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Abstract

Spacecraft simulation is an integral part of NASA mission
planning, real-time mission support, training, and systems
engineering. Existing approaches that power these simula-
tions cannot quickly react to the dynamic and complex behav-
ior of the International Space Station (ISS). To address this
problem, this paper introduces a unique and efficient method
for continuously learning highly accurate models from real-
time streaming sensor data, relying on an online learning ap-
proach. This approach revolutionizes NASA simulation tech-
niques for space missions by providing models that quickly
adapt to real-world feedback without human intervention. A
novel regional sliding-window technique for online learning
of simulation models is proposed that regionally maintains
the most recent data. We also explore a knowledge fusion
approach to reduce predictive error spikes when confronted
with making predictions in situations that are quite different
from training scenarios. We demonstrate substantial error re-
ductions up to 76% in our experimental evaluation on the ISS
Electrical Power System, discuss the successful deployment
of our software in the ISS Mission Control Center for ground-
based simulations, and outline future adoption at NASA.

Introduction
Simulation plays a crucial role in NASA spaceflight. Soft-
ware models recreate hardware behavior when using the real
system is impossible due to costs, safety, or operational con-
straints. Spacecraft simulation is an integral part of mission
planning, real-time mission support, training, and systems
engineering.

Common practice at NASA in generating simulation
models is to use hardware specifications, manufacturer test
data, and physics to derive equation systems that describe
system behavior. The resulting equations may range from
simple algebraic expressions to complex integrals and dif-
ferential equations that require advanced numerical analy-
sis techniques. The final software implementations of these
equation systems are known as engineering models. After
initial model construction, engineers must tediously evalu-
ate and adjust models in order to match true system behavior
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(Jannette et al. 2002). Engineering model adjustments range
from modifying coefficients to changing equation forms.

With the sheer size and evolving nature of the Inter-
national Space Station, engineers cannot constantly adjust
models to reflect current system behavior due to sched-
ule and budgetary constraints. In this paper, we present a
solution that uniquely solves this challenging problem by
using machine learning to continuously and autonomously
construct highly accurate models from real-time telemetry
(streaming sensor data).

This solution advances the state of the art in NASA sim-
ulation techniques that traditionally require manual model
construction and adaptation. The work in (Bay, Shapiro,
and Langley 2002) recognizes the need for a machine learn-
ing solution to this problem, but fails to address key prob-
lems such as model construction without the restrictions of
specific equation forms, the use of supplemental knowledge
during extrapolation, and efficient online system operation.
Our solution examines a drastically different approach that
does not require any assumptions about the mathematical
structure of the model, uses a model fusion approach to ad-
dress extrapolation, and efficiently reacts to changes in sys-
tem behavior within seconds.

Our approach pre-processes spacecraft telemetry, main-
tains a constant-size training dataset, and employs a regional
sliding-window that preserves recent examples for localized
regions within the input space, allowing for accurate predic-
tions across all valid regions of the input space.

Using the resulting representative training dataset, we
evaluate a set of candidate algorithms and learn a simula-
tion model using the best training algorithm. Each result-
ing model is sent to the spacecraft simulator in real-time to
match current system behavior. Since the simulator can re-
quest predictions for regions of the input space not contained
in our training dataset, we employ a model fusion approach
that uses the knowledge contained in existing engineering
models to eliminate large spikes in error during drastic ex-
trapolation.

The unique contributions of the paper include:

• Online autonomous learning of highly accurate spacecraft
simulation models from real-time telemetry

• Regional sliding-windows that outperform traditional
sliding-windows for simulation model construction



Figure 1: Johnson Space Center Mission Control Center
(photo courtesy NASA)

• Model fusion that additionally uses traditional engineer-
ing models to make more reliable predictions in situations
that are quite different from training scenarios

• A new system architecture that integrates machine learn-
ing into the simulation model construction and adaptation
process

We evaluate our technique using the ISS Electrical Power
System (EPS) and NASA historical data archives of space-
craft telemetry. Evaluation results demonstrate significant
accuracy improvements over existing EPS engineering mod-
els.

The paper is organized as follows: The Background sec-
tion provides relevant background information, the Techni-
cal Approach section describes our solution in detail, the
Experimental Results section offers results from our experi-
mental evaluation, the Deployment section discusses the de-
ployment of our technique at NASA, and finally, the Conclu-
sion and the Future Work sections conclude with a summary
and identification of future work.

Background
Spacecraft Simulation
For ISS mission operations (Figure 1), spacecraft system
simulations assist flight controllers and engineers with pre-
flight planning, in-flight monitoring, real-time mission plan-
ning, and post-flight analysis. Simulations allow engineers
to answer critical questions such as the following: How long
until the crew exhausts the oxygen supply during a cabin
pressure leak? How can we orient the spacecraft to retain
communication when mechanical antenna positioning fails?
Is enough power available to run a science rack experiment
for the required fourteen days?

Engineers generate initial models using hardware specifi-
cations, manufacturer test data, and physics to derive a set of
equations that describe system behavior. The resulting equa-
tions range from simple algebraic expressions to complex
integrals and differential equations that require advanced nu-
merical analysis techniques. The level of fidelity is dictated
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Figure 2: ISS Electrical Power System schematic
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Figure 3: Battery charge level telemetry

by accuracy requirements.
After initial model construction, engineers must tediously

evaluate and adjust models in order to match true system
behavior. Engineering model adjustments range from mi-
nor changes of coefficients to major refinements to equation
forms.

Simulation models need to reflect real-world system be-
havior, otherwise their value is limited. Engineers find it
difficult and time-consuming to create and maintain accurate
models for spacecraft systems for the following reasons:

• Human-rated spacecraft systems are complex

• True performance is only observable when the system is
deployed in space

• Abnormal scenarios are difficult to understand

• System operation can evolve over time

• Extensive human involvement is necessary to adapt and
refine models from system feedback

We address these challenges by autonomously generating
highly accurate models that always reflect current system
behavior.

ISS Electrical Power System
We chose the ISS EPS (Gietl et al. 2000) to evaluate our
technical approach due to our domain knowledge of the EPS.
However, our approach is generic and not tailored to any
specific hardware system.



Our focus was on two core components: the battery
charge/discharge unit (BCDU) and the battery itself. The
hardware layout for a single power channel (eight total) is
illustrated in Figure 2. The ISS absorbs sunlight through
its massive solar arrays and converts the energy into a us-
able power source through a network of complex electrical
equipment. An array of nickel-hydrogen batteries stores ex-
cess energy for use during orbital eclipse. The ISS orbit re-
sults in cyclic battery charge/discharge behavior due to the
periodic transition from eclipse to insolation (periods of so-
lar radiation) as demonstrated in Figure 3.

An EPS model used for power resource planning must
predict future performance in a temporal manner. This fore-
casting requirement significantly complicates the problem.
An EPS model must forecast battery charge profiles, as illus-
trated in Figure 3, given only initial conditions and a time-
series of predicted inputs. Flight planners need to know if
power will be available for the next week, not simply the
immediate future.

Technical Approach
In the Requirement Analysis section, we provide a require-
ment analysis for our solution. Then in the System Archi-
tecture section, we outline the system architecture and il-
lustrate the flow of information from incoming telemetry to
final simulation output. We then focus on the following solu-
tions necessary to solve specific problems: regional sliding-
windows (Regional Sliding-Window section), model learn-
ing and evaluation (Model Learning and Evaluation section),
and model fusion (Model Fusion section).

Requirement Analysis
We must solve a series of problems in order to effectively
learn spacecraft simulation models in an online fashion:

• Process large amounts of continuously streaming sensor
data

• Create models that forecast into the future

• Account for both frequent and long periods of missing
data

• Create models capable of making predictions for any valid
region of the input space

• Adjust models for system degradation1

• Learn and evaluate models without human intervention

We will discuss these requirements in detail throughout
the discussion of our approach.

System Architecture
Our architecture consists of the offline analysis components
and online learning components as shown in Figure 4. We
now describe the flow of data through these system com-
ponents. Before running our system, the Feature Selection
component determines the optimal set of sensors that gen-
erate the best possible model. Once our system is running,

1Some EPS devices degrade over time or when operated past
normal conditions.
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Figure 4: System architecture

Algorithm 1 Regional Sliding-Window Algorithm
Input: trainingSet, dataStream ~x[], size n, size k
Initialize trainingSet⇐ ∅
loop

newPoints⇐ next n samples from x
trainingSet⇐ trainingSet ∪ newPoints
trainingSet⇐ k-means from trainingSet

end loop

all incoming telemetry runs through the Data Preprocess-
ing component to condition the data appropriately for model
learning and evaluation. At a fixed frequency, the system
will revise the training dataset using the regional sliding-
window. The system sends this training dataset to the Al-
gorithm Selection component where the best algorithm is
selected from a set of candidate training algorithms. The
Online Learning component then learns a system model us-
ing the current training set. The system then sends the result-
ing learned models to the simulator where the Model Fusion
component combines the knowledge contained in existing
engineering models to prevent highly inaccurate predictions.

Detailed descriptions of the Feature Selection and Data
Preprocessing components are provided in (Thomas 2007)
and are not the focus of this paper.

Regional Sliding-Window
When learning from data streams (Babcock et al. 2002;

Gaber, Zaslavsky, and Krishnaswamy 2005), it is not realis-
tic to use the entire data stream for model learning. In our
case, a year of operational data sampled at 10HZ results in a
training set with over 3 million data points (1 GB). A popular
technique to handle data streams is to only retain the n most
recent data points. This is known as a sliding-window (Wid-



Figure 5: Regional sliding-window example – A full day of battery data (left) shows a loop in the middle of the input space.
This loop is lost the next day using a traditional sliding-window (middle). However, a regional sliding-window maintains this
important knowledge (right).

mer and Kubat 1996). This simplistic model works well in
many situations, but suffers from the drawback that knowl-
edge is lost when it leaves the sliding-window (Figure 5).
For a spacecraft simulation model, we need examples cov-
ering the entire input space or we risk wildly erroneous pre-
dictions during inductive model extrapolation. We must pre-
serve this knowledge as it unpredictably arrives in telemetry.
We propose a regional sliding-window for learning accurate
simulation models.

We use k-means clustering to create a representative
dataset across all exercised operational regions. Algorithm 1
takes an initial training dataset and appends n samples from
data stream ~x[]. Then k-means is used to generate a large
number of representatives, keeping the training set a con-
stant size k. Examples in the training set that are nearby the
new samples from ~x[] will be shifted towards the new data
as k-means determines the new representatives. Examples
from the training set that are not nearby the new data will
not move. We desire this behavior since we do not want to
discount or remove elder data that are most recent for a par-
ticular region in the input space. By selecting a sufficiently
large value for k, we can maintain data points across the en-
tire input space as shown in Figure 5.

The selection of the k and n parameters are important in
the performance of this regional sliding window approach.
Our experimental evaluations found that n must be much
smaller than k (typically around 90-95% smaller). The value
of k is related to the number of data points necessary to pre-
serve valid operating values across the input space. We ex-
perimentally determined k by producing a series of plots on
a data set with increasing values of k, and then increasing
the value of k by 20% to account for future data not in-
cluded in our input dataset. If k is too large, our runtime
performance will suffer due to increased dataset size during
training, and if k is too small, then we might not be able
to preserve enough data for quality training. Also n con-
trols the training frequency, since after n input points are
buffered, we then execute k-means to perform a recluster-
ing. As the value of n decreases, our system performance
will decrease.

Many system models must also account for system degra-
dation. In the field of machine learning, this is known as the
concept drift problem (Widmer and Kubat 1996). Concept
drift is best described as dynamic change to the underlying

data-generating distribution. In our domain, the EPS com-
ponents tend to degrade over time, resulting in changes to
the system behavior and corresponding output. Our regional
sliding-window technique also indirectly accounts for the
concept drift phenomenon since incoming data points will
influence the elder training examples in that local region.

Model Learning and Evaluation
When learning from data streams, our system takes in the
regional sliding-window of telemetry and generates a model
at a fixed frequency. During the learning process, the system
selects the best algorithm from a candidate set. We selected
the candidate algorithms by examining our problem charac-
teristics (real-valued inputs/outputs, efficient prediction per-
formance, etc. . . ) and experimenting on sample datasets.
We used the following algorithms in our experiments:

• Artificial Neural Networks (single and boosted ensemble)

• Linear Regression

• Regression Trees (single and bagged ensemble)

• Model Trees (single and boosted ensemble) (Quinlan
1992)

The system selects the algorithm that generates system
models with the lowest mean absolute error on an indepen-
dent test set. We will discuss the performance of each al-
gorithm in our experimental results (Experimental Results
section).

The EPS telemetry shown in Figure 3 contains significant
gaps which represent data unavailability due to communica-
tion outages between the ISS and the MCC. The Tracking
and Data Relay Satellite (TDRS) communications system is
a shared resource and we expect such communication out-
ages. In the extreme case, data can be unavailable for up to
30 minutes.

For time-independent models (such as the BCDU model),
we construct training sets and independent model evalua-
tion sets by simply removing all data points with missing
data from the full dataset. The occurrence of missing data
is completely independent of EPS system operation and we
have ample training data.

For time-dependent forecasting models (such as the bat-
tery model), we create a lagged variable (Chatfield and
Weigend 1994) for the time-delayed output. To create a
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Figure 6: Battery model error comparison (engineering
model vs. learned model)

lagged variable, the system creates a new feature for the data
point at time t with the output from the data point at time
t + 1.

To evaluate forecasting models, we cannot use traditional
n-fold cross validation since data points are now interdepen-
dent. We must evaluate our models using a full time-ordered
sequence of independent test data. For our evaluations, we
desire a dataset without missing data for at least 90 minutes
(one ISS orbit), but these datasets are extremely scarce. In-
stead we used linear interpolation to complete missing val-
ues. To avoid overly biasing the evaluation data, we experi-
mentally determined the maximum duration of missing data
that meets an externally defined quality threshold. For our
evaluations, we generated ample test data using a missing
data threshold of 40 seconds, well under the experimentally
determined maximum threshold of 100 seconds.

Model Fusion
Simulation models provide engineers a means of exper-
imenting and trying out many potential scenarios. This
means system models must be able to make predictions in
any valid region of the input space at any time. We must
account for cases when our system model must predict in
a region in the input space where no training examples ex-
ist. This is the extrapolation problem that all inductive algo-
rithms face.

Model fusion is a knowledge fusion approach that uses
traditional engineering models to supplement the learned
models. Our software uses the output from the learned
model when the incoming data point is very similar to the
training dataset, otherwise we use the output from the engi-
neering model. We observed that engineering models pro-
vide useful background knowledge to reduce predictive er-
ror spikes when confronted with making predictions in sit-
uations that are quite different from the training scenarios
used when learning the machine learning model. We refer
to the resulting model as the fused model.

As we show in Figure 6, battery models created using our
online learning technique outperform the existing engineer-
ing model with the exception of a few large spikes. Visual
inspection of the telemetry data in Figure 7 shows that dur-
ing one of these spikes, there were novel examples reflected
by the loop in the middle of the normal operating region.
This scenario demonstrates the need for model fusion since

Day 67 Day 66

Figure 7: Previously unobserved battery data points

Algorithm 2 Model Fusion Algorithm
Input: dataPoint, means[], covars[], threshold
c⇐ NearestCluster(dataPoint, means, covars)
distance⇐MahalanobisDistance(dataPoint, c)
if distance > threshold then

output⇐ EngineeringModelOutput(dataPoint)
else

output⇐ LearnedModelOutput(dataPoint)
end if

the learned model did not accurately predict these inputs.
To determine if the incoming data point is similar to the

training dataset, we turn to unsupervised density estimation
techniques as proposed by Bishop (Bishop Aug 1994). We
use a Gaussian Mixture Model (GMM) density estimator to
determine if the new data point is novel when compared to
the training dataset. Our software achieves this by measur-
ing the distance from the clusters generated by the standard
Expectation-Maximization training procedure as shown in
Algorithm 2. If the Mahalanobis distance is greater than our
global novelty threshold, the incoming data point is deemed
novel and we use the output from the engineering model.
The global threshold is set so that 99% of the training set is
deemed nominal to allow for some noise.

We use the Mahalanobis distance function rather than
the normal probability density function to meet simulator
runtime performance requirements. The software calls the
model output generation function at such a high rate that any
increase in run-time performance has drastic effects on over-
all simulation time. The probability density function uses
several exponential terms that have a measurable impact on
performance.

Our initial approach relied on a k nearest neighbor for
determining the novelty of incoming data points. This ap-
proach was extremely slow due to the linear search time
when generating each model output. We deemed this ap-
proach unusable due to the unacceptable performance al-
though initial investigations into kd-trees and ball-trees of-
fered some hope.

Figure 8 shows the large error spikes by the learned model
in Figure 6 are reduced in the final fused model. For a few



Approach Battery BCDU Current BCDU Voltage
Existing engineering model 0.00831 1.1305 4.8653
Learned model with traditional sliding-window 0.01096 0.3037 0.8237
Learned model with regional sliding-window 0.00513 0.2273 0.6538
Final model (model fusion and regional sliding-window) 0.00623 0.3079 1.2574

Table 1: Results summary (mean absolute errors)
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Figure 8: Battery model error comparison (learned model
vs. fused model)

datasets, the mean error in the final fused model is larger
than the learned model, but these small sacrifices are neces-
sary to bound large error spikes caused by extreme extrapo-
lation.

Model fusion provides a safety net to ensure that adaptive
model extrapolation does not introduce bizarre results. Un-
usual output will hurt the users confidence and decrease their
trust in this intelligent system. This safeguard is necessary
for real-world adoption in spacecraft simulation.

Experimental Results
For our experimental evaluation, we used 90 days of ISS
historical telemetry data from year 2006. First, we per-
formed feature selection for the battery and BCDU devices.
Next, we started a regional sliding-window with k=2000
and n=100 to generate training datasets. Then, our software
learned new models every 24 hours. Finally, all models were
evaluated on independent test sets one week into the future.

A summary of the results is provided in Table 1. The
regional sliding-window approach improves over traditional
sliding-windows by reducing mean absolute error (MAE) by
53% (battery), 25% (BCDU current), and 21% (BCDU volt-
age). Model fusion slightly increases MAE for all learned
models, but removes drastic spikes in error by reducing
maximum errors by 70% (battery), 2% (BCDU current),
and 73% (BCDU voltage). Our final models improve over
the existing engineering models with 25% (battery), 73%
(BCDU current), and 74% (BCDU voltage) reductions in
MAE. In all cases, the system selected boosted model trees
as the learning algorithm.

The low level results for each 24 hour period are provided
in Figure 9 (battery), Figure 10 (BCDU current), and Figure
11 (BCDU voltage). These figures compare the final fused
model against the existing engineering model.

Figure 12 provides an example of the final fused battery
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Figure 9: Battery model error comparison (engineering
model vs. fused model)
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Figure 10: BCDU current model error comparison (engi-
neering model vs. fused model)
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neering model vs. fused model)
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Figure 12: Battery model output comparison (engineering
model vs. fused model)

model output compared against the true sensor value and the
existing engineering model output over a 4.5 hour period.
The learned model more accurately simulates true EPS bat-
tery performance, while the engineering model slowly drifts
away.

Deployment
ISS power system flight controllers approved our proposal to
integrate this method into a ground-based EPS model used
for ISS power planning in the Mission Control Center. This
is the only method in use at the NASA Johnson Space Cen-
ter that applies machine learning to spacecraft system sim-
ulation. We split this project into two phases in order to
evaluate this method in stages and build user confidence in
machine learning techniques for critical mission support.

The first phase integrated learned models generated of-
fline from historical data. Models are not continuously
learned and updated within the simulator. Without full on-
line adaptation, we must manually trigger the learning pro-
cess to generate new models from the most recent telemetry
data. This allows human validation of new models, but does
not meet our goal of fully adaptive and automated model
learning.

The first phase completed in April 2008 with deployment
into the Solar software application (Thomas and Downing
2008) for use in ISS power planning. The learned models
help to increase accuracy for a critical constraints-based so-
lar array planning problem (Thomas and Downing 2008).
This increase is exemplified by comparisons in the Exper-
imental Results section above. We also received positive
feedback from the flight controllers who use Solar, but the
exact accuracy increases are hard to quantify because the
model predicts the amount of power available on the ISS;
a number that cannot be measured under normal circum-
stances because the ISS must not operate at maximum power
consumption levels.

The existing EPS model was implemented in Java, and
therefore we also implemented the software supporting on-
line learning of spacecraft simulation models in Java. Our
software currently runs within a Windows environment on
Intel x86-based laptops, although the Java implementation
allows for portability across a variety of platforms. To-

tal project effort was estimated at 500 hours from problem
description to deployed software (first phase). We lever-
aged the WEKA data mining software library (Witten and
Frank 2005) for the Model Tree and k-means implementa-
tion, however we implemented our own data preprocessing,
results evaluation, and Gaussian Mixture Model algorithm
due to custom project requirements. Such software reuse
helps to reduce development costs.

The second phase consists of implementing the on-line
approach provided in this paper. Software will continuously
generate models from real-time telemetry and autonomously
update the simulation. Our model evaluation technique will
collect statistics and validation test sets to perform trustwor-
thy automated model validation. The second phase is under
consideration for 2009.

Conclusion
This paper introduced a unique and efficient method for
continuously learning highly accurate models from real-
time streaming sensor data, relying on an online learning
approach. This approach revolutionizes NASA simulation
techniques for space missions by providing models that
quickly adapt to real-world feedback without human inter-
vention. A novel regional sliding-window technique for on-
line learning of simulation models was proposed that region-
ally maintains the most recent data. We also explored a
knowledge fusion approach to reduce predictive error spikes
when confronted with making predictions in situations that
are quite different from training scenarios. We demonstrated
substantial error reductions up to 76% in our experimental
evaluation on the ISS Electrical Power System which re-
sulted in our approach being the only application of machine
learning in spacecraft simulation in use at the NASA John-
son Space Center.

Future Work
We plan to explore additional approaches for the regional
sliding-window technique to improve upon our current k-
means technique. We also plan to explore online feature
selection to dynamically add and remove sensors from the
training set.

Future applications of this technology include, but are not
limited to, more ISS systems, more NASA simulation facili-
ties, and other NASA vehicles such as the new Orion space-
craft. We plan to design and develop a run-time architecture
and software tool suite to allow engineers to build simula-
tions using adaptive learning techniques.
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