COSC 4377, Fall 2000 - Chapter 3b

TCP: Ove

I’VIeW RFCs:

r point-to-poin
m one sender,
r reliable, in-o
steam:
m Nno “message
r pipelined:

t: r
one receiver

rder byte

boundaries”

m TCP congestion and flow
control set window size

r send & receive buffers

application
writes data
socket

door

send buffer

application
reads data

receive buffer

socket
door

793, 1122, 1323, 2018, 2581

full duplex data:

m bi-directional data flow
in same connection

m MSS: maximum segment
size
connection-oriented:

m handshaking (exchange
of control msgs) init%
sender, receiver state
before data exchange

flow controlled:

m sender will not
overwhelm receiver

3: Transport Layer 3p-1

TCP segment structure

«— 32 bits [

URG: urgent data
(generally not used)

ACK: ACK #

source port # | dest port # counting
P P by bytes

sequence number

of data

valid

Mowledgement number

(not segments!)

PSH: push data now

Sed

(generally not used)

head | not . B
PBEII_: rcvr window size
m

}k\eels/u

ptr urgent data

bytes
rcvr willing

RST, SYN, FIN:— |

Opt/i@'é (variable length)

to accept

connection estab
(setup, teardown
commands)

Internet
checksum
(as in UDP)

application

data

(variable length)

3: Transport Layer 3p-2

10/24/(

COSC 4377, Fall 2000 - Chapter 3b 10/24/(

TCP seq. #% and ACKs
Seq. #%: @ Host A Host B@

m byte stream
“number” of first User _ seqeq,
- types ' ACK=pg
byte in segment’ c *datg < .,
data host ACKs
. _ receiptof
ACKs: " qae=5— T’ echoes
m seq # of next byte coaT2: pCKEZ> back T~
expected from
other side host ACKs
m cumulative ACK receipt Seq4
. T echoed %3, ACK=
Q: how receiver handles ° e(.:c,oe Ko
out-of-order segments
m A: TCP spec doesn

say, - up to)) time
- simple telnet scenario J
implementor

3: Transport Layer 3p-3

TCP: reliable data transfer

event: data received . . g .
from application above simplified sender, assuming

Create' Send segment *0ne Way data transfer
*no flow, congestion control

event: timer timeout for

wait .
segment with seq #

for 9 i

event retransmit segment

event: ACK received,
with ACK # y

ACK processing

3: Transport Layer 3b4

COSC 4377, Fall 2000 - Chapter 3b

TCP:
reliable
data
transfer

Simplified
TCP
sender

sendbase = initial_sequence number
nextsegnum = initial_sequence number

loop (forever) {
switch(event)
event: data received from application above
create TCP segment with sequence number nextsegnum
start timer for segment nextseqnum
pass segment to IP
nextsegnum = nextseqnum + length(data)
event: timer timeout for segment with sequence number y
retransmit segment with sequence number y
compue new timeout interval for segment y
restart timer for sequence number y
event: ACK received, with ACK field value of y
if (y > sendbase) { /* cumulative ACK of all data up to 'y */
cancel all timers for segments with sequence numbers <y
sendbase=y

else { /* a duplicate ACK for already ACKed segment */
increment number of duplicate ACKs received for y
if (number of duplicate ACKS received for y == 3) {
[* TCP fast retransmit */
resend segment with sequence number y
restart timer for segment y

} /* end of loop forever */

3: Transport Layer 3p5

TCP ACK generation [rRFc 1122, RFC 2581]

Event

TCP Receiver action

no gaps,

in-order segment arrival,

everything else already ACKed

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

no gaps,

in-order segment arrival,

one delayed ACK pending

immediately send single
cumulative ACK

gap detected

out-of-order segment arrival
higher-than-expect seq. #

send duplicate ACK, indicating seq. #
of next expected byte

arrival of segment that
partially or completely fills gap

immediate ACK if segment starts
at lower end of gap

3: Transport Layer 3b-6

10/24/(

COSC 4377, Fall 2000 - Chapter 3b 10/24/(

TCP: retransmission scenarios

4——timeout —p
|
| X
.
Q
k
\\
Y
o Q
Seq=100 timeout—H
\4- Seq=92 tlmeout—pl

4’&10
c\@wo P~C‘(\
i . time .
time lost ACK scenario premature timeout,
l cumulative ACKs

3: Transport Layer 3p7

TCP Flow Control

flow control — receiver: explicitly
sender wont overrun informs sender of
receivers buffers by (dynamically changing)
transmitting too much, amount of free buffer
too fast space
m RcvW ndow field in
RevBuf f er = size or TCP Receive Buffer TCP segment

sender: keeps the amount
of transmitted,

RcvW ndow= amount of spare room in Buffer

+—|E;t"'.'-': dow —+
p _ unACKed data less than
ot most recently received
Fl . eatt .
it i _.”"P':';::f“ RcvW ndow

ity niffes

— :{-.".'I!l'.l':q.l —'4

receiver buffering
3: Transport Layer 3b-8

COSC 4377, Fall 2000 - Chapter 3b

TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value?
r longer than RTT
m note: RTT will vary
r too short: premature
timeout
m unnecessary
retransmissions

r too long: slow reaction
to segment loss

Q: how to estimate RTT?

r Sanpl eRTT: measured time from
segment transmission until ACK
receipt

m ignore retransmissions,
cumulatively ACKed segments
r Sanpl eRTT will vary, want
estimated RTT “smoother”
m use several recent
measurements, not just
current Sanpl eRTT

3: Transport Layer 3b-9

TCP Round Trip Time and Timeout

Esti mat edRTT = (1-x) *Est

r Exponential weighted

r typical value of x: 0.1

Setting the timeout

Devi ati on

i mat edRTT + x*Sanpl eRTT

moving average

r influence of given sample decreases exponentially fast

r EstintedRTT plus “safety margin”
r large variation in Esti mat edRTT - > larger safety margin
Ti meout = EstimtedRTT + 4*Devi ation

(1-x)*Deviation +
x*| Sanmpl eRTT- Esti mat edRTT|

3: Transport Layer 3b-10

10/24/(

COSC 4377, Fall 2000 - Chapter 3b 10/24/(

TCP Connection Management

Recall: TcP sender, receiver | hree way handshake:
establish “connection”

before exchanging data Step 1: client end system
segments sends TCP SYN control
r initialize TCP variables: segment to server
m seq. #s m specifies initial seq #

m buffers, flow control

info (e.9. RevW ndow) Step 2: server end system

receives SYN, replies with

r client: connection initiator SYNACK control segment
Socket clientSocket = new]
Socket (" host name", " port m ACKs received SYN
nunber”); m allocates buffers

r server: contacted by client

Socket connectionSocket =
wel coneSocket . accept () ;

m specifies server->
receiver initial seq. #

3: Transport Layer 3p-11

TCP Connection Management (cont.)

Closing a connection: 1B ciient server[[Hh

client closes socket: close
client Socket. cl ose();

Fin

Step 1: client end system

pct close
sends TCP FIN control o
segment to server
K

Step 2: server receives
FIN, replies with ACK.
Closes connection, sends
FIN.

QI timed wait
—

close

3: Transport Layer 3b-12

COSC 4377, Fall 2000 - Chapter 3b

TCP Connection Management (cont.)

Step 3: client receives FIN, @ client server@
replies with ACK. .
closing .
m Enters “timed wait” - X

will respond with ACK
to received FINs

'S
/ closing
: N
Step 4: server, receives /
ACK. Connection closed.
ACk
Note: with small

modification, can handly
simultaneous FINSs.

closed

Q timed wait

close

3: Transport Layer 3p-13

TCP Connection Management (cont)

o cwomp |- ibrd i ating
L L T v, ik 3 TOP genneaien

il ETH

[s
ez
Fil_WAIT_2 :5'.|:Lmu TCP server
s i lifecycle
S ST — n
| AHWNTY e e rsrvar appication
TE— y 1 I =rustax 3 nlan mazasl
TCP client e
lifecycle i — x
LAST_ACK LTRY
B
1 L]
cLoSE_ T

SYM_RCVD

["earepimnen |a

3: Transport Layer 3b14

10/24/(

COSC 4377, Fall 2000 - Chapter 3b 10/24/(

Principles of Congestion Control

Congestion:

r informally: “too many sources sending too much
data too fast for network to handle”

r different from flow control!

r manifestations:
m lost packets (buffer overflow at routers)
m long delays (queueing in router buffers)

r a top-10 problem!

3: Transport Layer 3p-15

Causes/costs of congestion: scenario 1

r two senders, two 3, criginal da —_—
receivers .
Host B
r one router, |
infinite buffers L—---.--;-Jl-m{ﬁl
r no retransmission et

infinite buffers

PE— [r large delays

B / . when congested
& rmaximum
‘ _// . achievable
i ' throughput
Ao, Ci2 A C2 ghp

3: Transport Layer 3b-16

COSC 4377, Fall 2000 - Chapter 3b 10/24/(

Causes/costs of congestion: scenario 2

r one router, finite buffers
r sender retransmission of lost packet

Host A

==\ Ofiginal data — 9
tlr—lin' = original +
Host B refrans.
|
!

__\

o)]

]

P
{)
—
router with
finite buffers

3: Transport Layer 3p-17

Causes/costs of congestion: scenario 2

out (goodput)

r always: | = |

in ,

r “perfect” retransmission only when loss: | > |
in

out
r retransmission of delayed (not lost) packet makes | larger
in

(than perfect case) for same I out

iz o

- P = 4
-"I"'r = }""I'\ "'-'r.

“costs” of congestion:
r more work (retrans) for given “goodput”
r unneeded retransmissions: link carries multiple copies of pkt
3: Transport Layer 3b-18

COSC 4377, Fall 2000 - Chapter 3b 10/24/(

Causes/costs of congestion: scenario 3
r Tour senders Q: what happens as| .
r - multihop paths and | 'increase ? "
r timeout/retransmit n
Host A HostR
P s
[N -
| NEE NN p—
e O ®
[o FEE Host C
R4 i =
Y rs (D :T—
g =
'ivl
3: Transport Layer 3b-19

Causes/costs of congestion: scenario 3

C/24

houT
i}
‘mran e P
I ey
-
C=
=
= i
o)
2
~= ITIIITI1
L —]

7\’1'
in
Another “cost” of congestion:

r when packet dropped, any “upstream transmission
capacity used for that packet was wasted!

3: Transport Layer 3b-20

COSC 4377, Fall 2000 - Chapter 3b

Approaches towards congestion control

Two broad approaches towards congestion control:

End-end congestion
control:

r no explicit feedback from
network

r congestion inferred from
end-system observed loss,
delay

r approach taken by TCP

Network-assisted
congestion control:
r routers provide feedback
to end systems
m single bit indicating
congestion (SNA,
DECbit, TCP/IP ECN,
ATM)

m explicit rate sender
should send at

3: Transport Layer 3p-21

Case study: ATM ABR congestion control

ABR: available bit rate:
r “elastic service”

r if sender’ path
“underloaded”:
m sender should use
available bandwidth
r if sender’ path
congested:
m sender throttled to
minimum guaranteed
rate

RM (resource management)
cells:

r sent by sender, interspersed
with data cells

r bits in RM cell set by switches
(“network-assisted”)

m NI bit: no increase in rate
(mild congestion)
m CI bit: congestion
indication
r RM cells returned to sender by
receiver, with bits intact

3: Transport Layer 3b-22

10/24/(

COSC 4377, Fall 2000 - Chapter 3b 10/24/(

Case study: ATM ABR congestion control

l [t cells
source D data cells destinafion

Switch Switch

2111 Byrq Uil 1 gl B=as
H— 111

r two-byte ER (explicit rate) field in RM cell

m congested switch may lower ER value in cell

m sender”send rate thus minimum supportable rate on path
r EFCI bit in data cells: set to 1 in congested switch

m if data cell preceding RM cell has EFCI set, sender sets Cl
bit in returned RM cell

3: Transport Layer 3p-23

TCP Congestion Control

r end-end control (no network assistance)

r transmission rate limited by congestion window
size, Congwi n, over segments:

senc_base nextsegum already wmable, not

ack'ed yet sent

L T
sant, not
{1{1 IINO000000 | ot) rotomne

t— Congwi n —*

r W segments, each with MSS bytes sent in one RTT:

w * MSS
RTT

throughput = Bytes/sec

3: Transport Layer 3b-24

COSC 4377, Fall 2000 - Chapter 3b 10/24/(

TCP congestion control:

r “probing” for usable r two “phases”
bandwidth: m slow start
m ideally: transmit as fast m congestion avoidance

as possible (Congwinas | jmportant variables:
large as possible) Congwi n
m

without loss
m t hr eshol d: defines

m increase Congwi n until
loss (congestion) threshold between two
slow start phase,

m loss: dec!'ease Qongvm n, congestion control
then begin probing
. X . phase
(increasing) again

3: Transport Layer 3p-25

TCP Slowstart

rSlowstart algorithm—

initialize: Congwin = 1
for (each segment ACKed)
Congwin++
until (loss event OR
CongWin > threshold)

r exponential increase (per
RTT) in window size (not so
slow!) time

r loss event: timeout (Tahoe
TCP) and/or or three
duplicate ACKs (Reno TCP)

3: Transport Layer 3b-26

COSC 4377, Fall 2000 - Chapter 3b

TCP Congestion Avoidance

-Congestion avoidance

/[* slowstart is over */
/* Congwin > threshold */
Until (loss event) {

every w segments ACKed:

Congwin++

}
threshold = Congwin/2 :
Congwin =1

. W P I B s i I i o R o B
Y

.

Congestion wirdow (6 segmentsh

-

| /
| #
L

perform slowstart® 12345467

1: TCP Reno skips slowstart (fast
recovery) after three duplicate ACKs

2 10111213 14

Humbe=r of tranomissions

3: Transport Layer 3p-27

AIMD
TCP Fairness

TCP congestion

per RTT @
m decrease window by

factor of 2 on loss

event
Tcp bottleneck

connection 2 rou?er
capacity R

avoidance: Fairness goal: if N TCP
r AIMD: additive sessions share same

increase, bottleneck link, each

multiplicative should get 1/N of link

decrease capacity

m increase window by 1 TCP connection 1

3: Transport Layer 3b-28

10/24/(

COSC 4377, Fall 2000 - Chapter 3b 10/24/(

Why is TCP fair?

Two competing sessions:
r Additive increase gives slope of 1, as throughout increases
r multiplicative decrease decreases throughput proportionally

R equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase
loss: decrease window by factor of 2
congestion avoidance: additive increase

(@)

Connection 1 throughput R
o
3: Transport Layer 3b-29

TCP latency modeling

Q: How long does it take to Notation, assumptions:
receive an object froma | Assume one link between
Web server after sending client and server of rate R

a request? r Assume: fixed congestion
r TCP connection establishment window, W segments
r data transfer delay r S: MSS (bits)

r O: object size (bits)
r no retransmissions (no loss,
no corruption)
Two cases to consider:
r WS/R>RTT + S/R: ACK for first segment in
window returns before windows worth of data
sent

r WS/R<RTT + S/R: wait for ACK after sending
window’ worth of data sent 3: Transport Layer 3b-30

COSC 4377, Fall 2000 - Chapter 3b

TCP latency Modeling

initiste TCP
comsotion

request e

initiate TCP
connection S
RTT e
RTT

ohject — [s | e
it
¥ s M e
x — SR
mrT | WOR WS(R.
i RIT
\lslack
Om returns
lstack
returns
Lme me
. *) . atcient ¥ atL;erver
at cliert ats::\ere!
Case 1: latency = 2RTT + O/R Case 2: latency = 2RTT + O/R

+ (K-1)[S/R + RTT - WS/R]

3: Transport Layer 3p-31

TCP Latency Modeling: Slow Start

r Now suppose window grows according to slow start.
r Will show that the latency of one object of size O is:

Latency = 2RTT +9R+ PER'I‘I’ +—;§- (2° - 1)%

where P is the number of times TCP stalls at server:
P=mn{QK- 1

- where Q is the number of times the server would stall
if the object were of infinite size.

-and K is the number of windows that cover the object.

3: Transport Layer 3b-32

10/24/(

COSC 4377, Fall 2000 - Chapter 3b

TCP Latency Modeling: Slow Start (cont.)

initiate TCP
connection

Example:

K =4 windows

Q=2

-
/ _ 1 req_uest_’
O/S =15 segments object 4 frst window
=SIR

second window
=2SIR

third window

P=min{K-1,Q} =2

=4S/R

Server stalls P=2 times.

object
delivered

time at
client

fourth window
=8SIR

\ complete

transmission

time at
server

3: Transport Layer 3p-33

TCP Latency Modeling: Slow Start (cont.)

% + RTT =timefromwhenserver startstosend segment

until server receives acknowledgement

' firstwindow
=SIR

initiate TCP
connection
S -
Zk‘l—R = timeto transmit thekthwindow request_|
object
&S Sl]+ R
=+ RTT - 2Kt 27 =stall timeafter thekthwindow
&R RH

¥ second window
=2SIR

third window

=4SIR

.
latency =%+ 2RTT + 3 stallTime,

p=1

P

=9 oRTT+ {2+ RTT- 203
R k=1 R R do|b|e::td
=%+2R’I’T+P[R‘I‘I’+§]- -

time at

R client

fourth window
=8S/R

\ complete

transmission

time at
server

3: Transport Layer 3p-34

10/24/(

COSC 4377, Fall 2000 - Chapter 3b 10/24/(

Chapter 3: Summary

r principles behind
transport layer services:
m multiplexing/demultiplexing Next:

m reliable data transfer rleaving the network
m Flow control “edge” (application

. transport layer)
m congestion control . . .
. L. r into the network “core
r instantiation and

implementation in the Internet
m UDP
m TCP

3: Transport Layer 3p-35

