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Abstract. The discovery of interesting regions in spatial datasets is an 
important data mining task. In particular, we are interested in identifying 
disjoint, contiguous regions that are unusual with respect to the distribution of a 
given class; i.e. a region that contains an unusually low or high number of 
instances of a particular class. This paper centers on the discussion of 
techniques, methodologies, and algorithms to discover such regions. A measure 
of interestingness and a supervised clustering framework are introduced for this 
purpose. Moreover, three supervised clustering algorithms are proposed in the 
paper: an agglomerative hierarchical supervised clustering named SCAH, an 
agglomerative, grid-based clustering method named SCHG, and lastly an 
algorithm named SCMRG which searches a multi-resolution grid structure top 
down for interesting regions. Finally, experimental results of applying the 
proposed framework and algorithms to the problem of identifying hotspots in 
spatial datasets are discussed.  

1   Introduction 

Because of advances in database technologies, data collection techniques, and data 
gathering devices the amount of spatial data has been growing tremendously in recent 
years. The goal of spatial data mining is to automate the extraction of interesting and 
useful patterns that are not explicitly represented in spatial datasets. 

This paper centers on discovering interesting regions in spatial datasets; in 
particular, on identifying disjoint, contiguous regions that are unusual with respect to 
the distribution of a given class, i.e. a region that contains an unusually low or high 
number of instances of a particular class. Methodologies, techniques, and algorithms 
are proposed for this purpose. Challenges that this task faces include the capability to 
find regions of arbitrary shape and at arbitrary levels of resolution, the definition of 
suitable parameterized measures of interestingness to instruct discovery algorithms 
what they are supposed to be looking for, and the need to reduce computational 
complexity due to the large size of most spatial datasets. 

The paper assumes that datasets contain classified examples, and treats region 
discovery as a clustering problem in which clusters have to be found that maximize an 
externally given reward scheme. Section 2 proposes reward-based evaluation 
framework for region discovery. In sections 3 and 4 three supervised clustering 



algorithms are introduced and compared. Section 5 discusses related work and section 
6 gives a conclusion. Table 1 summarizes the notations used in this paper. 

Table 1.  Notations used  

Notation Description 

O={o1, …, on} Objects in a dataset (or training set) 

n Number of objects in the dataset 

ci⊂ O The i-th cluster 

X={c1, …, ck} A clustering solution consisting of clusters c1 to ck 

q(X) Fitness function that evaluates a clustering X 

C A class label 

2   Measuring the Interestingness of a Set of Regions 

As we explained earlier, our approach uses supervised clustering algorithms to 
identify interesting regions in a dataset. A region, in our approach, is defined as a 
surface containing a set of spatial objects; e.g. the convex hull of the objects 
belonging to a cluster. Moreover, we require regions to be disjoint and contiguous; 
that is, for each pair of objects belonging to a region, there always must be a path 
within this region that connects the pair of objects. Furthermore, we assume that the 
number of regions is not known in advance, and therefore finding the best number of 
regions is one of the objectives of the clustering process. Therefore, our evaluation 
scheme has to be capable of comparing clusterings that use a different number of 
clusters. 

Our approach employs a reward-based evaluation framework. The quality q(X) of 
a clustering X is computed as the sum of the rewards obtained for each cluster c∈X. 
Cluster rewards are weighted by the number of objects that belong to a cluster c. In 
general, we are interested in finding larger clusters if larger clusters are equally 
interesting as smaller clusters. Consequently, our evaluation scheme uses a parameter 
β with β�� and fitness increases nonlinearly with cluster-size dependent on the value 
of β, favoring clusters c with more objects� 
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Selecting larger values for the parameter β usually results in a smaller number of 

clusters in the best clustering X. The proposed evaluation scheme is very general; 
different reward schemes that correspond to different measures of interestingness can 
easily be supported in this framework, and the supervised clustering algorithm that 
will be introduced in the second half of the paper can be run with different fitness 
functions without any need to change the clustering algorithm itself. 



 

In this paper, due to the lack of space, we only introduce a single measure of 
interestingness that centers on discovering hotspots and coldspots in a dataset. The 
measure is based on a class of interest C, and rewards regions in which the 
distribution of class C significantly deviates from its prior probability, relying on a 
reward function τ. τ itself, see Fig. 1, is computed based on p(c,C), prior(C), and 
based on the following parameters: γ1, γ2, R+, R−  with γ1≤1≤γ2; 1≥ R+,R−≥0, η>0 .  

 

Fig. 1. The reward function Cτ for η=1 

The fitness function q(X) is defined as follows: 
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In the above formula prior(C) denotes the probability of objects in dataset 

belonging to the class of interest C. The parameter η determines how quickly the 
reward grows to the maximum reward (either R+ or R−). If η is set to 1 it grows 
linearly; in general, if we are interested in giving higher rewards to purer clusters, it is 
desirable to choose larger values for η; e.g. η=8.  

Let us assume a clustering X has to be evaluated with respect to a class of interest 
“Poor” with prior(Poor) = 0.2 in a dataset that contains 1000 examples. Suppose that 
the generated clustering X subdivides the dataset into five clusters c1, c2, c3, c4, and 
c5 with the following characteristics: |c1| = 50, |c2| = 200, |c3| = 200, |c4| = 350, |c5| = 
200; p(c1, Poor) = 20/50, p(c2, Poor) = 40/200, p(c3, Poor) = 10/200, p(c4, Poor) = 
30/350, p(c5, Poor) = 100/200. Moreover, the parameters used in the fitness function 
are as follows: γ1 = 0.5, γ2 = 1.5, R+ = 1, R− = 1, β = 1.1, η=1. Due to the settings of 
γ1 = 0.5, γ2 = 1.5, clusters that contain between 0.5 x 0.2 = 10% and 1.5 x 0.2 = 30% 
instances of the class “Poor” do not receive any reward at all; therefore, no reward is 



given to cluster c2. The remaining clusters received rewards because the distribution 
of class “Poor” in the cluster is significantly higher or lower than its prior distribution. 
For example, the reward for c1 that contains 50 examples is 1/7 x (50)1.1; 1/7 is 
obtained as follows: τ(c1) = ((0.4-0.3)/(1-0.3)) * 1 = 1/7.  
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3   Supervised Clustering Algorithms for Region Discovery 

As part of our research, we have designed and implemented seven supervised 
clustering algorithms three of which will be described in this Section.  

3.1   Supervised Clustering Using Agglomerative Hierarchical Techniques 
(SCAH) 

SCAH is an agglomerative, hierarchical supervised clustering algorithm. Initially, 
it forms single object clusters, and then greedily merges clusters as long as the 
clustering quality improves. In more detail, a pair of clusters (ci, cj) is considered to be 
a merge candidate if ci is the closest cluster to cj or cj is the closest cluster to cj. 
Distances between clusters are measured by using the average distance between the 
objects belonging to the two clusters. The pseudo code of the SCAH algorithm is 
given in Fig. 2.  
 

Inputs: 
A dataset O={o1,...,on} 
A dissimilarity Matrix D = {d(oi,oj) |  oi,oj ∈ O }, 
Output: 
Clustering X={c1, c2, …, ck}  
 
Algorithm: 

1) Initialize:  
Create single object clusters:  ci = {oi}, 1� i � n; 
Compute merge candidates   

2) DO FOREVER 
a) Find the pair (ci, cj) of merge candidates that improves q(X) the most 
b) If no such pair exist terminate, returning X = {c1, c2, … ck} 
c) Delete the two clusters ci and cj from X and add the cluster ci U cj to X 
d) Update merge candidates  

Fig. 2. The SCAH Algorithm 

In general, SCAH differs from traditional hierarchical clustering algorithms which 
merge the two clusters that are closest to each other in that it considers more 
alternatives for merging clusters. This is important for supervised clustering because 



 

merging two regions that are closest to each other will frequently not lead to a better 
clustering, especially if the two regions to be merged are dominated by instances 
belonging to different classes.  

3.2   Supervised Clustering Using Hierarchical Grid-based Techniques (SCHG)  

Grid-based clustering methods are designed to deal with the large number of data 
objects in a high dimensional attribute space. A grid structure is used to quantize the 
space into a finite number of cells on which all clustering operations are performed. 
The main advantage of this approach is its fast processing time which is typically 
independent of the number of data objects, and only depends on the number of 
occupied cells in the quantized space.  

SCHG is an agglomerative, grid-based clustering method. Initially, each occupied 
grid cell is considered to be a cluster. Next, SCHG tries to improve the quality of the 
clustering by greedily merging two clusters that share a common boundary. The 
algorithm terminates if q(X) cannot be improved by further merging.  

3.3   Supervised Clustering Using Multi-Resolution Grids (SCMRG) 

Supervised Clustering using Multi-Resolution Grids (SCMRG) is a hierarchical grid 
based method that utilizes a divisive, top-down search: each cell at a higher level is 
partitioned further into a number of smaller cells in the next lower level, but this 
process only continues if the sum of the rewards of the lower level cells is higher than 
the obtained reward for the cell at the higher level. The returned cells usually have 
different sizes, because they were obtained at different level of resolution. The 
algorithm starts at a user defined level of resolution, and considers three cases when 
processing a cell: 

1. If a cell receives a reward, and its reward is larger than the sum of the 
rewards associated of its children and larger than the sum of rewards of its 
grandchildren, this cell is returned as a cluster by the algorithm.  

2. If a cell does not receive a reward and its children and grandchildren do not 
receive a reward, neither the cell nor any of its descendents will be included 
in the result.  

3. Otherwise, all the children cells of the cell are put into a queue for further 
processing. 

The algorithm also uses a user-defined cell size as a depth bound; cells that are 
smaller than this cell size will not be split any further. The employed framework has 
some similarity with the framework introduced in the STING Algorithm [13] except 
that our version centers on finding interesting cells instead of cells that contain 
answers to a given query, and only computes cell statistics when needed and not in 
advance as STING does. 



4   Experimental Evaluation 

4.1   Datasets 

In order to study the performance of the clustering algorithms presented in section 3, 
we conducted experiments on a benchmark consisting of 6 spatial datasets. Table 2 
gives a summary for the datasets used. Objects belonging to those data sets consist of 
longitude and latitude and a non-spatial part which is the class label associated with 
that object. 

Table 2. Datasets used in the benchmark 

 
Dataset Name # of objects # of classes 

1 B-Complex9 3,031 2 
2 Volcano 1,533 2 
3 Earthquake-1 3,161 3 
4 Earthquake-10 31,614 3 
5 Earthquake-100 316,148 3 
6 Wyoming-Poverty 493,781 2 

 
B-Complex9 is a two dimensional synthetic spatial dataset whose examples are 

distributed having different, well-separated shapes. Earthquake and Volcano are 
spatial datasets containing the longitude and latitude of earthquakes and volcano 
eruptions, that are classified based on their severity of the event. Earthquake-1 and 
Earthquake-10 are smaller datasets contains 1% and 10% of the original data 
respectively. Wyoming-Poverty is a two dimensional spatial dataset indicating the 
poverty status of residents of the state of Wyoming based on 2000 census data. For 
more details about the datasets see [12].  

4.2   Experimental Evaluation 

The proposed algorithms have been evaluated on a benchmark consisting of the 
datasets described in section 4.1. We tested the algorithms’ capability to identify very 
pure, potentially very small regions (β=1.01, η=6, γ1=0.5, γ2=1.5, R+=1, R−=1) and 
to identify larger regions (β=3, η=1, γ1=0.5, γ2=1.5, R+=1, R−=1). Table 3 
summarizes the results and Fig. 6 and 7 visualize the result of SCAH, SCHG and 
SCMRG for the B-Complex9 and Volcano datasets. The result of SCAH on B-
Complex9 and Volcano is identical for both set of parameters, so we visualized them 
only once. Purity and quality of final clustering and the number of clusters obtained 
are reported for each algorithm-dataset pair. Quality is measured using q(X) that was 
introduced in Section 2. Purity of a clustering is defined as the number of examples 
that belong to the most frequent class of a cluster over the total number of examples 



 

belonging to clusters. All Experiments were conducted on a DELL D600 workstation 
with an Intel Pentium M processor 1.80GHz and 1 GB of main memory. SCAH did 
not succeed in producing results (indicated by DNF in Table 3) within 6 hours for the 
Earthquake-10 dataset and ran out of storage for the Wyoming and Earthquake-100 
datasets when creating the initial clustering.  

Table 3.  Experimental Results for β = 1.01/η = 6 and β = 3/η = 1 

Algorithms SCAH SCHG SCMRG SCAH SCHG SCMRG 
Dataset 

Parameters � = 1.01, � = 6 � = 3, � = 1 

Purity 1 0.998 1 1 0.997 0.863 
Quality 0.974 0.974 0.957 0.008 0.044 0.002 B-Complex9 
Clusters 17 15 132 17 9 22 
Purity 1 0.692 0.979 1 0.692 0.885 

Quality 0.940 0.091 0.822 1E-5 7E-4 1E-4 Volcano 
Clusters 639 56 311 639 31 221 
Purity 1 0.844 0.938 0.853 0.840 0.814 

Quality 0.952 0.399 0.795 0.004 0.086 0.006 Earthquake-1 
Clusters 479 33 380 161 10 93 
Purity DNF 0.840 0.912 DNF 0.834 0.807 

Quality DNF 0.398 0.658 DNF 0.077 0.006 Earthquake-10 
Clusters DNF 37 506 DNF 12 153 
Purity  DNF 0.842 0.909 DNF 0.837 0.808 

Quality DNF 0.389 0.560 DNF 0.083 0.006 
Earthquake-

100 
Clusters  DNF 38 780 DNF 9 191 
Purity   DNF 0.772 0.721 DNF 0.769 0.661 

Quality  DNF 0.027 0.227 DNF 0 0.001 Wyoming 
Clusters  DNF 489 89 DNF 391 78 

 
As can be seen in Table 3, SCAH outperforms SCHG and SCMRG for β=1.01/ 

η=6, and, in general, performs quite well for small β values, such as 1.01. In general, 
we observed for these and other datasets that SCAH merges pure clusters that share 
the same majority class initially. Consequently, it does a quite good job, if the task is 
to identify small regions that are pure. However, when SCAH reaches the point when 
it runs out of pure clusters to merge, it has the tendency to terminate prematurely with 
too small regions. It should be noted that the penalty for having more clusters is quite 
small if β is 1.01 and the penalty for losing purity when merging clusters is quite high 
when η is 6. However, for β=3/η=1, the reward gains from having larger clusters are 
quite significant. This explains why SCAH is outperformed by the other two 
algorithms for several datasets. 

Why does SCAH terminate prematurely when we are interested in obtaining large 
clusters? The first reason is that SCAH only considers a single merge candidate per 
cluster whereas SCHG considers four merge candidates per cluster initially; therefore, 
SCHG has more options for merge, and therefore is less likely to terminate 
prematurely.  
 



 
Fig. 3. A part of the B-Complex9 Dataset 

The second reason is that SCAH’s look-ahead horizon is too limited. For example, 
when running SCAH for the B-Complex9 dataset for β=3, the algorithm terminates 
with 17 clusters, seven of which are depicted in Fig. 3: the outside elliptical shape 
belongs to class 1 and the two inside spots belong to class 0. Based on average 
distance, the merge candidates considered by SCAH are: 1 and 6, 5 and 6, 3 and 7, 2 
and 7, 4 and 7. SCAH will stop here since no improvement made using a single 
merge. However, for β=3 a higher reward can be obtained by merging all 7 clusters, 
but SCAH fails to do so, because it terminates if q(X) cannot be improved by a single 
merge. 

Another interesting observation is that the SCHG algorithm outperforms the 
SCMRG for β=3 for all datasets tested. On the other hand,  SCMRG algorithm 
performs better, compared to SCHG, on the datasets containing chain patterns such as 
volcano, as depicted in Fig. 4, for β=1.01. This can be attributed to the fact that 
SCHG is limited to the predefined size of the cells, whereas SCMRG uses grid-cells 
of different size. As we see in Fig. 6, regions discovered for the volcano dataset are 
purer than those discovered by the SCHG algorithm.  

 

 

Fig. 4. Original Volcano and Earthquake Datasets, a) Part of Volcano b) Earthquake 

(a) (b) 
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Fig. 5. Average running time of SCAH, SCHG and SCMRG  

The average running time of each algorithm is depicted in Fig. 5. The SCAH 
algorithm is less efficient compared to SCHG and SCMRG. The slowness SCAH can 
be attributed to its time consuming distance computations: SCAH is required to 
compute distances between pairs of clusters in order to make the decision of which 
two clusters have to be merged in the next step, whereas SCHG and SCMRG do not 
compute any distances at all, and determine merge/split candidates quickly from the 
underlying grid structure. Moreover, the average running time of SCMRG is higher 
than SCHG because SCMRG looks for the regions of interest at different levels of 
resolution, whereas SCHG searches for the interesting clusters using grid cells of 
fixed size. 

 

 

  

Fig. 6.  The result of running supervised algorithms, from top to bottom SCAH, SCHG and 
SCMRG on two datasets for parameters β = 3/η= 1 



 

  

Fig. 7. The result of running SCAH, SCHG and SCMRG on two datasets for β = 1.01/η= 6  

5   Related Work  

Supervised Clustering [7] centers on partitioning classified examples, maximizing 
cluster purity while keeping the number of clusters low. Supervised clustering 
algorithms have been originally proposed to enhance classification algorithms [6]. 
Our work also has some similarity with work in search-based semi-supervised 
clustering (also see [1]); for example, Demiriz et al. [5] propose an evolutionary 
clustering algorithm in which solutions consist of k centroids and the objective of the 
search process is to obtain clusters that minimize (the sum of) cluster dispersion and 
cluster impurity. This paper centers on the application of supervised clustering to a 
new problem: region discovery in spatial datasets containing classified examples.  



 

There also has been some work on co-location rule discovery whose relationship to 
our work is worth discussing. Co-location rule discovery centers on finding subsets of 
spatial features frequently located together.  Approaches to discover co-location rules 
in the literature can be categorized into three groups: spatial statistics [3, 4], 
association rules [9] and event centric spatial co-location [10]. It should be noted that 
all mentioned approaches center on finding frequent, global patterns that characterize 
the complete dataset, whereas our approach centers on finding local regions that are 
unusual or unexpected with respect to the global characteristics of the dataset. 

Hotspot discovery has also been investigated by past research. Williams [14] 
proposes an evolutionary hotspot discovery architecture that uses traditional 
clustering, rule induction, and a domain specific fitness function. Tay & Lim et al. 
[11] describes a region growing method for hotspot discovery, which selects seed 
points first and then grows clusters from seed points by adding neighbor points as 
long as a density threshold condition is satisfied. Brimicombe proposes the Geo-
ProZone algorithm [2] for hotspot discovery that employs adaptive recursive 
tessellations. This algorithm supports different level of resolution and recursively 
decomposes the space with variable decomposition ratios using rectangular grid cells. 
Finally, Klösgen and M. May [8] propose a multi-relational framework for subgroup 
discovery within a spatial database system.  

6   Summary  

In this paper, we introduced a supervised clustering approach and a reward-based 
evaluation framework for region discovery. Finding interesting regions in spatial 
datasets is viewed as a clustering problem, in which the sum of rewards for the 
obtained clusters is maximized, and where the reward associated with a cluster 
reflects its degree of interestingness for the problem at hand. We explained that this 
approach is quite different from most other work in spatial data mining that mostly 
uses association rules. Different measures of interestingness can easily be supported 
in the proposed framework by designing different reward-based fitness functions; in 
this case, neither the supervised clustering algorithm itself nor our general evaluation 
framework has to be modified. We also discussed how hierarchical, and grid-based 
clustering algorithms can be adapted for supervised clustering in general, and for 
region discovery in particular, and presented evidence concerning the usefulness of 
the proposed framework for hotspot discovery problems. Finally, the paper identified 
some shortcomings of agglomerative clustering algorithms, such as SCAH. Our 
current work explores the use preprocessing techniques to speed up SCAH, and on the 
use of proximity graphs to merge clusters more intelligently. 
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