (Voronoi cells). However, interesting regions,
hot spots in particular, may not be restricted to convex shapes.
Agglomerative clustering algorithms are capable of yielding
solutions with clusters of arbitrary shapes by constructing unions
of small convex polygons. We use the MOSAIC algorithm (Choo
et al., 2007), which uses a set of small convex clusters as its input.
In our implementation, the input is provided by the SPAM
solution. The algorithm is then modified to greedily merge
neighboring clusters as long as qðXÞ improves. Gabriel graphs
(Gabriel and Sokal, 1969) are used to determine which clusters are
neighbors. The number of clusters, k, is then determined by the
clustering algorithm itself.

Grid-based algorithms. SCMRG (Supervised Clustering using
Multi-Resolution Grids) (Eick et al., 2006) is a hierarchical, grid-
based method that utilizes a divisive, top down search. The spatial
space of the dataset is partitioned into grid cells. Each grid cell at a

higher level is partitioned further into smaller cells at the lower
level, and this process continues if the sum of the rewards of the
qðXÞ of the lower level cells is not decreased. The regions returned
by SCMRG usually have different sizes, because they were
obtained at different levels of resolution. Moreover, a cell is
partitioned further only if it improves its fitness at a lower level of
resolution. The number of clusters, k, is calculated by the
clustering algorithm.

Density-based algorithms. Density-based algorithms work on
the idea that the influence of each data point can be modeled
using an influence function. The clusters are extracted from an
overall density function, a sum of the influence functions of all the
data points. We adapt an SCDE (Supervised Clustering Using
Density Estimation) algorithm (Jiang et al., 2007) to feature-based
hot spot discovery. Each object o in our database is assigned a
value of zðoÞ (see Eq. (2); positive and negative values of zðoÞ

indicate different types of dependence among the underlying
features. The influence function of object o, f Gaussðp; oÞ, is defined
as a weighted influence function of the product of zðoÞ and a
Gaussian kernel in order to prevent grouping points with positive
and negative values of z into the same cluster

f Gaussðp; oÞ ¼ zðoÞ e�dðp;oÞ2=2s2

. (4)

The parameter s determines the strength of data point
influence and dðp; oÞ is the distance between object o and p.

The density function, CðpÞ at point p, is then computed as:

CðpÞ ¼
X
o2O

f Gaussðp; oÞ. (5)

Unlike traditional density estimation techniques, which only
consider the spatial coordinates of data points, our density
function also takes into account the non-spatial feature of interest
zðoÞ in its influence function. SCDE uses a hill-climbing algorithm
to compute locations of the local maxima, as well as the local
minima of the density function C. These locales act as cluster
attractors; clusters are formed by associating objects in the
database with the attractors. For a maximum-derived attractor, a
cluster contains all objects whose density attractor has a density
CðoÞ4xmax, and for a minimum-derived attractor, a cluster
contains all objects whose density attractor has a density
CðoÞoxmin, where the density thresholds xmax and xmin are user-
defined parameters. The clusters encountered in the hill-climbing
search path are greedily merged as long as qðXÞ improves. The
number of clusters, k, is the result of the calculation.

3. Example: distribution of ground ice on Mars

3.1. Dataset description

We empirically evaluate our method on a dataset that pertains
to the spatial distribution of ground ice on the planet Mars. This
particular case study was selected because it is the focus of one of
the authors’ (TFS) ongoing research into the properties of the
Martian subsurface. It is widely believed (Clifford, 1993) that a
significant quantity of water resides in the Martian subsurface in
the form of ground ice. Ice may be the only source of water on the
planet outside of polar caps, and understanding its distribution is
an important goal of the planetary science community.

Two different features pertaining to ground ice can be
extracted from the data; we refer to these as ‘‘shallow-ice’’ and
‘‘deep-ice’’ features, because they pertain to the abundance of ice
in the shallow and deep subsurface, respectively. Values of
the ‘‘shallow-ice’’ features are obtained remotely from orbit by
the gamma-ray spectrometer (Feldman, 2004), which measures
an abundance of hydrogen, a telltale sign of ice in the upper 1
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meter of the subsurface. These measurements are translated into
the percentage of ice present in the top soil by mass and reported
on a grid having 5� � 5� resolution. In the equatorial regions of
Mars, values of up to 8% are reported. Values of ‘‘deep-ice’’
features are inferred from the spatial distribution of so-called
rampart craters (Barlow, 1988). Rampart craters, which constitute
about 20% of all Martian craters, are surrounded by ejecta that
have patterns looking like splashes and are thought to form in
locations rich in subsurface ice. The locally defined relative
abundance of rampart craters can be considered a proxy for
the abundance of ‘‘deep-ice,’’ located at depths of up to few
kilometers. We calculate the relative abundance of rampart
craters using a 5� � 5� moving window technique applied to the
Martian crater database (Barlow, 1988).

For the purpose of our evaluation, the values of shallow-ice
hfeature1i and deep-ice hfeature2i are reported at the locations of
35 927 craters catalogued between latitudes of �60� and 60� as
shown on Fig. 1. Both features have unimodal distributions. The
statistics of the shallow-ice distribution are: mean ¼ 4:11,
median ¼ 3:88, standard deviation ¼ 1:11, Sn ¼ 0:93. The statis-
tics of the deep-ice distribution are: mean ¼ 0:21, median ¼ 0:17,
standard deviation ¼ 0:19, Sn ¼ 0:09. The deep-ice feature has a
distribution somewhat skewed to the right; nevertheless, for our
evaluation purposes, we use the mean and the standard deviation
(the best known estimates) to normalize the features. The
transformed dataset is O ¼ ðhlongitude; latitudeii; hz1ii; hz2iiÞ,
i ¼ 1; . . . ;35 927, where z1 is the z-score of the shallow-ice
variable and z2 is the z-score of the deep-ice variable.

Three different types of hot spots are potentially present in this
dataset: hot spots of shallow-ice, hot spots of deep-ice, and
double-feature hot spots that take into account the values of both
features. In this dataset, the discovery of double-feature hot spots
is most interesting, because planetary scientists are interested in
knowing the locations on the surface of Mars where extreme
values of shallow- and deep-ice abundances coincide, or where a
high/low combination of the two ground ice indicators is present.
Such knowledge provides insight into the history of water
on Mars.

3.2. Hot spot discovery results

The supervised clustering method (see Section 2) has been
applied to the problem of identification of double-feature hot
spots in the Martian ground ice dataset. Clustering solutions,
seeking to maximize qðXÞ, are computed using four different
clustering algorithms described in Section 2.3. In the experiments,
the threshold value of iðcÞ in Eq. (3) is set to zth ¼ 0:15. In order to
accommodate the interest of domain scientists in finding the
strongest hot spots (characterized by highest values of jzðoÞj) even

if they are small, we perform clustering with b ¼ 1:01. Clustering
with b ¼ 1:2 is of interest in cases where larger but possibly
weaker hot spots need to be identified. The other parameters used
in our experiments are given in Table 1.

The results of the experiments are summarized in Table 2. This
table is divided into four sections. The first section gives the
overall properties of clustering solutions: the total reward and the
number of clusters. The SPAM algorithm requires an a priori

setting of k, which is chosen to be a value that is of the same order
of magnitude as the values of k yielded by the SCMRG and SCDE
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Fig. 1. Red dots shows locations of objects (craters) in our dataset. Grayscale background depicts elevation of Martian surface between longitude of �180–180� and latitude

of �60–60�. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Parameters of clustering algorithms used in our experiments.

Algorithm Parameters

b ¼ 1:01 b ¼ 1:2

SPAM k ¼ 2000 k ¼ 807

MOSAIC Input is a SPAM clustering

SCMRG None

SCDE s ¼ 0:1 s ¼ 1:2

xmax ¼ 1 xmax ¼ 1:5

xmin ¼ �1 xmin ¼ �1:5

Table 2
Statistics of selected properties calculated on population of clusters obtained by

using four clustering algorithms.

b ¼ 1:01=b ¼ 1:2

SPAM SCMRG SCDE MOSAIC

qðXÞ 13502/24265 4129/34614 14709/39935 14047/59006

# of clusters 2000/807 1597/644 1155/613 258/152

Statistics of objects in clustering solutions

Max. 93 /162 523/2685 1258/3806 4155/5542

Mean 18/45 15/45 25/49 139/236

Std. 10/25 31/201 80/193 399/717

Skewness 1.38/1.06 9.52/10.16 9.1/13.44 6.0/5.24

Statistics of rewards in clustering solutions

Max. 197/705 743/6380 671/9488 3126/16461

Mean 10/46 9/54 12/65 94/694

Std. 15/66 35/326 38/415 373/2661

Skewness 5.11/4.02 13.8/13.95 10.1/19.59 6.24/4.69

Statistics of
ffiffiffiffiffi
jzj
p

in clustering solutions

Max. 2.7/2.45 2.85/2.31 2.95/2.94 1.24/1.01

Mean 0.6/0.57 0.74/0.68 0.95/0.97 0.44/0.40

Std. 0.38/0.36 0.31/0.26 0.47/0.47 0.24/0.22

Skewness 1.14/1.34 1.58/1.88 1.28/1.31 0.73/0.40
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algorithms. Due to its agglomerative character, the MOSAIC
algorithm always produces a significantly smaller number of
clusters regardless of the size of its input provided by SPAM. The
remaining three sections of Table 2 give statistics performed on
the population of the constituent clusters. Statistics of three
different properties are calculated: cluster size kck, its reward
ðiðcÞ � kckbÞ, and

ffiffiffiffiffi
jzj
p

, the square root of the absolute value of the
mean interestingness of objects within the cluster. For the end-
user,

ffiffiffiffiffi
jzj
p

is an intuitive measure of how hot-spot-like a given
cluster is. For example,

ffiffiffiffiffi
jzj
p
¼ 1 indicates a cluster where, on

average, both features have values one dispersion scale from their
centers. The distribution of each property within its population is
summarized by four statistical measures: maximum value, mean,
standard deviation, and skewness. Skewness describes the
amount of asymmetry in the distribution. Large positive values
of skewness indicate distribution with a tail toward larger values
of a variable.

These statistical measures are not intended to determine the
‘‘best’’ clustering algorithm from the point of view of cluster
definition, but rather to help in identification of the algorithm
most suitable for discovery of hot spots. Recall that hot spots are
clusters characterized by the high values of reward and

ffiffiffiffiffi
jzj
p

.
The solution that provides more such clusters, and especially the
clusters with the highest values of

ffiffiffiffiffi
jzj
p

, is the most suitable. This
is the solution having large values of skewness for the reward andffiffiffiffiffi
jzj
p

properties, as the large value of skewness indicates the
existence of more outliers (hot spots). In addition, a suitable

solution has larger values of the mean and standard deviation for
the reward and

ffiffiffiffiffi
jzj
p

properties, as they indicate the existence of
higher valued outliers (stronger hot spots). In Table 2, the MOSAIC
solution is separated from other solutions because it is not
directly statistically comparable with other solutions, due to a
significantly smaller number of clusters. Although it provides an
interesting alternative to the other algorithms, we do not include
it in the statistics-based comparison. The analysis of Table 2
indicates that among SPAM, SCMRG, and SCDE algorithms, the
SCDE algorithm is the most suitable for the discovery of hot spots.

To further compare different solutions, Fig. 2 shows the side-
by-side comparison of histograms of

ffiffiffiffiffi
jzj
p

, constructed from
outputs of each clustering algorithm. Regardless of the algorithm
used, most clusters are characterized by 0o

ffiffiffiffiffi
jzj
p

o1 (the leftmost
group of bars in the histograms)—they are obviously not the hot
spots. The possible hot spots are the clusters fulfilling the

ffiffiffiffiffi
jzj
p

41
criterion (the rightmost four groups of bars in the histograms).
Inspection of Fig. 2 reveals that the SCDE clustering solution has
the most clusters in every bin of

ffiffiffiffiffi
jzj
p

that could potentially be
associated with hot spots. We rank the SCMRG algorithm as the
second best for b ¼ 1:01 and the SPAM algorithm as the second
best for b ¼ 1:2.

Fig. 3 graphically shows the clustering solutions ðb ¼ 1:01Þ,
which are summarized in Table 2. Objects (craters) are color-
coded according to the mean z-values of clusters to which they
belong. The hot spots are in the locations where objects coded by
either deep red or deep blue colors are present. In the red-coded
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hot spots, the two features have values from the same-side tails of
their distributions (high-high or low-low). In the blue-coded hot
spots, the two features have values from the opposite-side tails of
their distributions (high-low or low-high). Although Fig. 3 shows
the location of the hot spots, this type of figure would be difficult
to interpret by the end-user because hot spots are visualized as
clouds of objects, instead of the actual areas as expected by most
end-users. We address this issue in the next section.

4. Transforming clusters to segments

For the purpose of an effective visualization, further statistical
analysis, and large-scale data mining, it is convenient to transform
the clustering solution to the ‘‘segmentation solution’’. We define
the segmentation solution as a raster (image) representation of
the original clustering solution. Some loss of information is
incurred by transforming a clustering solution into a raster, but
the benefits outweigh some loss of accuracy.

Let Ri;j ¼ labelði dx; j dyÞ, i ¼ 1; . . . ;Nx, j ¼ 1; . . . ;Ny, be a raster
having dimensions of ðNx;NyÞ and covering the entire spatial
extent of the dataset. The raster is an array of constituent pixels
(cells) each having an area of dx� dy. Segments in the raster are
the single-connected regions, consisting of a number of pixels
constructed to represent the clusters. Segmentation is achieved in
the following manner. First, dataset objects, each marked by its
associated cluster label, ci, i ¼ 1 . . . k, are grouped into pixels to
which they spatially belong. Second, each pixel is assigned a label
equal to the cluster label of the majority of objects within it. Pixels
with no objects are assigned the 9999 label, and pixels with the
majority of objects not belonging to any cluster are assigned the
�9999 label. Finally, the entire raster is divided into a set of
segments using the connected components algorithm (Alnuweiri
and Prasanna, 1992). A connected component is a maximal region
of connected pixels which have the same label. We are using the
notion of 8-connectivity, wherein two pixels are adjacent if one
pixel lies in any of the eight positions surrounding the other pixel.
Each segment is a polygon with a clearly defined area and
neighborhood relations with other segments. The character of the
segmentation solution depends on the selected size of the pixels.
For our case study, we have chosen dx ¼ dy ¼ 5�, resulting in a
raster with Nx ¼ 72 and Ny ¼ 24.

Table 3 summarizes the results of segmentation solutions
obtained by the aforementioned transformation. This table has a
format similar to that of Table 2; the MOSAIC solution, which is
not part of the statistics-based comparison, is set aside and the
table is divided into five sections. The first section gives a number
of segments in each solution. Note that the number of segments is
significantly smaller than the number of clusters (see Table 2) in
corresponding solutions. Because of the relatively large pixel size,
small clusters are merged into larger segments. The remaining
four sections of Table 3 give statistics calculated on the population
of segments. Statistics of four different properties are calculated:
segment size (in pixels), quality of conversion from clusters to
segments, the uniformness of the interestingness of the objects
within the segment, and contrast between the interestingness of a
given segment and that of its neighbors. The conversion quality
factor is calculated using the formula given by Shufelt (1999)

Q ¼
100TP

TP þ FP þ FN
, (6)

where TP (true positive) is the number of objects in a segment
that have the same label as the segment, FP (false positive) is the
number of objects in the segment that have labels different than
the segment, and FN (false negative) is the number of objects that
have the same label as the segment but are located in different

segments. The purpose of calculating the conversion quality is to
compare how well different clustering solutions are transformed
into segmentation solutions. A segment’s uniformness and
contrast are properties borrowed from the field of image
processing. Uniformness of a segment is encapsulated by the
standard deviation of the objects’ z-values in this segment.
Uniformness could be, in principle, calculated also for the original
clusters, but since clusters are smaller than segments the statistics
would be worse. To calculate the contrast ri of a given segment si,
we first identify the segment’s neighbors sj, j ¼ 1; . . . ;neigh, where
neigh is the number of neighboring segments, using a region
adjacency graph (RAG) (Sonka et al., 1998). The RAG is an
undirected graph whose nodes correspond to segments and
branches connect adjacent segments. Segments with labels 9999
and �9999 do not count as neighbors. Second, we calculate the
percentage of segment’s boundary with each of its neighbors, wi;j,
j ¼ 1; . . . ;neigh, where

P
jwi;j ¼ 1. Third, we measure the dissim-

ilarity between si and sj using quantity Bi;j (Sarkar et al., 2000)

Bi;j ¼ ðmi �mjÞ
2
ðninj=ðni þ njÞÞ, (7)

where mi;j are the mean values of z in the two segments and ni;j

are the number of objects in them. Finally, the contrast between
the segment and its neighborhood is calculated as the weighted
average of pairwise dissimilarities

ri ¼ Bi;1wi;1 þ � � � þ Bi;neighwi;neigh. (8)

The purpose of calculating uniformness and contrast is to
compare the separability of segments in different solutions.
Ideally, we would like a solution in which the segments would
be uniform with respect to the interestingness of its constituting
objects, and the values of the segments’ interestingness would
‘‘stand out’’ from the interestingness of its neighbors. Thus, the
solutions with larger values of uniformness and contrast are more
desirable.
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Table 3
Statistics of selected properties calculated on the population of segments derived

from four clustering solutions.

b ¼ 1:01=b ¼ 1:2

SPAM SCMRG SCDE MOSAIC

# of segments 1040/642 592/274 565/392 172/117

Statistics of segment sizes (in pixels)

Max. 10/17 27/108 32/99 152/261

Mean 1.43/2.3 1.61/4.46 2.0/3.03 8.7/13.0

Std. 0.98/2.13 2.0/12.07 2.67/6.05 19.2/34.8

Skewness 3.47/3.12 7.98/6.93 6.86/11.03 4.52/4.81

Statistics of clusters-to-segments conversion quality

Max. 94/88 100/100 100/100 90/88

Mean 44/51 43/52 54/59 58/59

Std. 15/14 18/23 16/16 16/18

Skewness 0.52/0.09 1.19/0.7 0.22/� 0.12 � 0.13/� 0.29

Statistics of segments uniformness

Max. 2.87/3.43 4.60/3.89 3.67/3.3 2.49/1.34

Mean 0.40/0.43 0.52/0.54 0.55/0.62 0.45/0.4

Std. 0.38/0.39 0.47/0.51 0.42/0.46 0.35/0.3

Skewness 2.01/2.21 3.05/2.90 2.02/1.72 2.28/1.35

Statistics of segments contrast

Max. 1050/1746 1172/862 921/887 1308/1129

Mean 27/38 37/42 48/59 55/52

Std. 81/107 99/120 104/123 152/166

Skewness 8.00/8.67 6.07/4.59 4.18/3.52 6.09/5.36
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An analysis of Table 3 indicates that among segmentation
solutions stemmed from clustering solutions using SPAM, SCMRG
and SCDE algorithms (remember that the MOSAIC-derived
solution is set apart), the SCDE-derived solution has significantly
better conversion quality than the other two solutions. The SCDE-
derived solution is also characterized by the best uniformness and
contrast. Thus, the SCDE algorithm not only yields clustering best
suited to hot spot discovery (see Section 3.2 and Table 2), but its
clustering solution also converts most cleanly to the raster, and
the corresponding segmentation solution has the most desirable
properties.

Fig. 4 shows segmentation solutions summarized in Table 3.
There is a general correspondence between the clustering
solutions (Fig. 3) and the segmentation solutions (Fig. 4), but
the segmentation solutions are easier to work with for the end-
user accustomed to working with maps. The SCMRG-based
solutions are only useful for small values of b, as larger values
of b lead to formation of large, boxy segments that are not
effective in isolating hot spots. Likewise, all MOSAIC-based
solutions are too coarse for identification of hot spots with the
resolution required by the ground ice on Mars application and set
by the domain experts. The hot spots are the segments coded by
either deep red or deep blue colors.

We have applied the ESRI ArcGIS implementation of the
Getis-Ord’s G� algorithm to our case study dataset, setting
the distance scale to 200 km. The color-coded visualization of
the result corresponds closely to our SCDE-derived raster shown
in Fig. 4. Thus, both methods zero in on to the same hot spots.
However, our method provide a means for filing discovered hot
spots for further analysis (perhaps as a part of larger data mining
procedure) without visualization. The segments in the raster
representation are sorted by the descending value of

ffiffiffiffiffi
jzj
p

and then
a number of segments at the top of the list are saved as hot spots.
The specific threshold for being considered a hot spot needs to be
established by a domain expert. For example, the SCDE-derived
raster (see Fig. 4, b ¼ 1:01) has five segments with

ffiffiffiffiffi
jzj
p

X2:5 and
15 segments with 2p

ffiffiffiffiffi
jzj
p

o2:5. These segments are saved with all
associated information for further analysis by the domain experts
to find what particular set of geological circumstances led to their
existence.

5. Discussion and future work

This paper presents and examines a method to identify
feature-based hot spots using the supervised clustering technique.
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Fig. 4. Segmentation solutions for Martian ground ice case study derived from clustering algorithms as indicated; b ¼ 1:01 (top two rows) and b ¼ 1:2 (bottom two rows).

Legend indicates mean z-values of segments. Code �9999 indicates regions where objects are left out of clusters, code 9999 indicates regions where no objects are present.

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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It offers an alternative to an existing method based on the
G� statistic. Its biggest advantage is the inherent ability to output
hot spots as clusters or polygons. Therefore, the method is well-
suited for mining large datasets in order to identify all sort of
potential hot spots.

Because our method depends on clustering, we have examined
four different types of clustering algorithms in order to identify an
algorithm most suitable for identifying hot spots. The density-
based clustering algorithm SCDE has been found to be best suited
to this task. Moreover, the SCDE solution converts best to the
raster, and its segmentation-based equivalent has the best
separation properties, important advantages from the point of
view of the end-user who requires effective visualization. The
SCDE solution corresponds closely to the results of hot spot
analysis performed using the Getis–Ord G� algorithm.

This conclusion was reached on the basis of examining a
particular dataset (ground ice on Mars). However, the SCDE
algorithm should provide the best performance for other datasets
as well. Recall that in the original density-based algorithm, the
clusters are extracted from the density function C, which provides
a continuous approximation to the density of the set of point
objects. Our modification (see Eqs. (4) and (5)) provides a
continuous approximation to the density of ‘‘interestingness’’ of
the set of point objects. Thus, the density function itself provides
visual indication for the location of the hot spots even before any
clustering is carried out. In fact, we could provide the end-user
with visualization of the hot spot locations on the basis of C
alone. However, automating the discovery process requires
clustering. The effectiveness of the SCDE algorithm in producing
a clustering solution that best identifies the hot spots is most
likely due to its reliance on C, a built-in advantage over all other
methods. In our case study, the SCDE algorithm took �500 s to
complete (using a 3.2 GHz CPU), whereas SCMRG took �3.5 s,
SPAM took �50 000 s, and MOSAIC took �155 000 s. Thus, the
SCMRG algorithm is significantly faster than SCDE and, on this
basis, could present an alternative to SCDE when searching for hot
spots in a very large dataset for small values of b.

Although our method is designed to find hot spots across
multiple variables, we have evaluated its effectiveness using a
dataset with only two variables. The reason for such a choice is
twofold. First, we want the case study to provide a relatively
simple illustration of the principles behind our method. Second, a
pairwise search for hot spots in a database with multiple variables
is the most logical choice for initial exploration of data by our
method. Our finding that the SCDE is the most effective in finding
hot spots should not depend on the number of variables. The
overall quality of clustering will somewhat decrease with the
increasing number of variables because of the increased loss of
information when multiple values of variables are aggregated in a
single value (see Eq. (2)).

The method described here uses datasets consisting of
point objects (see Section 2.1); however, some datasets of
interest are polygon-based and are given in the form of shapefiles.
The shapefiles can be incorporated into our framework by
converting them into point-based features. Frequently, the
points are already defined (like the locations of craters in our
case study), and the conversion reduces to reading off the
values of shapefiles at those predefined points. When no
reference points are available, they need to be defined. One
possibility is to use the centroids of polygons as reference
points, but other methods of point-based representation may
be necessary to insure that the created points are located inside
each polygon’s area or that elongated polygons are represented
by multiple points.

The future work will examine the possibility of using different
fitness functions. Recall that we are using a fitness function (see

Eq. (1)) that maximizes the sum of rewards from all the clusters.
Because hot spots are clusters of high interestingness, maximizing
the total interestingness of the clustering solution is a good,
but perhaps not optimal, choice for a fitness function. Inspired
by our calculation of uniformness and contrast for the segments
in the visualization raster (see Section 4), we plan on investigat-
ing an effectiveness of a different fitness function based on
optimizing an ‘‘energy function’’ defined as the sum of clique
potentials (Sarkar et al., 2000). Such a solution will maximize
the uniformness of cluster mean z-values, while at the same
time maximizing the contrast of mean z-values between neigh-
boring clusters. Such a fitness function will yield a solution
where hot spots are clearly isolated from other regions. A method
to calculate contrast for clusters as opposed to segments needs
to be implemented to produce proper input for such a fitness
function.
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