

K-medoid-style Clustering Algorithms for Supervised Summary Generation

Nidal Zeidat
Dept. of Computer Science

University of Houston
E-mail: nzeidat@cs.uh.edu

Christoph F. Eick
Dept. of Computer Science

University of Houston
E-mail: ceick@cs.uh.edu

Abstract

This paper centers on the discussion of k-medoid-style
clustering algorithms for supervised summary generation.
This task requires clustering techniques that identify
class-uniform clusters. This paper investigates such a
novel clustering technique we term supervised clustering.
Our work focuses on the generalization of k-medoid-style
clustering algorithms. We investigate two supervised
clustering algorithms: SRIDHCR (Single Representative
Insertion/Deletion Hill Climbing with Restart) and
SPAM, a variation of PAM. The solution quality and run
time of these two algorithms as well as the traditional
clustering algorithm PAM are evaluated using a
benchmark consisting of four data sets. Experiments show
that supervised clustering algorithms enhance class
purity by 7% to 19% over the traditional clustering
algorithm PAM, and that SRIDHCR finds better solutions
than SPAM.

Key Words: supervised summary generation, clustering
classified examples, k-medoid clustering algorithms, data
mining.

1. Introduction

This paper centers on a novel data mining technique we
term supervised summary generation. The objective of
supervised summary generation is the creation of class
centered summaries that recognize the patterns that are
typical for one class; it also identifies how those patterns
deviate from patterns that characterize other classes. In
order to create such summaries, supervised summary
generation requires the recognition of class-uniform
clusters that have high probability density. This paper
proposes supervised clustering algorithms for this
purpose. Clustering is typically applied in an
unsupervised learning framework using particular error
functions, e.g. an error function that minimizes the
distances inside a cluster. Supervised clustering, on the
other hand, deviates from traditional clustering in that it is
applied on classified examples where the objective is to
identify clusters that have high probability density with

respect to a single class. Moreover, in supervised
clustering, we also like to keep the number of clusters
small, and objects are assigned to clusters using a notion
of closeness with respect to a distance function.

Figure 1: Differences between Traditional Clustering and
Supervised Clustering

Fig. 1 illustrates the differences between traditional and
supervised clustering. Let us assume that the black
examples and the white examples in the figure represent
subspecies of Iris plants named Setosa and Virginica,
respectively. A traditional clustering algorithm would,
very likely, identify the four clusters depicted in Figure
1.a. The reason is that traditional clustering focuses on
minimizing intra-cluster dissimilarities regardless of the
classes that the objects belong to. If our objective is to
generate summaries for the Virginica and Setosa classes
of the Iris Plants, the clustering in Figure 1.a would not be
very attractive since it combined Setosa and Virginica
objects in cluster A and put examples of the Virginica
class in two different clusters B and C. A supervised
clustering algorithm that maximizes class purity, on the
other hand, would split cluster A into two clusters E and
F. Another characteristic of supervised clustering is that it
tries to keep the number of clusters low. Consequently,
clusters B and C would be merged into one cluster

A

C B

D
Attribute 2

Attribute 1

E

G

H

F

Attribute 1

Attribute 2

a. Traditional Clustering b. Supervised Clustering

: Setosa
: Virginica

without compromising class purity while reducing the
number of clusters. A supervised clustering algorithm
would identify cluster G as the union of clusters B and C
as illustrated by Figure 1.b.

The remainder of this paper will center on the discussion
of algorithms for supervised clustering and on the
empirical evaluation of the performance of these
algorithms with respect to speed and solution quality.
Section 2 discusses related work. Section 3 talks about K-
medoid-style clustering. Section 4 introduces the
clustering algorithms investigated. Section 5 presents
experimental results and Section 6 concludes the paper
and sheds light on our future work.

2. Related Work

Although we are not aware of research that directly
centers on supervised summary generation and supervised
clustering, there has been some work that has some
similarity to our research under the heading of semi-
supervised clustering. Semi-supervised clustering
attempts to enhance a clustering algorithm by using side
information in the clustering process that usually consists
of a "small set" of classified examples. Xian [4] (and
similarly [1]) take the classified training examples and
transform those into constraints and derive a modified
distance function that minimizes the distance between
points in the data set that are known to be similar with
respect to these constraints using classical numerical
methods. The K-means clustering algorithm in
conjunction with the modified distance function is then
used to compute clusters. Klein [2] proposes a shortest
path algorithm to modify a Euclidian distance function
based on prior knowledge. Demiriz [6] proposes an
evolutionary clustering algorithm to obtain clusters that
minimize (the sum of) cluster dispersion and impurity.

Although some similarity in algorithms and techniques
can be observed with respect to the work reviewed above,
it should be stated clearly that, although our research
investigates clustering algorithms, its focus is not on
traditional clustering, but rather on using clustering as a
preprocessing step to enhance existing classification
algorithms and as a framework for summary generation.

3. K-mdoid-style Algorithms for Supervised
Clustering

K-medoid-style clustering aims at finding a set of k
representatives among all objects in the data set that best
characterize the objects in the data set. Clusters are
created by assigning each object to the cluster of the
representative (medoid) that is closest to that object.

One might wonder why our work centers on developing
k-medoid-style supervised clustering algorithms. The
reason is that we believe that medoids are quite useful for
class-specific data summarization, because it is the most
prototypical object of the members of a cluster. Moreover,
algorithms that restrict representatives to objects
belonging to the data set, such as k-medoid, explore a
smaller solution space if compared with centroid–based
clustering algorithms, such as k-means, which searches a
much larger set of representatives. Finally, when using k-
medoid style clustering algorithms, only an inter-object
distance matrix is needed and no “new” distances have to
be computed during the clustering process as is the case
with k-means.

As mentioned earlier, the fitness functions used for
supervised clustering are significantly different from the
fitness functions used by traditional clustering
algorithms. Supervised clustering evaluates a clustering
based on the following two criteria:
• Class impurity, Impurity(X). Measured by the

percentage of minority examples in the different
clusters of a clustering X. A minority example is an
example that belongs to a class different from the
most frequent class in its cluster.

• Number of clusters, k. In general, we like to keep the
number of clusters low; trivially, having clusters that
only contain a single example is not desirable,
although it maximizes class purity.

In particular, we used the following fitness function in our
experimental work (lower values for q(X) indicate ‘better’
clustering solution X).

q(X) = Impurity(X) + β∗Penalty(k)

(1)

=

<

≥
−

=

ck

ck

0

n
ck

 Penalty(k) and

 ,
n

ExamplesMinority of #)Impurity(X where

with n being the total number of examples and c being the
number of classes in a data set. The parameter β (0< β
≤2.0) determines the penalty that is associated with the
numbers of clusters, k, in a clustering: higher values for β
imply larger penalties for a higher number of clusters.

4. Clustering Algorithms Investigated

As stated earlier, our work investigates k-medoid style
supervised clustering algorithms. In a traditional k-

medoid algorithm, such as PAM [3], the major
computations involve the determination if replacing a
medoid by a non-medoid is beneficiary with respect to the
evaluation function that evaluates a clustering. Due to the
fact that finding the best number of clusters is part of the
search process, this work extends this idea by having the
proposed algorithms not only consider replacements of
representatives by non-representatives, but also adding a
non-representative to a set of representatives, and
removing a representative from a set of representatives.

The following subsections describe the clustering
algorithms that we investigated in our research.

4.1 Partitioning Around Medoids (PAM).

Due to its similarity to the investigated supervised
clustering algorithms, PAM was selected as a
representative of traditional clustering. We use PAM to
compare the performance of traditional clustering and
supervised clustering. PAM seeks to find k
representatives minimizing the fitness function given in
formula (2):

∑=
n

ii objmedoidobjitydissimilar
n

))(,(1X)Tightness((2)

where medoid(obji) is the medoid (representative) of the
cluster that object “obji” belongs to. The number of
clusters, k, is an input parameter for the algorithm. As can
be seen looking at formula (2), PAM evaluates a
clustering by computing the average dissimilarity between
all objects in the data set and their medoids. PAM is
divided into two parts. The first part, called the BUILD
algorithm, starts with a set of representatives that initially
contains only the medoid of the complete data set.
BUILD, then, greedily inserts new representatives into
this set while minimizing the above fitness function. The
second part of PAM, algorithm SWAP, tries to improve
the clustering by exploring all possible (medoid, non-
medoid) pairs in the data set; each time replacing the
medoid with the non-medoid and evaluating the new
clustering looking for better solutions.

We implemented PAM according to the algorithm
described in section 2.4 of the book “Finding Groups in
Data”, [3].

4.2 Supervised Partitioning Around Medoids
(SPAM); a generalization of PAM.

This algorithm is a modification of algorithm PAM.
SPAM uses the fitness function q(X). The number of
clusters (k) is an input parameter to the algorithm. SPAM
consists of two sub-algorithms. Sub-algorithm SBUILD
builds an initial solution (i.e., clustering) and starts by

selecting the medoid of the members of the most frequent
class in the data set as the first representative. After that,
it repeatedly and greedily adds to the current set of
representatives a non-representative object that, if added
to the set of representatives, would generate a clustering X
that produces the minimum value for the fitness function
q(X). The second sub-algorithm, SSWAP, tries to improve
the initial clustering produced by SBUILD by exploring
all possible replacements of a single representative by a
single non-representative. SSWAP continues its attempts
to improve the current solution as long as it is able to find
a solution that produces a lower value for the fitness
function q(X) than the current solution. SSWAP
terminates if no replacement can be found that leads to a
clustering with a lower fitness value.

4.3 Single Representative Insertion/Deletion
Steepest Decent Hill Climbing with Randomized
Starting (SRIDHCR)

This algorithm starts by randomly selecting a number of
objects from the data set as an initial set of
representatives. Starting from this randomly generated set
of representatives, the algorithm tries to improve the
clustering by adding a single non-representative object to
the set of representatives as well as trying to remove a
single representative from the set. The algorithm
terminates if the solution quality (measured by q(X)) does
not improve. Moreover, we assume that the algorithm is
run r (input parameter) times starting from different initial
set of representatives each time, reporting the best of the r
solutions found as its final clustering solution. Unlike
PAM and SPAM, the number of clusters k is not fixed for
SRIDHCR; the algorithm searches for “good” values of k.

To illustrate how the algorithm works let us have a closer
look at a run of the algorithm for the Iris-Plants data set
that consists of 150 flowers, numbered 1 through 150.
The algorithm starts with a randomly generated set of
representatives, e.g. {8, 42, 62, 148}. Firstly, the
algorithm creates clusterings obtained by adding a single
non-representative to the current set of representatives.
Secondly, the algorithm creates clusterings obtained by
removing a single representative from the current set of
representatives. Table 1 depicts the solutions that are
evaluated in the first iteration.
The 150 (146+4) clusterings (that were generated from
the solutions that are partially listed in Table 1) are then
evaluated, and the solution whose clustering has the
lowest value with respect to q(X) is selected, highlighted
in italic bold font in Table 1. The search now continues
using {8, 42, 62, 148, 52} as the new set of
representatives.

Set of Medoids
after adding one

non-medoid

q(X) Set of Medoids
after removing

a medoid

q(X)

8 42 62 148 1 0.091 42 62 148 0.086
8 42 62 148 2 0.091 8 62 148 0.073

…….... ……. 8 42 148 0.313
8 42 62 148 52 0.065 8 42 62 0.333

……… …….
8 42 62 148 150 0.0715

Trials in first part
(add a non-medoid)

Trials in second part
(drop a medoid)

Table 1: Solutions Explored in the First Iteration

In the second iteration the solution {8, 42, 62, 148, 52,
122} (flower 122 was added to the set of representatives)
turned out to be the best solution, leading to an
improvement in fitness from 0.065 to 0.041. The program
continues iterating as long as there is an improvement in
fitness function q(X). The algorithm terminates after 7
iterations with the final solution {8, 62, 122, 117, 87}.
Table 2 below illustrates how the set of representatives
changed during the iterations.

Run Set of Medoids producing
lowest q(X) in the run

q(X) Purity

1 8 42 62 148 52 0.065 0.947
2 8 42 62 148 52 122 0.041 0.973
3 42 62 148 52 122 117 0.030 0.987
4 8 62 148 52 122 117 0.021 0.993
5 8 62 148 52 122 117 87 0.016 1.000
6 8 62 52 122 117 87 0.014 1.000
7 8 62 122 117 87 0.012 1.000

Table 2: Set of Representatives Explored

Notice that in iteration 5, the class purity already reached
100%. Nevertheless, the algorithm did not stop. This is
because the fitness function q(X) does not only try to
maximize the class purity, but also minimize the number
of clusters; the algorithm therefore continued and found a
clustering that uses only 5 clusters but still achieves 100%
class purity.

5. Experimental Evaluation

In order to evaluate the comparative performance of the
clustering algorithms presented in section 4, we ran them
on a benchmark, consisting of four data sets that were
obtained from UCI Machine Learning repository [5].
Table 3 gives a summary for the four data sets we used.
This section presents and analyzes the outcome of these
experiments.

Data set name # of
objects

of
attributes

of
classes

Iris Plants 150 4 3
Image
Segmentation

2100 19 7

Vehicle
silhouettes

846 18 4

Pima Indians
Diabetes

768 8 2

Table 3: Data Sets Used in the Experimental Evaluation

All data was normalized using a linear interpolation
function that assigns 1 to the maximum value and 0 to the
minimum value. Manhattan distance was used to compute
the distance between two objects and an inter-object
distance matrix was generated for each normalized data
set. In the experiments the SRIDHCR algorithm was run
(empirically) 50 times, each time with a different set of
initial representatives and the quality of the best solution
found was reported.

The investigated algorithms were evaluated based on the
following performance measures:
• Cluster Purity.
• Value of the fitness function q(X) (see formula (1))
• Average dissimilarity between all objects and their

representatives. (Tightness(X), see formula (2))
• Wall-Clock Time (WCT). Actual time, in seconds,

that the algorithm took to finish the clustering task.
The algorithms were run on a computer that has a
Pentium 4 processor and 512 MB of memory.

Since algorithm SRIDHCR searches for a good k value, it
was run first for a certain β value. After that, algorithms
PAM & SPAM were run for the same value of β and the
number of clusters (k) that algorithm SRIDHCR
determined to be the best value.

5.1 Traditional Versus Supervised Clustering

Table 4 presents results from clustering the four data sets
using the traditional clustering algorithm, PAM, as well
supervised clustering algorithms SPAM and SRIDHCR.
Looking at Table 4 we observe that, although traditional
clustering using PAM produces tighter clusters,
characterized by smaller intra-cluster distances
(Tightness(X) in Table 4), supervised clustering
algorithms, represented by algorithms SRIDHCR and
SPAM, produce better cluster purity. The improvement in
cluster purity ranges from 7% to 19% improvement for
the four datasets. Data sets that have objects with clear
class discriminating characteristics, like the Iris-Plants
and Image-Segmentation data sets, produce better class

purity than other, more challenging, data sets, such as
Vehicle and Diabetes.

 Algorithm Purity q(X) Tightness(X).
Iris-Plants data set, # clusters=3
PAM 0.907 0.0933 0.081
SRIDHCR 0.981 0.0200 0.093
SPAM 0.973 0.0267 0.133
Vehicle data set, # clusters =65
PAM 0.701 0.326 0.044
SRIDHCR 0.835 0.192 0.072
SPAM 0.764 0.263 0.097
Image-Segment data set, # clusters =53
PAM 0.880 0.135 0.027
SRIDHCR 0.980 0.035 0.050
SPAM 0.944 0.071 0.061
Pima-Indian Diabetes data set, # clusters =45
PAM 0.763 0.237 0.056
SRIDHCR 0.859 0.164 0.093
SPAM 0.822 0.202 0.086

Table 4: Traditional vs. Supervised Clustering (β=0.1)

Looking at these results from class summary generation
prospective, the notable improvement in clusters’ class
purity in supervised clustering greatly aids in producing
class summaries that are far more accurate.

5.2 Performance of the Supervised Clustering
Algorithms

Table 5 presents the different performance measures of
the three algorithms when applied on all data sets for
β=0.1. The results clearly show that the supervised
clustering algorithms produce better cluster purity than
PAM. Nevertheless, Wall-Clock time for algorithm
SRIDHCR is the highest among all three because its
results are the best of 50 runs, as explained earlier. Table
6 presents the different performance measures of the three
algorithms for β=0.4. Unlike Table 5, Table 6 gives the
average value per run for the performance measures for
algorithm SRIDHCR. Table 6 shows that not only the
average performance of algorithm SRIDHCR is better
than that of algorithm PAM by 6% (Iris-Plants) to 21%
(Pima-Indian Diabetes) but also the average Wall-Clock
Time for SRIDHCR is 0.04 and 0.11 of that of PAM for
data sets Vehicle and Segmentation, respectively.

On the other hand, comparing the performance of the two
supervised clustering algorithms with each other, we
clearly see that algorithm SRIDHCR produces better
cluster purity than SPAM in all experiments, especially for
the Vehicle data set: SRIDHCR produces cluster purity that
is 10% higher than SPAM.

Algorithm q(X) Purity Tightness

(X)
WCT
(Sec.)

IRIS-Flowers Dataset, # clusters=3
PAM 0.0933 0.907 0.081 0.06
SRIDHCR 0.0200 0.980 0.113 11.00
SPAM 0.0267 0.973 0.133 0.32
Vehicle Dataset, # clusters=65
PAM 0.326 0.701 0.044 372.00
SRIDHCR 0.192 0.835 0.062 1715.00
SPAM 0.263 0.764 0.097 1090.00
Segmentation Dataset, # clusters=53
PAM 0.135 0.880 0.027 4073.00
SRIDHCR 0.035 0.980 0.050 11250.00
SPAM 0.071 0.944 0.061 1422.00
Pima-Indians-Diabetes, # clusters=45
PAM 0.237 0.763 0.056 186.00
SRIDHCR 0.164 0.859 0.076 6600.00
SPAM 0.202 0.822 0.086 58.00

Table 5: Comparative Performance of the Different
Algorithms, β=0.1

Algorithm Avg. Purity Tightness(X) Avg.WCT

(Sec.)
IRIS-Flowers Dataset, # clusters=3
PAM 0.907 0.081 0.06
SRIDHCR 0.959 0.104 0.18
SPAM 0.973 0.133 0.33
Vehicle Dataset, # clusters=56
PAM 0.681 0.046 505.00
SRIDHCR 0.762 0.081 22.58
SPAM 0.754 681.00
Segmentation Dataset, # clusters=32
PAM 0.875 0.032 1529.00
SRIDHCR 0.946 0.054 169.39
SPAM 0.940 0.065 1053.00
Pima-Indians-Diabetes, # clusters=2
PAM 0.656 0.104 0.97
SRIDHCR 0.795 0.109 5.08
SPAM 0.772 0.125 2.70

Table 6: Average Comparative Performance of the
Different Algorithms, β=0.4

But this better performance of SRIDHCR does not come
for free. In the same experiment that SRIDHCR produces
cluster purity 10% better than SPAM, it takes SRIDHCR
70% more time to do the clustering task than SPAM. This
is due to the fact that SRIDHCR uses 50 restarts.

One reason we attribute to the fact that SRIDHCR finds
significantly better solutions than SPAM is that the fitness
landscape induced by q(X) contains many ties (different

clusterings X1 and X2 with q(X1)=q(X2)); i.e., two
solutions might have the same cardinality as well as same
number of minority class examples although they cluster
the data set differently. SPAM is not particularly good in
coping with those plateau structures in the fitness
landscape: SPAM just terminates if no better solution can
be found through a single replacement of a representative.
SRIDHCR, on the other hand, has the interesting
characteristic that when enhancing a solution with k
representatives, it looks for better solutions with k-1 and
k+1 representatives, whereas SPAM looks for better
solutions with exactly k representatives.

To further investigate this observation we ran an
experiment where for a certain combination of (dataset, β
value, and k value), we created 5000 different sets
containing k representatives for the dataset. For each of
the 5000 sets of objects, we calculated q(X) as well as
Tightness(X). Then we calculated how many ties with
respect to q(X) and Tightness(X) we have. The result was
divided by maximum number of possible ties among the
5000 sets, using the formula below, before it is reported.

Maximum Number of Ties (n) =
2

)1(* −nn (3)

Table 7 shows the percentage of ties for all 4 datasets
with respect q(X) and Tightness(X) for β=0.00001 and
0.4. Notice that the probability of ties increases
dramatically when using q(X), which, we believe, is one
reason for the fact that SPAM does not seem to find
solutions of good quality, if compared with SRIDHCR.

We believe that SRIDHCR’s capability to add and
remove representatives also contributes to its better
performance; for example, SRIDHCR might add v1 and
v2 to {u1,u2,u3,u4} obtaining {u1,u2,u3,u4,v1,v2} and
would next remove u1, and u2, obtaining a better solution
{u3,u4,v1,v2} whereas SPAM might terminate with the
suboptimal solution {u1,u2,u3,u4}, if neither the
replacement of u1 by v1 nor the replacement of u2 by v2
enhances q(X).

Furthermore, encouraged by its faster average runtime,
SRIDHCR can be re-run up to 30 times (as it is the case
for the Vehicle data set for example in Table 6) with
different initial solutions in the same time that SPAM
needs to complete a single run. These re-runs with
different initial sets of representatives allow SRIDHCR to
explore different regions of the search space, which we
believe is a third explanation for SRIDHCR’s significant
better performance.

Dataset k β Ties %

Using
q(X)

Ties %
Using

Tightness
(X)

Iris-Plants 10 0.00001 5.8 0.0004
Iris-Plants 10 0.4 5.7 0.0004
Iris-Plants 50 0.00001 20.5 0.0019
Iris-Plants 50 0.4 20.9 0.0018

Vehicle 10 0.00001 1.04 0.000001
Vehicle 10 0.4 1.06 0.000001
Vehicle 50 0.00001 1.78 0.000001
Vehicle 50 0.4 1.84 0.000001

Segmentation 10 0.00001 0.220 0.000000
Segmentation 10 0.4 0.225 0.000001
Segmentation 50 0.00001 0.626 0.000001
Segmentation 50 0.4 0.638 0.000000

Diabetes 10 0.00001 2.06 0.0
Diabetes 10 0.4 2.05 0.0
Diabetes 50 0.00001 3.43 0.0002
Diabetes 50 0.4 3.45 0.0002

Table 7: Ties distribution

5.3 Relationships between β, k, and Purity

Figure 2 shows how purity and the number of clusters for
the best solution found, k, change as the value of
parameter β increases for the Vehicle and the Diabetes
data sets (the result were obtained by running the
SRIDHCR algorithm).

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1E
-05 0.3 0.6 0.9 1.2 1.5 1.8 2.1 β

Pu
rit

y

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70

N
um

be
r o

f c
lu

st
er

s
(k

)

Purity (Vehicle) Purity (Diabetes)
k (Vehicle) k (Diabetes)

Figure 2: How Purity and k Change as β Increases

As can be seen in Figure 2, as β increases, more penalty is
associated with using the same number of clusters and the

algorithm tries to use a lower number of clusters resulting
in a decreasing cluster purity as β increases.

It is interesting to note that the Vehicle data set seems to
contain smaller regions with above average purities.
Consequently, even if β increases beyond 0.5 the value of
k remains quite high for that data set. The Diabetes data
set, on the other hand, does not seem to contain such
localized patterns; as soon as β increases beyond 0.5, k
immediately reaches its minimum value of 2 (there are
only two classes in the Diabetes data set).

The previous example shows one advantage of our
approach of associating a penalty function with the
number of clusters instead of using fixed values for k. The
parameter β narrows the search space for the values of k
that “good” solutions can take, but does not restrict it to a
single value. Consequently, a supervised clustering
algorithm still tries to find the best value for k within the
boundaries induced by β. This explains why in the
previous example algorithm SRIDHCR selected
clusterings with higher k-values for the Vehicle data set
than for the Diabetes dataset.

6. Summary

A novel data mining technique we term supervised
summary generation was introduced. Supervised
summary generation utilizes supervised clustering
algorithms aiming at producing class-uniform density
clusters. Two proposed supervised clustering algorithms
were presented: SRIDHCR and SPAM. Experiments were
conducted that compare the results of these two
algorithms with a popular traditional clustering algorithm
PAM. Both, SRIDHCR and SPAM, were found to
produce significantly better cluster purity than PAM.
Improvement ranges between 7% and 19% for different
data sets.

Moreover, SRIDHCR outperforms SPAM, finding better
solutions with respect to q(X) for all four data sets for all
β-values tested. We also tried to explain SPAM’s
unexpectedly bad performance. Reasons for its bad
performance include the presence of a large number of
local minima, the presence of plateaux like structures in
the fitness landscape of q(X), and the lack of a restart
feature. We also believe that our results raise some
serious doubts about the quality of solutions that PAM
finds, a topic that is investigated by our current research.

In addition to developing efficient, and scalable
supervised clustering algorithms our current and future
work centers on using supervised clustering for enhancing
simple classifiers and for distance function learning.

References

[1] A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall,

“Learning Distance Functions Using Equivalence
Relations”, in Proc. ICML03, Washington DC, August
2003.

[2] D. Klein, S.D. Kamvar, and C. Manning, “From instance-
level Constraints to Space-level Constraints: Making the
Most of Prior Knowledge in Data Clustering”, In Proc.
ICML’02, Sydney, Australia.

[3] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data:
an Introduction to Cluster Analysis, John Wiley & Sons,
1990.

[4] E.P. Xing, A. Ng, M. Jordan, and S. Russell, “Distance
Metric Learning with Applications to Clustering with Side
Information”. Advances in Neural Information Processing
15, MIT Press, 2003.

[5] University of California at Irving, Machine Learning
Repository.
(http://www.ics.uci.edu/~mlearn/MLRepository.html)

[6] A. Demiriz, K.P. Benett, and M.J. Embrechts, “Semi-
supervised Clustering using Genetic Algorithms”, in Proc.
ANNIE’99.

