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Abstract 

This paper centers on the discussion of k-medoid-style 
clustering algorithms for supervised summary generation.  
This task requires clustering techniques that identify 
class-uniform clusters. This paper investigates such a 
novel clustering technique we term supervised clustering. 
Our work focuses on the generalization of k-medoid-style 
clustering algorithms. We investigate two supervised 
clustering algorithms:  SRIDHCR (Single Representative 
Insertion/Deletion Hill Climbing with Restart) and 
SPAM, a variation of PAM. The solution quality and run 
time of these two algorithms as well as the traditional 
clustering algorithm PAM are evaluated using a 
benchmark consisting of four data sets. Experiments show 
that supervised clustering algorithms enhance class 
purity by 7% to 19% over the traditional clustering 
algorithm PAM, and that SRIDHCR finds better solutions 
than SPAM.  
 
Key Words: supervised summary generation, clustering 
classified examples, k-medoid clustering algorithms, data 
mining. 
 
1. Introduction  
 
This paper centers on a novel data mining technique we 
term supervised summary generation. The objective of 
supervised summary generation is the creation of class 
centered summaries that recognize the patterns that are 
typical for one class; it also identifies how those patterns 
deviate from patterns that characterize other classes. In 
order to create such summaries, supervised summary 
generation requires the recognition of class-uniform 
clusters that have high probability density. This paper 
proposes supervised clustering algorithms for this 
purpose. Clustering is typically applied in an 
unsupervised learning framework using particular error 
functions, e.g. an error function that minimizes the 
distances inside a cluster. Supervised clustering, on the 
other hand, deviates from traditional clustering in that it is 
applied on classified examples where the objective is to 
identify clusters that have high probability density with 

respect to a single class. Moreover, in supervised 
clustering, we also like to keep the number of clusters 
small, and objects are assigned to clusters using a notion 
of closeness with respect to a distance function. 
 

 
Figure 1: Differences between Traditional Clustering and 
Supervised Clustering 
  
Fig. 1 illustrates the differences between traditional and 
supervised clustering. Let us assume that the black 
examples and the white examples in the figure represent 
subspecies of Iris plants named Setosa and Virginica, 
respectively. A traditional clustering algorithm would, 
very likely, identify the four clusters depicted in Figure 
1.a. The reason is that traditional clustering focuses on 
minimizing intra-cluster dissimilarities regardless of the 
classes that the objects belong to. If our objective is to 
generate summaries for the Virginica and Setosa classes 
of the Iris Plants, the clustering in Figure 1.a would not be 
very attractive since it combined Setosa and Virginica 
objects in cluster A and put examples of the Virginica 
class in two different clusters B and C. A supervised 
clustering algorithm that maximizes class purity, on the 
other hand, would split cluster A into two clusters E and 
F. Another characteristic of supervised clustering is that it 
tries to keep the number of clusters low. Consequently, 
clusters B and C would be merged into one cluster 
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without compromising class purity while reducing the 
number of clusters. A supervised clustering algorithm 
would identify cluster G as the union of clusters B and C 
as illustrated by Figure 1.b.  
 
The remainder of this paper will center on the discussion 
of algorithms for supervised clustering and on the 
empirical evaluation of the performance of these 
algorithms with respect to speed and solution quality. 
Section 2 discusses related work. Section 3 talks about K-
medoid-style clustering. Section 4 introduces the 
clustering algorithms investigated. Section 5 presents 
experimental results and Section 6 concludes the paper 
and sheds light on our future work. 
 
2. Related Work 
 
Although we are not aware of research that directly 
centers on supervised summary generation and supervised 
clustering, there has been some work that has some 
similarity to our research under the heading of semi-
supervised clustering. Semi-supervised clustering 
attempts to enhance a clustering algorithm by using side 
information in the clustering process that usually consists 
of a "small set" of classified examples. Xian [4] (and 
similarly [1]) take the classified training examples and 
transform those into constraints and derive a modified 
distance function that minimizes the distance between 
points in the data set that are known to be similar with 
respect to these constraints using classical numerical 
methods. The K-means clustering algorithm in 
conjunction with the modified distance function is then 
used to compute clusters. Klein [2] proposes a shortest 
path algorithm to modify a Euclidian distance function 
based on prior knowledge. Demiriz [6] proposes an 
evolutionary clustering algorithm to obtain clusters that 
minimize (the sum of) cluster dispersion and impurity. 
 
Although some similarity in algorithms and techniques 
can be observed with respect to the work reviewed above, 
it should be stated clearly that, although our research 
investigates clustering algorithms, its focus is not on 
traditional clustering, but rather on using clustering as a 
preprocessing step to enhance existing classification 
algorithms and as a framework for summary generation. 
 
3. K-mdoid-style Algorithms for Supervised 
Clustering 
 
K-medoid-style clustering aims at finding a set of k 
representatives among all objects in the data set that best 
characterize the objects in the data set. Clusters are 
created by assigning each object to the cluster of the 
representative (medoid) that is closest to that object.  

 
One might wonder why our work centers on developing 
k-medoid-style supervised clustering algorithms. The 
reason is that we believe that medoids are quite useful for 
class-specific data summarization, because it is the most 
prototypical object of the members of a cluster. Moreover, 
algorithms that restrict representatives to objects 
belonging to the data set, such as k-medoid, explore a 
smaller solution space if compared with centroid–based 
clustering algorithms, such as k-means, which searches a 
much larger set of representatives. Finally, when using k-
medoid style clustering algorithms, only an inter-object 
distance matrix is needed and no “new” distances have to 
be computed during the clustering process as is the case 
with k-means.   
 
As mentioned earlier, the fitness functions used for 
supervised clustering are significantly different from the 
fitness functions used by traditional clustering 
algorithms. Supervised clustering evaluates a clustering 
based on the following two criteria: 
• Class impurity, Impurity(X). Measured by the 

percentage of minority examples in the different 
clusters of a clustering X. A minority example is an 
example that belongs to a class different from the 
most frequent class in its cluster. 

• Number of clusters, k. In general, we like to keep the 
number of clusters low; trivially, having clusters that 
only contain a single example is not desirable, 
although it maximizes class purity. 

 
In particular, we used the following fitness function in our 
experimental work (lower values for q(X) indicate ‘better’ 
clustering solution X).  

q(X) = Impurity(X) + β∗Penalty(k) 
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with n being the total number of examples and c being the 
number of classes in a data set. The parameter β (0< β 
≤2.0) determines the penalty that is associated with the 
numbers of clusters, k, in a clustering: higher values for β 
imply larger penalties for a higher number of clusters. 
 
4. Clustering Algorithms Investigated 
 
As stated earlier, our work investigates k-medoid style 
supervised clustering algorithms. In a traditional k-



 

medoid algorithm, such as PAM [3], the major 
computations involve the determination if replacing a 
medoid by a non-medoid is beneficiary with respect to the 
evaluation function that evaluates a clustering. Due to the 
fact that finding the best number of clusters is part of the 
search process, this work extends this idea by having the 
proposed algorithms not only consider replacements of 
representatives by non-representatives, but also adding a 
non-representative to a set of representatives, and 
removing a representative from a set of representatives.  
 
The following subsections describe the clustering 
algorithms that we investigated in our research. 
 
4.1 Partitioning Around Medoids (PAM).  
 

Due to its similarity to the investigated supervised 
clustering algorithms, PAM was selected as a 
representative of traditional clustering. We use PAM to 
compare the performance of traditional clustering and 
supervised clustering. PAM seeks to find k 
representatives minimizing the fitness function given in 
formula (2): 
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where medoid(obji) is the medoid (representative) of the 
cluster that object “obji” belongs to. The number of 
clusters, k, is an input parameter for the algorithm. As can 
be seen looking at formula (2), PAM evaluates a 
clustering by computing the average dissimilarity between 
all objects in the data set and their medoids. PAM is 
divided into two parts. The first part, called the BUILD 
algorithm, starts with a set of representatives that initially 
contains only the medoid of the complete data set. 
BUILD, then, greedily inserts new representatives into 
this set while minimizing the above fitness function.  The 
second part of PAM, algorithm SWAP, tries to improve 
the clustering by exploring all possible (medoid, non-
medoid) pairs in the data set; each time replacing the 
medoid with the non-medoid and evaluating the new 
clustering looking for better solutions. 
 
We implemented PAM according to the algorithm 
described in section 2.4 of the book “Finding Groups in 
Data”, [3].  
 
4.2 Supervised Partitioning Around Medoids 
(SPAM); a generalization of PAM.  
 

This algorithm is a modification of algorithm PAM. 
SPAM uses the fitness function q(X). The number of 
clusters (k) is an input parameter to the algorithm. SPAM 
consists of two sub-algorithms. Sub-algorithm SBUILD 
builds an initial solution (i.e., clustering) and starts by 

selecting the medoid of the members of the most frequent 
class in the data set as the first representative. After that, 
it repeatedly and greedily adds to the current set of 
representatives a non-representative object that, if added 
to the set of representatives, would generate a clustering X 
that produces the minimum value for the fitness function 
q(X). The second sub-algorithm, SSWAP, tries to improve 
the initial clustering produced by SBUILD by exploring 
all possible replacements of a single representative by a 
single non-representative. SSWAP continues its attempts 
to improve the current solution as long as it is able to find 
a solution that produces a lower value for the fitness 
function q(X) than the current solution. SSWAP 
terminates if no replacement can be found that leads to a 
clustering with a lower fitness value. 
 
4.3 Single Representative Insertion/Deletion 
Steepest Decent Hill Climbing with Randomized 
Starting (SRIDHCR)  
 

This algorithm starts by randomly selecting a number of 
objects from the data set as an initial set of 
representatives. Starting from this randomly generated set 
of representatives, the algorithm tries to improve the 
clustering by adding a single non-representative object to 
the set of representatives as well as trying to remove a 
single representative from the set. The algorithm 
terminates if the solution quality (measured by q(X)) does 
not improve. Moreover, we assume that the algorithm is 
run r (input parameter) times starting from different initial 
set of representatives each time, reporting the best of the r 
solutions found as its final clustering solution. Unlike 
PAM and SPAM, the number of clusters k is not fixed for 
SRIDHCR; the algorithm searches for “good” values of k. 
 
To illustrate how the algorithm works let us have a closer 
look at a run of the algorithm for the Iris-Plants data set 
that consists of 150 flowers, numbered 1 through 150. 
The algorithm starts with a randomly generated set of 
representatives, e.g. {8, 42, 62, 148}. Firstly, the 
algorithm creates clusterings obtained by adding a single 
non-representative to the current set of representatives. 
Secondly, the algorithm creates clusterings obtained by 
removing a single representative from the current set of 
representatives. Table 1 depicts the solutions that are 
evaluated in the first iteration. 
The 150 (146+4) clusterings (that were generated from 
the solutions that are partially listed in Table 1) are then 
evaluated, and the solution whose clustering has the 
lowest value with respect to q(X) is selected, highlighted 
in italic bold font in Table 1. The search now continues 
using {8, 42, 62, 148, 52} as the new set of 
representatives. 
 
 



 

Set of Medoids 
after adding one 

non-medoid 

q(X) Set of Medoids 
after removing 

a medoid 

q(X) 

8 42 62 148 1   0.091 42 62 148   0.086 
8 42 62 148 2   0.091 8 62 148    0.073 

…….... ……. 8 42 148    0.313 
8 42 62 148 52   0.065 8 42 62     0.333 

……… …….   
8 42 62 148 150   0.0715   

Trials in first part  
(add a non-medoid) 

Trials in second part 
(drop a medoid) 

Table 1: Solutions Explored in the First Iteration 
 

In the second iteration the solution {8, 42, 62, 148, 52, 
122} (flower 122 was added to the set of representatives) 
turned out to be the best solution, leading to an 
improvement in fitness from 0.065 to 0.041. The program 
continues iterating as long as there is an improvement in 
fitness function q(X).  The algorithm terminates after 7 
iterations with the final solution {8, 62, 122, 117, 87}. 
Table 2 below illustrates how the set of representatives 
changed during the iterations. 
 

Run  Set of Medoids producing 
lowest q(X) in the run 

q(X) Purity 

1 8 42 62 148 52   0.065 0.947 
2 8 42 62 148 52 122 0.041 0.973 
3 42 62 148 52 122 117 0.030 0.987 
4 8 62 148 52 122 117      0.021 0.993 
5 8 62 148 52 122 117 87   0.016 1.000 
6 8 62 52 122 117 87       0.014 1.000 
7 8 62 122 117 87           0.012 1.000 

Table 2: Set of Representatives Explored 
 

Notice that in iteration 5, the class purity already reached 
100%. Nevertheless, the algorithm did not stop. This is 
because the fitness function q(X) does not only try to 
maximize the class purity, but also minimize the number 
of clusters; the algorithm therefore continued and found a 
clustering that uses only 5 clusters but still achieves 100% 
class purity. 
 
5. Experimental Evaluation 
 
In order to evaluate the comparative performance of the 
clustering algorithms presented in section 4, we ran them 
on a benchmark, consisting of four data sets that were 
obtained from UCI Machine Learning repository [5]. 
Table 3 gives a summary for the four data sets we used. 
This section presents and analyzes the outcome of these 
experiments. 
 
 

Data set name # of 
objects 

# of 
attributes 

# of 
classes 

Iris Plants  150 4 3 
Image 
Segmentation 

2100 19 7 

Vehicle 
silhouettes 

846 18 4 

Pima Indians 
Diabetes 

768 8 2 

Table 3: Data Sets Used in the Experimental Evaluation 
 
All data was normalized using a linear interpolation 
function that assigns 1 to the maximum value and 0 to the 
minimum value. Manhattan distance was used to compute 
the distance between two objects and an inter-object 
distance matrix was generated for each normalized data 
set. In the experiments the SRIDHCR algorithm was run 
(empirically) 50 times, each time with a different set of 
initial representatives and the quality of the best solution 
found was reported.  
 
The investigated algorithms were evaluated based on the 
following performance measures: 
• Cluster Purity. 
• Value of the fitness function q(X) (see formula (1)) 
• Average dissimilarity between all objects and their 

representatives. (Tightness(X), see formula (2)) 
• Wall-Clock Time (WCT). Actual time, in seconds, 

that the algorithm took to finish the clustering task. 
The algorithms were run on a computer that has a 
Pentium 4 processor and 512 MB of memory. 

 
Since algorithm SRIDHCR searches for a good k value, it 
was run first for a certain β value. After that, algorithms 
PAM & SPAM were run for the same value of β and the 
number of clusters (k) that algorithm SRIDHCR 
determined to be the best value. 
 
5.1 Traditional Versus Supervised Clustering 
 
Table 4 presents results from clustering the four data sets 
using the traditional clustering algorithm, PAM, as well 
supervised clustering algorithms SPAM and SRIDHCR. 
Looking at Table 4 we observe that, although traditional 
clustering using PAM produces tighter clusters, 
characterized by smaller intra-cluster distances 
(Tightness(X) in Table 4), supervised clustering 
algorithms, represented by algorithms SRIDHCR and 
SPAM, produce better cluster purity. The improvement in 
cluster purity ranges from 7% to 19% improvement for 
the four datasets. Data sets that have objects with clear 
class discriminating characteristics, like the Iris-Plants 
and Image-Segmentation data sets, produce better class 



 

purity than other, more challenging, data sets, such as 
Vehicle and Diabetes. 
 

 Algorithm Purity q(X) Tightness(X).
Iris-Plants data set, # clusters=3 
PAM 0.907 0.0933 0.081
SRIDHCR 0.981 0.0200 0.093
SPAM 0.973 0.0267 0.133
Vehicle data set, # clusters =65 
PAM 0.701 0.326 0.044
SRIDHCR 0.835 0.192 0.072
SPAM 0.764 0.263 0.097
Image-Segment data set, # clusters =53 
PAM 0.880 0.135 0.027
SRIDHCR 0.980 0.035 0.050
SPAM 0.944 0.071 0.061
Pima-Indian Diabetes data set, # clusters =45 
PAM 0.763 0.237 0.056
SRIDHCR 0.859 0.164 0.093
SPAM 0.822 0.202 0.086

Table 4: Traditional vs. Supervised Clustering (β=0.1) 
 
Looking at these results from class summary generation 
prospective, the notable improvement in clusters’ class 
purity in supervised clustering greatly aids in producing 
class summaries that are far more accurate.  
 
5.2 Performance of the Supervised Clustering 
Algorithms 
 
Table 5 presents the different performance measures of 
the three algorithms when applied on all data sets for 
β=0.1. The results clearly show that the supervised 
clustering algorithms produce better cluster purity than 
PAM. Nevertheless, Wall-Clock time for algorithm 
SRIDHCR is the highest among all three because its 
results are the best of 50 runs, as explained earlier. Table 
6 presents the different performance measures of the three 
algorithms for β=0.4. Unlike Table 5, Table 6 gives the 
average value per run for the performance measures for 
algorithm SRIDHCR. Table 6 shows that not only the 
average performance of algorithm SRIDHCR is better 
than that of algorithm PAM by 6% (Iris-Plants) to 21% 
(Pima-Indian Diabetes) but also the average Wall-Clock 
Time for SRIDHCR is 0.04 and 0.11 of that of PAM for 
data sets Vehicle and Segmentation, respectively.  
 
On the other hand, comparing the performance of the two 
supervised clustering algorithms with each other, we 
clearly see that algorithm SRIDHCR produces better 
cluster purity than SPAM in all experiments, especially for 
the Vehicle data set: SRIDHCR produces cluster purity that 
is 10% higher than SPAM.  

 
 
Algorithm q(X) Purity Tightness

(X) 
WCT  
(Sec.) 

IRIS-Flowers Dataset, # clusters=3 
PAM 0.0933 0.907 0.081 0.06 
SRIDHCR 0.0200 0.980 0.113 11.00 
SPAM 0.0267 0.973 0.133 0.32 
Vehicle Dataset, # clusters=65 
PAM 0.326 0.701 0.044 372.00 
SRIDHCR 0.192 0.835 0.062 1715.00 
SPAM 0.263 0.764 0.097 1090.00 
Segmentation Dataset, # clusters=53 
PAM 0.135 0.880 0.027 4073.00 
SRIDHCR 0.035 0.980 0.050 11250.00 
SPAM 0.071 0.944 0.061 1422.00 
Pima-Indians-Diabetes, # clusters=45 
PAM 0.237 0.763 0.056 186.00 
SRIDHCR 0.164 0.859 0.076 6600.00 
SPAM 0.202 0.822 0.086 58.00 

Table 5: Comparative Performance of the Different 
Algorithms, β=0.1  
 
Algorithm Avg. Purity Tightness(X) Avg.WCT 

(Sec.) 
IRIS-Flowers Dataset, # clusters=3 
PAM 0.907 0.081 0.06 
SRIDHCR 0.959 0.104 0.18 
SPAM 0.973 0.133 0.33 
Vehicle Dataset, # clusters=56 
PAM 0.681 0.046 505.00 
SRIDHCR 0.762 0.081 22.58 
SPAM 0.754 681.00 
Segmentation Dataset, # clusters=32 
PAM 0.875 0.032 1529.00 
SRIDHCR 0.946 0.054 169.39 
SPAM 0.940 0.065 1053.00 
Pima-Indians-Diabetes, # clusters=2 
PAM 0.656 0.104 0.97 
SRIDHCR 0.795 0.109 5.08 
SPAM 0.772 0.125 2.70 

Table 6: Average Comparative Performance of the 
Different Algorithms, β=0.4  
 
But this better performance of SRIDHCR does not come 
for free. In the same experiment that SRIDHCR produces 
cluster purity 10% better than SPAM, it takes SRIDHCR 
70% more time to do the clustering task than SPAM. This 
is due to the fact that SRIDHCR uses 50 restarts.  
 
One reason we attribute to the fact that SRIDHCR finds 
significantly better solutions than SPAM is that the fitness 
landscape induced by q(X) contains many ties (different 



 

clusterings X1 and X2 with q(X1)=q(X2)); i.e., two 
solutions might have the same cardinality as well as same 
number of minority class examples although they cluster 
the data set differently. SPAM is not particularly good in 
coping with those plateau structures in the fitness 
landscape: SPAM just terminates if no better solution can 
be found through a single replacement of a representative. 
SRIDHCR, on the other hand, has the interesting 
characteristic that when enhancing a solution with k 
representatives, it looks for better solutions with k-1 and 
k+1 representatives, whereas SPAM looks for better 
solutions with exactly k representatives.  
 
To further investigate this observation we ran an 
experiment where for a certain combination of (dataset, β 
value, and k value), we created 5000 different sets 
containing k representatives for the dataset. For each of 
the 5000 sets of objects, we calculated q(X) as well as 
Tightness(X). Then we calculated how many ties with 
respect to q(X) and Tightness(X) we have. The result was 
divided by maximum number of possible ties among the 
5000 sets, using the formula below, before it is reported. 
 

Maximum Number of Ties (n) = 
2

)1(* −nn             (3) 

 
Table 7 shows the percentage of ties for all 4 datasets 
with respect q(X) and Tightness(X) for β=0.00001 and 
0.4. Notice that the probability of ties increases 
dramatically when using q(X), which, we believe, is one 
reason for the fact that SPAM does not seem to find 
solutions of good quality, if compared with SRIDHCR.   
 
We believe that SRIDHCR’s capability to add and 
remove representatives also contributes to its better 
performance; for example, SRIDHCR might add v1 and 
v2 to {u1,u2,u3,u4} obtaining {u1,u2,u3,u4,v1,v2} and 
would next remove u1, and u2, obtaining a better solution 
{u3,u4,v1,v2} whereas SPAM might terminate with the 
suboptimal solution {u1,u2,u3,u4}, if neither the 
replacement of u1 by v1  nor the replacement of u2 by v2 
enhances q(X).   
 
Furthermore, encouraged by its faster average runtime, 
SRIDHCR can be re-run up to 30 times (as it is the case 
for the Vehicle data set for example in Table 6) with 
different initial solutions in the same time that SPAM 
needs to complete a single run. These re-runs with 
different initial sets of representatives allow SRIDHCR to 
explore different regions of the search space, which we 
believe is a third explanation for SRIDHCR’s significant 
better performance. 

 
 

 
Dataset k β Ties %  

Using 
q(X) 

Ties % 
Using 

Tightness
(X) 

Iris-Plants 10 0.00001 5.8 0.0004 
Iris-Plants 10 0.4 5.7 0.0004 
Iris-Plants 50 0.00001 20.5 0.0019 
Iris-Plants 50 0.4 20.9 0.0018 
     
Vehicle 10 0.00001 1.04 0.000001 
Vehicle 10 0.4 1.06 0.000001 
Vehicle 50 0.00001 1.78 0.000001 
Vehicle 50 0.4 1.84 0.000001 
     
Segmentation 10 0.00001 0.220 0.000000 
Segmentation 10 0.4 0.225 0.000001 
Segmentation 50 0.00001 0.626 0.000001 
Segmentation 50 0.4 0.638 0.000000 
     
Diabetes 10 0.00001 2.06 0.0 
Diabetes 10 0.4 2.05 0.0 
Diabetes 50 0.00001 3.43 0.0002 
Diabetes 50 0.4 3.45 0.0002 

Table 7: Ties distribution 
 
5.3 Relationships between β, k, and Purity 
 

Figure 2 shows how purity and the number of clusters for 
the best solution found, k, change as the value of 
parameter β increases for the Vehicle and the Diabetes 
data sets (the result were obtained by running the 
SRIDHCR algorithm).  
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Figure 2: How Purity and k Change as β Increases 
 
As can be seen in Figure 2, as β increases, more penalty is 
associated with using the same number of clusters and the 



 

algorithm tries to use a lower number of clusters resulting 
in a decreasing cluster purity as β increases.  
 
It is interesting to note that the Vehicle data set seems to 
contain smaller regions with above average purities. 
Consequently, even if β increases beyond 0.5 the value of 
k remains quite high for that data set. The Diabetes data 
set, on the other hand, does not seem to contain such 
localized patterns; as soon as β increases beyond 0.5, k 
immediately reaches its minimum value of 2 (there are 
only two classes in the Diabetes data set).  
 
The previous example shows one advantage of our 
approach of associating a penalty function with the 
number of clusters instead of using fixed values for k. The 
parameter β narrows the search space for the values of k  
that “good” solutions can take, but does not restrict it to a 
single value. Consequently, a supervised clustering 
algorithm still tries to find the best value for k within the 
boundaries induced by β. This explains why in the 
previous example algorithm SRIDHCR selected 
clusterings with higher k-values for the Vehicle data set 
than for the Diabetes dataset. 
 
6. Summary  
 
A novel data mining technique we term supervised 
summary generation was introduced. Supervised 
summary generation utilizes supervised clustering 
algorithms aiming at producing class-uniform density 
clusters. Two proposed supervised clustering algorithms 
were presented: SRIDHCR and SPAM. Experiments were 
conducted that compare the results of these two 
algorithms with a popular traditional clustering algorithm 
PAM. Both, SRIDHCR and SPAM, were found to 
produce significantly better cluster purity than PAM. 
Improvement ranges between 7% and 19% for different 
data sets.  
 
Moreover, SRIDHCR outperforms SPAM, finding better 
solutions with respect to q(X) for all four data sets for all 
β-values tested. We also tried to explain SPAM’s 
unexpectedly bad performance. Reasons for its bad 
performance include the presence of a large number of 
local minima, the presence of plateaux like structures in 
the fitness landscape of q(X), and the lack of a restart 
feature. We also believe that our results raise some 
serious doubts about the quality of solutions that PAM 
finds, a topic that is investigated by our current research.  
 
In addition to developing efficient, and scalable 
supervised clustering algorithms our current and future 
work centers on using supervised clustering for enhancing 
simple classifiers and for distance function learning. 
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