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Abstract 
The goal of dataset editing in instance-based learning is 
to remove objects from a training set in order to increase 
the accuracy of a classifier. For example, Wilson editing 
removes training examples that are misclassified by a 
nearest neighbor classifier so as to smooth the shape of 
the resulting decision boundaries. This paper revolves 
around the use of representative-based clustering 
algorithms for nearest neighbor dataset editing. We term 
this approach supervised clustering editing. The main 
idea is to replace a dataset by a set of cluster prototypes. 
A novel clustering approach called supervised clustering 
is introduced for this purpose. Our empirical evaluation 
using eight UCI datasets shows that both Wilson and 
supervised clustering editing improve accuracy on more 
than 50% of the datasets tested. However, supervised 
clustering editing achieves four times higher compression 
rates than Wilson editing; moreover, it obtains 
significantly high accuracies for three of the eight 
datasets tested. 
 
Keywords: nearest neighbor editing, instance-based 
learning, supervised clustering, representative-based 
clustering, clustering for classification, Wilson editing. 
 
1. Introduction 
Nearest Neighbor classification (also called 1-NN-Rule) 
was first introduced by Fix and Hodges in 1951 [4]. 
Given a set of n classified examples in a dataset O, a new 
example q is classified by assigning the class of the 
nearest example x ∈ O using some distance function d. 
 

d(q,x) � d(q,oi) oi ∈ O                               (1) 
 
Since its birth, the 1-NN-Rule and its generalizations have 
received considerable attention by the research 
community. Most research aims at producing time-
efficient versions of the algorithm (for a survey see 
Toussaint [8]). Many partial distance techniques and 
efficient data structures have been proposed to speed up 
nearest neighbor queries. Furthermore, several 
condensing techniques have been proposed that replace 
the set of training examples O by a smaller set OC ⊂ O 

such that all examples in O are still classified correctly by 
a NN-classifier that uses OC. 
 
Replacing a dataset O with a usually smaller dataset OEE 
with the goal of improving the accuracy of a NN-
classifier belongs to a set of techniques called dataset 
editing. The most popular technique in this category is 
called Wilson editing [10] (see Fig. 1); it removes all 
examples that have been misclassified by the 1-NN rule 
from a dataset. Wilson editing cleans interclass overlap 
regions, thereby leading to smoother boundaries between 
classes. Figure 2.a shows a hypothetical dataset where 
examples that are misclassified using the 1-NN-rule are 
marked with circles around them. Figure 2.b shows the 
reduced dataset after applying Wilson editing.  
 
 

 
 
 
 

Figure 1: Wilson’s Dataset Editing Algorithm. 
 
It has been shown by Penrod and Wagner [7] that the 
accuracy of a Wilson edited nearest neighbor classifier 
converges to Bayes error as n approaches infinity. But 
even though Wilson editing was proposed more than 30 
years ago, the benefits of such technique s regards to data 
mining have not been explored systematically by past 
research. 

PREPROCESSING 
A. For each example oi ∈ O 

1. Find the k-nearest neighbors of oi in O (excluding 
oi) 

2. Classify oi with the class associated with the largest 
number of examples among the k-nearest neighbors 
(breaking ties randomly) 

B. Edit dataset O be deleting all examples that were 
misclassified in step A.2. 

 
CLASSIFICATION RULE 
Classify a new example q using k-NN classifier using the 

edited subset OE of O. 
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Figure 2: Wilson Editing for a 1-NN Classifier. 
 
Devijver and Kittler [2] proposed an editing technique 
they call multi-edit that repeatedly applies Wilson editing 
to random partitions of the data set until a predefined 
termination condition is met. Moreover, several variations 
of Wilson editing have been proposed for k-nearest 
neighbor classifiers (e.g. in Hattori and Takahashi [5]). 
Finally, the relationship between condensing and editing 
techniques has been systematically analyzed in the 
literature (see for example Dasaranthy, Sanchez, and 
Townsend [1]).  
 
In addition to analyzing the benefits of Wilson editing, 
this paper proposes a new approach based on using 
representative-based clustering algorithms for nearest 
neighbor editing. The idea is to replace a dataset by a set 
of cluster prototypes. A new data set editing technique is 
proposed that applies a supervised clustering algorithm 
[11] to the dataset, and uses the resulting cluster 
representatives as the output of the editing process. We 
will refer to this editing technique as supervised 
clustering editing (SCE); we will refer to the 
corresponding nearest neighbor classifier as nearest 
representative (NR) classifier. Unlike traditional 
clustering, supervised clustering is applied on classified 
examples with the objective of identifying clusters that 
maximize the degree of class purity within each cluster. 
Supervised clustering seeks to identify regions on the 
attribute space that are dominated by instances of a single 
class, as depicted in Fig. 3.b.  
 
The remainder of this paper is organized as follows. 
Section 2 introduces supervised clustering and explains 
how supervised clustering dataset editing works. Section 
3 discusses experimental results that compare Wilson 
editing, supervised clustering editing, and traditional, 
”unedited” nearest-neighbor classifiers, with respect to 
classification accuracy and dataset reduction rates. 

Section 4 summarizes the results of this paper and 
identifies areas of future research. 
 
A summary of the notations used throughout the paper is 
given in Table 1. 
 

Notation Description 
O={o1, …, on} Objects in a dataset (training set) 
n Number of objects in the dataset 
d(oi,oj) Distance between objects oi & oj 
c  The number of classes in the dataset 
Ci Cluster associated with the i-th 

representative 
X={C1, …, Ck} A clustering solution consisting of 

clusters C1 to Ck 
k=|X| The number of clusters (or 

representatives) in a clustering  
solution X 

q(X) A fitness function that evaluates a 
clustering X, see formula (2) 

Table 1: Notations Used in the Paper.  
 
 

2. Using Supervised Clustering for Dataset 
Editing 

 
Due to its novelty, the goals and objectives of supervised 
clustering will be discussed in the first subsection. The 
second subsection introduces representative-based 
supervised clustering algorithms. Finally, we will explain 
how supervised clustering can be used for nearest 
neighbor dataset editing. 

2.1 Supervised Clustering 

Clustering is typically applied in an unsupervised learning 
framework using particular error functions, e.g. an error 
function that minimizes the distances inside a cluster. 
Supervised clustering, on the other hand, deviates from 
traditional clustering in that it is applied on classified 
examples with the objective of identifying clusters having 
not only strong cohesion but also class purity. Moreover, 
in supervised clustering, we try to keep the number of 
clusters small, and objects are assigned to clusters using a 
notion of closeness with respect to a given distance 
function. 
 

Attribute2 

a. Hypothetical Dataset b. Dataset Edited using 
Wilson’s Technique 

Attribute2 

Attribute1 Attribute1 
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The fitness functions used for supervised clustering are 
quite different from the ones used by traditional 
clustering algorithms. Supervised clustering evaluates a 
clustering based on the following two criteria: 
• Class impurity, Impurity(X). Measured by the 

percentage of minority examples in the different 
clusters of a clustering X. A minority example is an 
example that belongs to a class different from the 
most frequent class in its cluster. 

• Number of clusters, k. In general, we favor a low 
number of clusters; but clusters that only contain a 
single example are not desirable, although they 
maximize class purity. 

 
In particular, we use the following fitness function in our 
experimental work (lower values for q(X) indicate ‘better’ 
quality of clustering X). 
 

q(X) = Impurity(X) + β �∗Penalty(k) (2) 
where  
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with n being the total number of examples and c being the 
number of classes in a dataset. Parameter β (0< � �3.0) 
determines the penalty that is associated with the numbers 
of clusters, k: higher values for β imply larger penalties as 
the number of clusters increases. 
 
Two special cases of the above fitness function should be 
mentioned; the first case is a clustering X1 that uses only 
c clusters; the second case is a clustering X2 that uses n 
clusters and assigns a single object to each cluster, 
therefore making each cluster pure. We observe that 
q(X1)=Impurity(X1) and q(X2)≈β. 
 
Finding the best, or even a good, clustering X with respect 
to the fitness function q is a challenging task for a 
supervised clustering algorithm due to the following 
reasons (these matters have been discussed in more detail 
in [3,11]): 
1. The search space is very large, even for small 

datasets.  
2. The fitness landscape of q contains a large number of 

local minima. 
3. There are a significant number of ties1 in the fitness 

landscape creating plateau-like structures that present 

                                                           
1 Clusterings X1 and X2 with q(X1)=q(X2). 

a major challenge for most search algorithms, 
especially hill climbing and greedy algorithms. 

 

 
Figure 3: Traditional and Supervised Clustering. 
 
Fig. 3 illustrates the differences between traditional and 
supervised clustering. Let us assume that the black 
examples and the white examples in the figure represent 
subspecies of Iris plants named Setosa and Virginica, 
respectively. A traditional clustering algorithm, such as 
the k-medoid algorithm [6], would, very likely, identify 
the six clusters depicted in Figure 3.a. Cluster 
representatives are encircled. If our objective is to 
generate summaries for the Virginica and Setosa classes 
of the Iris Plant, for example, the clustering in Figure 3.a 
would not be very attractive since it combines Setosa 
(black circles) and Virginica objects (white circles) in 
cluster A and allocates examples of the Virginica class 
(white circles) in two different clusters B and C, although 
these two clusters are located next to each other. 
 
A supervised clustering algorithm that maximizes class 
purity, on the other hand, would split cluster A into two 
clusters G and H. Another characteristic of supervised 
clustering is that it tries to keep the number of clusters 
low. Consequently, clusters B and C would be merged 
into one cluster without compromising class purity while 
reducing the number of clusters. A supervised clustering 
algorithm would identify cluster I as the union of clusters 
B and C as depicted in Figure 3.b.  

2.2 Representative-Based Supervised Clustering 
Algorithms 

Representative-based clustering aims at finding a set of k 
representatives that best characterize a dataset. Clusters 
are created by assigning each object to the closest 
representative. Representative-based supervised clustering 

Attribute2 Attribut 2 

a. Dataset clustered using 
a traditional clustering 
algorithm 

b. Dataset clustered using 
a supervised clustering 
algorithm. 

Attribute1 
G 

J 

L 

H 
 

I 

K 

A 

B 
C 

D 

E 
F 

Attribute1 
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algorithms seek to accomplish the following goal: Find a 
subset OR of O such that the clustering X obtained by 
using the objects in OR as representatives minimizes q(X). 
 
One might ask why our work centers on developing 
representative-based supervised clustering algorithms. 
The reason is representatives (such as medoids) are quite 
useful for data summarization. Moreover, clustering 
algorithms that restrict representatives to objects 
belonging to the dataset, such as the k-medoid algorithm, 
Kaufman [6], explore a smaller solution space if 
compared with centroid–based clustering algorithms, such 
as the k-means algorithm2. Finally, when using 
representative-based clustering algorithms, only an inter-
object distance matrix is needed and no “new” distances 
have to be computed, as it is the case with k-means.   
 
As part our research, we have designed and evaluated 
several supervised clustering algorithms [3]. Among the 
algorithms investigated, one named Single Representative 
Insertion/Deletion Steepest Decent Hill Climbing with 
Randomized Restart (SRIDHCR for short) performed 
quite well3. This greedy algorithm starts by randomly 
selecting a number of examples from the dataset as the 
initial set of representatives. Clusters are then created by 
assigning examples to their closest representative. 
Starting from this randomly generated set of 
representatives, the algorithm tries to improve the quality 
of the clustering by adding a single non-representative 
example to the set of representatives as well as by 
removing a single representative from the set of 
representatives. The algorithm terminates if the solution 
quality (measured by q(X)) does not show any 
improvement. Moreover, we assume that the algorithm is 
run r (input parameter) times starting from a randomly 
generated initial set of representatives each time, 
reporting the best of the r solutions as its final result. The 
pseudo-code of the version of SRIDHCR that was used 
for the evaluation of supervised clustering editing is given 
in Figure 4. It should be noted that the number of clusters 
k is not fixed for SRIDHCR; the algorithm searches for 
“good” values of k. 

                                                           
2 There are 2n possible centroids for a dataset containing n 

objects. 
3 Another algorithm named SCEC [12] that employs 

evolutionary computing to evolve a population consisting of 
sets of representatives, also denoted good performance. 

 
Figure 4: Pseudo Code of SRIDHCR. 

2.3 Using Cluster Prototypes for Dataset Editing 

In this paper we propose using supervised clustering as a 
tool for editing a dataset O to produce a reduced subset 
Or. The subset Or consists of cluster representatives that 
have been selected by a supervised clustering algorithm. 
A 1-NN classifier, that we call nearest-representative 
(NR) classifier, is then used for classifying new examples 
using subset Or instead of the original dataset O. Figure 5 
presents the classification algorithm that the NR classifier 
employs. A NR classifier can be viewed as a compressed 
1-nearest-neighbor classifier because it uses only k (k<n) 
examples out of the n examples in the dataset O.  
 
 

 
Figure 5: Nearest Representative (NR) Classifier. 
 
Figure 6 gives an example that illustrates how supervised 
clustering is used for dataset editing. Figure 6.a shows a 
dataset that was partitioned into 6 clusters using a 
supervised clustering algorithm. Cluster representatives 

REPEAT r TIMES 
curr := randomly generated set of 
representatives with size between c+1 and 2*c 
WHILE NOT DONE DO 

1. Create new solutions S by adding a 
single non-representative to curr and 
by removing a single representative 
from curr 

2. Determine the element s in S for 
which q(s) is minimal (if there is 
more than one minimal element, 
randomly pick one) 

3. IF q(s)<q(curr) THEN curr:=s 
ELSE IF q(s)=q(curr) AND |s|>|curr| 
THEN curr:=s 
ELSE terminate and return curr as the 
solution for this run. 

Report the best out of the r solutions found. 
 

PREPROCESSING 
A. Apply a representative-based supervised 

clustering algorithm (e.g. SRIDHCR) on dataset 
O to produce a set of k prototypical examples. 

B. Edit dataset O by deleting all non-representative 
examples to produce subset Or. 

 
CLASSIFICATION RULE 
Classify a new example q by using a 1-NN classifier 
with the edited subset Or. 
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are marked with circles around them. Figure 6.b shows 
the result of supervised clustering editing. 
 

 
Figure 6: Editing a Dataset Using Supervised Clustering. 
 
3. Experimental Results 
 
To evaluate the benefits of Wilson editing and supervised 
clustering editing (SCE), we applied these techniques to a 
benchmark consisting of 8 datasets that were obtained 
from the UCI Machine Learning Repository [9]. Table 2 
gives a summary of these datasets.  
 
All datasets were normalized using a linear interpolation 
function that assigns 1 to the maximum value and 0 to the 
minimum value. Manhattan distance was used to compute 
the distance between two objects. 
 

Dataset name # of 
objects 

# of 
attributes 

# of 
classes 

Glass 214 9 6 
Heart-Statlog 270 13 2 
Heart-Disease-
Hungarian (Heart-H) 

294 13 2 

Iris Plants  150 4 3 
Pima Indians Diabetes 768 8 2 
Image Segmentation 2100 19 7 
Vehicle Silhouettes 846 18 4 
Waveform 5000 21 3 
Table 2: Datasets Used in the Experiments. 
 
Parameter β has a strong influence on the number k of 
representatives chosen by the supervised clustering 
algorithm; i.e., the size of the edited dataset Or. If high 
β values are used, clusterings with a small number of 
representatives are likely to be chosen. On the other hand, 
low values for β are likely to produce clusterings with a 
large number of representatives.  
 

In general, an editing technique reduces the size n of a 
dataset to a smaller size k. We define the dataset 
compression rate of an editing technique as:  

Compression Rate 
n
k−= 1                          (3) 

 
In order to explore different compression rates for 
supervised clustering editing, three different values for 
parameter β were used in the experiments: 1.0, 0.4, and 
0.1. 
 
Prediction accuracies were measured using 10-fold cross-
validation throughout the experiments for the four 
classifiers tested. Representatives for the nearest 
representative (NR) classifier were computed using a 
version of the SRIDHCR supervised clustering algorithm 
that was introduced in Section 2.2. In our experiments, 
SRIDHCR was restarted 50 times (r = 50), each time with 
a different initial set of representatives, and the best 
solution (i.e., set of representatives) found in the 50 runs 
was used as the edited dataset for the NR classifier. 
Accuracies and compression rates were obtained for a 1-
NN-classifier that operates on subsets of the 8 datasets 
obtained using Wilson editing. We also computed 
prediction accuracy for a traditional 1-NN classifier that 
uses all training examples when classifying a new 
example. The reported accuracies of the traditional 1-NN-
classifier serve as a baseline for evaluating the benefits of 
the two editing techniques. Finally, we also report 
prediction accuracy for decision-tree learning algorithm 
C4.5 that was run using its default parameter settings. 
Table 3 reports the accuracies obtained by the four 
classifiers evaluated in our experiments. 
  
Table 4 reports the average dataset compression rates for 
supervised clustering editing and Wilson editing. Due to 
the fact that the supervised clustering algorithm has to be 
run 10 times, once for each fold, different numbers of 
representatives are usually obtained for each fold. 
Consequently, Table 4, also, reports the average, 
minimum, and maximum number of representatives found 
on the 10 runs. For example, when running the NR 
classifier for the Diabetes dataset with β set to 0.1 the 
(rounded) average number of representatives was 27, the 
maximum number of representatives during the 10 runs 
was 33 and the minimum number of representatives was 
22; supervised clustering editing reduced the size of the 
original dataset O by an average of 96.5%, as displayed in 
Table 4. The NR classifier classified 73.6% of the testing 
examples correctly, as indicated in Table 3. Table 4 only 
reports average compression rates for Wilson editing. 
Minimum and maximum compression rates observed in 
different folds are not reported, because the deviations 
among these numbers were quite small. 

A 

E 

C 

B 
 

Attribute 2 

D 

G F 

Attribute2 

a. Dataset clustered using 
supervised clustering. 

b. Dataset edited using 
cluster representatives. 

Attribute1 Attribute1 
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� NR Wilson 1-NN C4.5 

Glass (214) 
0.1 0.636 0.607 0.692 0.677 
0.4 0.589 0.607 0.692 0.677 
1.0 0.575 0.607 0.692 0.677 

Heart-Stat Log (270) 
0.1 0.796 0.804 0.767 0.782 
0.4 0.833 0.804 0.767 0.782 
1.0 0.838 0.804 0.767 0.782 

Diabetes (768) 
0.1 0.736 0.734 0.690 0.745 
0.4 0.736 0.734 0.690 0.745 
1.0 0.745 0.734 0.690 0.745 

Vehicle (846) 
0.1 0.667 0.716 0.700 0.723 
0.4 0.667 0.716 0.700 0.723 
1.0 0.665 0.716 0.700 0.723 

Heart-H (294) 
0.1 0.755 0.809 78.33 80.22 
0.4 0.793 0.809 78.33 80.22 
1.0 0.809 0.809 78.33 80.22 

Waveform (5000) 
0.1 0.834 0.796 0.768 0.781 
0.4 0.841 0.796 0.768 0.781 
1.0 0.837 0.796 0.768 0.781 

Iris-Plants (150) 
0.1 0.947 0.936 0.947 0.947 
0.4 0.973 0.936 0.947 0.947 
1.0 0.953 0.936 0.947 0.947 

Segmentation (2100) 
0.1 93.81 0.966 0.956 0.968 

0.4 91.9 0.966 0.956 0.968 
1.0 88.95 0.966 0.956 0.968 

Table 3: Predition Accuracy for the four Algorithms. 
 
If we inspect the results displayed in Table 3, we can see 
that Wilson editing is a quite useful technique for 
improving traditional 1-NN-classfiers. Using Wilson 
editing leads to higher accuracies for 6 of the 8 datasets 
tested (e.g., Heart-StatLog, Diabetes, Vehicle, Heart-H, 
Waveform, and Segmentation) and only shows a 
significant loss in accuracy for the Glass dataset. The SCE 
approach, on the other hand, accomplished significant 
improvement in accuracy for the Heart-Stat Log, 
Waveform, and Iris-Plants datasets, outperforming 
Wilson editing by at least 2% in accuracy for those 
datasets. It should also be mentioned that the achieved 
accuracies are significantly higher than those obtained by 
C4.5 for those datasets. However, our results also indicate 
that SCE does not work well for all datasets. A significant 
loss in accuracy can be observed for the Glass and 
Segmentation datasets. 

 
� Avg. k  

[Min-Max] 
for SCE 

SCE  
Compression 

Rate 

Wilson  
Compression 

Rate 
Glass (214) 
0.1 34  [28-39] 84.3 27 
0.4 25  [19-29] 88.4 27 
1.0 6    [6 – 6] 97.2 27 

Heart-Stat Log (270) 
0.1 15  [12-18] 94.4 22.4 
0.4 2    [2 – 2] 99.3 22.4 
1.0 2    [2 – 2] 99.3 22.4 

Diabetes (768) 
0.1 27  [22-33] 96.5 30.0 
0.4 9    [2-18] 98.8 30.0 
1.0 2    [2 – 2] 99.74 30.0 

Vehicle (846) 
0.1 57   [51-65] 97.3 30.5 
0.4 38   [ 26-61] 95.5 30.5 
1.0 14   [ 9-22] 98.3 30.5 

Heart-H (294) 
0.1 14 [11-18] 95.2 21.9 
0.4 2 99.3 21.9 
1.0 2 99.3 21.9 

Waveform (5000) 
0.1 104 [79-117] 97.9 23.4 
0.4 28   [20-39] 99.4 23.4 
1.0 4     [3-6] 99.9 23.4 

Iris-Plants (150) 
0.1 4    [3-8] 97.3 6.0 
0.4 3    [3 – 3] 98.0 6.0 
1.0 3    [3 – 3] 98.0 6.0 

Segmentation (2100) 
0.1 57 [48-65] 97.3 2.8 
0.4 30 [24-37] 98.6 2.8 
1.0 14 99.3 2.8 

Table 4: Dataset Compression Rates for SCE and Wilson 
Editing . 
 
More importantly, looking at Table 4, we notice that with 
the exception of the Glass and the Segmentation datasets, 
SCE accomplishes compression rates of more than 95% 
without a significant loss in prediction accuracy for the 
other 6 datasets. For example, for the Waveform dataset, a 
1-NN classifier that only uses 28 representatives  
outperforms the traditional 1-NN classifier that uses all 
4500 training examples4 by 7.3% points in accuracy, 
increasing the accuracy from 76.8% to 84.1%. Similarly, 
for the Heart-StatLog dataset, a 1-NN classifier that uses 
just one representative for each class outperforms C4.5 by 

                                                           
4 Due to the fact that we use 10-fold cross-validation training 

sets contain 0.9*5000=4500 examples. 
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more than 5% points, and the traditional 1-NN classifier 
by more than 6% points.  
 
As mentioned earlier, Wilson editing reduces the size of a 
dataset by removing examples that have been 
misclassified by a k-NN classifier. Consequently, the data 
set reduction rates are quite low on “easy” classification 
tasks for which high prediction accuracies are normally 
achieved. For example, Wilson editing produces dataset 
reduction rates of only 2.8% and 6.0% for the 
Segmentation and Iris datasets, respectively. Most 
condensing approaches, on the other hand, reduce the size 
of a dataset by removing examples that have been 
classified correctly by a nearest neighbor classifier. 
Finally, supervised clustering editing reduces the size of a 
dataset by removing examples that have been classified 
correctly as well as examples that have not been classified 
correctly. A representative-based supervised clustering 
algorithm is used that aims at finding clusters that are 
dominated by instances of a single class, and tends to pick 
as the cluster representative5 objects that are in the center 
of the region associated with the cluster. As depicted in 
Fig. 6, supervised clustering editing just keeps the cluster 
representative and removes all other objects belonging to 
a cluster from the dataset. Furthermore, it seeks to 
minimize the fitness function q(X) rather than considering 
which objects have been or have not been classified 
correctly by a k-nearest neighbor classifier. 
 
It can also be seen that the average compression rate for 
Wilson editing is approximately 20%, and that supervised 
clustering editing obtained compression rates that are 
usually at least four times as high. Prior to conducting the 
experiments we expected that the NR classifier would 
perform better for lower compression rates. However, as 
can be seen in Table 4, this is not the case: for six of the 
eight datasets, the highest accuracies were obtained using 
β=0.1 or β=0.4, and only for two datasets the highest 
accuracy was obtained using β=1.0. For example, for the 
Diabetes dataset using just 2 representatives leads to the 
highest accuracy of 74.5%, whereas a 1-NN classifier that 
uses all 768 objects in the dataset achieves a lower 
accuracy of 69%. The accuracy gains obtained using a 
very small number of representatives for several datasets 
are quite surprising. 
 
We also claim that our approach of associating a generic 
penalty function with the number of clusters has clear 
advantages when compared to running a clustering 

                                                           
5 Representatives are rarely picked at the boundaries of a region 

dominated by a single class, because boundary points have the 
tendency to attract points of neighboring regions that are 
dominated by other classes, therefore increasing cluster 
impurity. 

algorithm keeping the number of clusters, k, fixed. 
Parameter β narrows the search space to values of k 
corresponding to “good” solutions, but does not restrict it 
to a single value. Consequently, a supervised clustering 
algorithm still tries to find the best value of k within the 
boundaries induced by � without the need for any prior 
knowledge of what values for k are “good” on a particular 
dataset. 
 
4. Conclusion 
 
The goal of dataset editing in instance-based learning is to 
remove objects from a training set in order to increase the 
accuracy of the learnt classifier. In contrast to condensing 
techniques, editing techniques have not received much 
attention in the machine learning and data mining 
literature. One popular dataset editing technique is Wilson 
editing. It removes those examples from a training set that 
are misclassified by a nearest neighbor classifier. In this 
paper, we evaluate the benefits of Wilson editing using a 
benchmark consisting of eight UCI datasets. Our results 
show that Wilson editing enhanced the accuracy of a 
traditional nearest neighbor classifier on six of the eight 
datasets tested. Wilson editing achieved an average 
compression rate of about 20%. It is also important to 
note that Wilson editing, although initially proposed for 
nearest neighbor classification, can easily be used for 
other classification tasks. For example, a dataset can 
easily be “Wilson edited” by removing all training 
examples that have been misclassified by a decision tree 
classification algorithm. 
 
In this paper, we introduced a new technique for dataset 
editing called supervised clustering editing (SCE). The 
idea of this approach is to replace a dataset by a subset of 
cluster prototypes. We introduced a novel clustering 
approach, called supervised clustering, that determines 
clusters and cluster prototypes in the context of dataset 
editing. Supervised clustering, itself, aims at identifying 
class-uniform clusters that have high probability densities. 
 
Using supervised clustering editing, we implemented a 
1NN-classifier, called nearest representative (NR) 
classifier. Experiments were conducted that compare the 
accuracy and compression rates of the proposed NR 
classifier, with a 1-NN classifier that employs Wilson 
editing, and with a traditional, unedited, 1-NN classifier. 
Results show that the NR-classifier accomplished 
significant improvements in prediction accuracy for 3 out 
of the 8 datasets used in the experiments, outperforming 
the Wilson editing based 1-NN classifier by more than 
2%. Moreover, experimental results show that for 6 out 
the 8 datasets tested, SCE achieves compression rates of 
more than 95% without significant loss in accuracy. We 
also explored using very high compression rates and its 
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effect on accuracy. We observed that high accuracy gains 
were achieved using only a very small number of 
representatives for several datasets. For example, for the 
Waveform dataset, a traditional 1-NN classifier that uses 
all 5000 examples accomplished an accuracy of 76.8%. 
The NR-classifier, on the other hand, uses only an 
average of 28 examples, and achieved an accuracy of 
84.1%. In summary, our empirical results stress the 
importance of centering more research on dataset editing 
techniques. 
 
Our future work will focus on 1) using data set editing 
with other classification techniques, 2) making data set 
editing techniques more efficient, and 3) exploring the 
relationships between condensing techniques and 
supervised clustering editing. We also plan to make our 
supervised clustering algorithms readily available on the 
web.  
 
 
References 
 
[1] Dasarathy, B.V., Sanchez, J.S., and Townsend, S., “Nearest 

neighbor editing and condensing tools – synergy 
exploitation”, Pattern Analysis and Applications, 3:19-30, 
2000. 

[2] Devijver, P. and Kittler, J., “Pattern Recognition: A 
Statistical Approach”, Prentice-Hall, Englewood Cliffs, NJ, 
1982. 

[3] Eick, C., Zeidat, N., and Zhao, Z., “Supervised Clustering - 
Objectives and Algorithms. submitted for publication. 

[4] Fix, E. and Hodges, J., “Discriminatory Analysis. 
Nonparametric Discrimination: Consistency Properties”, 
Technical Report 4, USAF School of Aviation Medicine, 
Randolph Field, Texas, 1951. 

[5] Hattori, K. and Takahashi, M., “A new edited k-nearest 
neighbor rule in the pattern classification problem”, Pattern 
Recognition, 33:521-528, 2000. 

[6] Kaufman, L. and Rousseeuw, P. J., “Finding Groups in 
Data: an Introduction to Cluster Analysis”, John Wiley & 
Sons, 1990.  

[7] Penrod, C. and Wagner, T., “Another look at the edited 
nearest neighbor rule”, IEEE Trans. Syst., Man, Cyber., 
SMC-7:92–94, 1977. 

[8] Toussaint, G., “Proximity Graphs for Nearest Neighbor 
Decision Rules: Recent Progress”, Proceedings of the 34th 
Symposium on the INTERFACE, Montreal, Canada, April 
17-20, 2002. 

[9] University of California at Irving, Machine Learning 
Repository. 
http://www.ics.uci.edu/~mlearn/MLRepository.html 

[10] Wilson, D.L., “Asymptotic Properties of Nearest Neighbor 
Rules Using Edited Data”, IEEE Transactions on Systems, 
Man, and Cybernetics, 2:408-420, 1972. 

[11] Zeidat, N., Eick, C., “Using k-medoid Style Algorithms for 
Supervised Summary Generation”, Proceedings of 
MLMTA, Las Vegas, June 2004. 

[12] Zhao, Z., “Evolutionary Computing and Splitting 
Algorithms for Supervised Clustering”, Master’s Thesis, 
Dept. of Computer Science, University of Houston, May 
2004. 

 
 
 


