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Abstract—Digital media companies have recently started em-
bracing P2P networks as an alternative distribution mechanism.
However, with current P2P swarming systems users need to
download the full video, and hence have to wait a long time
before they can start watching it. While a lot of effort has gone
into optimizing the distribution of large files, little research has
been done on enabling Video-on-Demand (VoD) functionality with
P2P swarming systems. The main challenges reside in ensuring
that users can start watching a movie at any point in time, with
small start-up times and sustainable playback rates.

In this work, we address the issues of providing VoD using
P2P mesh-based networks. We investigate scheduling techniques,
and network coding in particular. Using both simulations and
a prototype implementation, we show that high-quality VoD is
feasible, and give guidelines to build play-as-you-download P2P
swarming systems with high playback rates and low start-up
delays.

I. INTRODUCTION

Peer-to-peer (P2P) systems have been immensely successful
in large scale content distribution. In particular, while current
P2P systems are heavily used to distribute video files ( [1]),
the users need to completely download the file (and hence,
suffer long delays) before they can watch the video. Recently,
systems such as CoolStreaming and others [2]–[4] have shown
that it is feasible to use P2P systems to distribute live media
content to a large number of users. However, it has been
an open question whether similar P2P technologies could
be used to provide a VoD service. A P2P VoD service is
more challenging to design than a P2P live streaming system
because, in addition to providing low start up delays, the
system should also allow users arriving at arbitrary times to
watch the video. The lack of synchronization among users
reduces the block sharing opportunities and increases the
complexity of the block transmission algorithms.

Video distribution over the Internet has been a prolific
area of research [5]–[8]. The particular problem of designing
a VoD service has also received extensive attention in the
past [7], [9]–[12]. An important requirement of a VoD service
is scalability, i.e., to be able to support a large number of
users, as a typical video stream imposes a heavy burden
both on the network and the system resources (e.g. disk I/O)
of the server. The multicasting paradigm has been proposed
to address the scalability issues [9], [10], [13]. However,
these systems require a multicast-enabled infrastructure, which
unfortunately has never materialized [14].

Peer-to-peer networks promise to provide scalable distribu-
tion solutions without infrastructure support. There are two
fundamental approaches to building P2P systems: (a) tree-
based (push) where trees (or, forests of trees) are usually

constructed for dissemination of data [15]–[17], and (b) mesh-
based (pull) where peers exchange random blocks [18], [19].
Mesh-based systems do not enforce a structure on the overlay
topology and, instead, promise high (swarming) efficiency by
allowing peers to exchange random blocks with each other.
As a result mesh-based systems have lower protocol overhead,
are much easier to design, are more resilient to high rates of
churn, and hence are more popular. However, while mesh P2P
systems have proved to be efficient for bulk file dissemination,
it is still an open question how efficient they can be in
providing VoD. The difficulty lies in the fact that users need
to receive blocks “sequentially” (and not in random order)
in order to watch the movie while downloading, and, unlike
streaming systems, the users may be interested in different
parts of the movie, and may compete for system resources.
The goal then is to design a P2P system which meets the
VoD requirements, while maintaining a high utilization of the
system resources.

In this paper, we study algorithms that provide the users with
a high-quality VoD service while ensuring a high utilization of
the system resources. We evaluate our algorithms using both
extensive simulations and real experiments. under different
user arrival/departure patterns (heterogeneous user capacities
etc. are not addressed in detail due to space constraints). The
main results of this paper can be summarized as follows:

(a) Naı̈ve, greedy scheduling algorithms provide bad VoD
swarming throughputs. Applying Network Coding [20]–[22]
over small time-windows of the video (e.g. a segment with
a few seconds worth of video frames) reduces the risks of
uploading duplicate content and minimizes the variance in
the performance of each node, thus, improving the overall
efficiency of the system.

(b) While Network Coding solves the scheduling problem
within a segment, scheduling across segments (spanning
the entire video file) requires algorithms that avoid under-
represented video portions. Such algorithms are feasible and
can provide good system throughput while downloading blocks
“pseudo-sequentially”.

(c) We show that by combining network coding and segment
scheduling we can design P2P systems that can provide a “play
as you download” experience. We show that with the proposed
system the playback rate that the system can support is close
to the peer’s maximum bandwidth with some small start-up
delay (i.e. initial buffering).



II. MODEL

We assume a large number of users (referred to also as
clients, nodes, or peers) interested in some video content,
which initially exists on a special peer that we call the
server. Users arrive at random points in time, and want to
watch the video sequentially from the beginning (fast-forward
functionality is not discussed for limitations of space). The
resources (especially network bandwidth) of the server are
limited, and hence, users should contribute their own resources
to the system. The upload and download capacities of the users
are also limited and typically asymmetric (i.e. the upload rate
is smaller than the download).

A client joins the system by contacting a central tracker
(whose address is obtained through an independent bootstrap
mechanism). This tracker gives the client a small subset of
active nodes (typically 6-8). The client then contacts each of
these nodes and joins the network. At any point in time, a
node is connected to a small subset of the active nodes, and
can exchange content and control messages only with them.
We call this subset the neighborhood of the node. The neigh-
borhood changes as a result of node arrivals and departures,
and because nodes periodically try to find new neighbors to
increase their download rates. We assume cooperative (i.e.,
non-malicious) nodes.

The file is divided into a number of segments, which
are further divided into blocks. The system is media codec
agnostic, hence, nodes need to download all blocks; if a block
is not available when needed, the video pauses and this is
undesirable. Clients have enough storage to keep all the blocks
they have downloaded.

III. DESIGN

We have used extensive simulations and measurements using a
prototype to understand the factors that affect the performance
of VoD over P2P networks, and to evaluate the performance of
our algorithms. The simulator models important performance
factors, such as access capacities, block scheduling algorithms,
and allows us to experiment with large networks; it is described
in Sec. III-A. The implementation gives us a more detailed
insight into the operation of the system; it is described in
Sec. III-B. In Sec. III-C, we describe the performance metrics
we have used for our study.

A. Simulator

The simulator takes as input the size of the video file in units of
blocks (typically 250 in our simulations), the number of nodes
(typically 500), their capacities, and the times at which nodes
join/depart the system. The simulator operates in discrete
intervals of time called rounds. A client’s upload/download
capacity is given as the number of blocks that the client can
transmit/receive in one round (typically 1). Each node connects
to a small number of neighbors (typically 6-8). The topology
changes during the simulation as a result of node arrivals
and departures, and as the nodes try to find new neighbors
to increase their download rates.

At every round, each node contacts its neighbors to identify
those that have useful blocks. Then, there is a random match-
ing of peers that can exchange content. All block transfers,

both between peers and from the server, happen simultane-
ously, and then the system moves to the next round.

Note that while our simulator does not model realistic P2P
networks in all their details (e.g. does not model network
delays, locality properties etc.), it does capture some of the
important properties of mesh-based P2P networks. Hence, we
feel that many of our results are applicable to the design of
real mesh-based systems.

B. Implementation
We have developed a prototype to validate our results in a
realistic setting. The system resembles typical P2P systems
[21] and consists of three types of participants: peers, a tracker,
and a logger. Content is seeded into the system by a special
peer called server. The tracker enables peer discovery and peer
matching. The active peers periodically report to the tracker
(e.g. information about their content, rates etc.), and the tracker
provides a subset of the active peers to nodes that have too
few neighbors. The logger is an aggregation point for peer
and tracker trace messages. Every peer in the system reports
detailed statistics to the logger; using those statistics we are
able to perform an in-depth evaluation of the various system
parameters. We rate-limit the upload and download capacities
of the peers using a token bucket based algorithm.

Each peer maintains 6-8 connections to other peers. Peers
periodically connect to other peers at random and drop connec-
tions in an attempt to find better neighbors and increase their
download rates. When testing network encoded transfers, we
perform the encoding and decoding operations over a Galois
Field GF(216); we also experiment with unencoded transfers.
In most of our experiments, the file is divided into 100 original
blocks (we have also experimented with larger number of
blocks obtaining similar results).

In this paper, we will use our implementation to study small
scale scenarios, which will highlight the design principles
and interactions that need to govern an efficient VoD P2P-
swarming system.

C. Methodology
The goal of our system is to ensure a low setup time (or initial
buffering), and a high sustainable playback rate for all users,
regardless of their arrival time. To evaluate the performance
experienced by the user we do the following: For each user we
plot the number of consecutive blocks from the beginning that
the user has downloaded as a function of time (or rounds, in the
case of simulations) (see Fig. 1). These blocks can be played
without interruption. For a given setup time (i.e. amount of
initial buffering), we calculate the sustainable playback rate
as the maximum slope of a line that does not exceed the
y-coordinate at any time. We call that rate the goodput. We
typically report the median or average goodputs over all nodes
and over multiple runs; when appropriate we also report the
minimum and maximum values.

We are also interested in the total number of blocks ex-
changed per round, which we call throughput. This metric
relates to the utilization of the system resources. Respectively
we define the node throughput as the amount of information
downloaded by a node in a unit of time. Observe that not
all transfers increase the goodput. Hence, our objective is



to maximize throughput for high system efficiency, while
providing high goodput to ensure good playback rates for all
nodes. In this paper, we show that this task, while non-trivial,
is indeed feasible.

Fig. 1: This hypothetical graph shows the calculation of
sustainable playback rate, given the setup time. The y-axis
shows the number of consecutive blocks, while the x-axis
shows the time.

IV. NAIVE APPROACHES

In this section, we experiment with simple algorithms using a
simulated network of 500 nodes all arriving at the same time
(flash crowd scenario). We shall see that the naı̈ve algorithms
do not perform well.

Our first algorithm is inspired by current swarming systems
that distribute the blocks of the file in random order. This
strategy results in high block diversity and good system
throughput. However, nodes receive blocks in random order
that may not be useful to sustain a high goodput. In Fig. 2
we plot the average sustainable playback rate (i.e. goodput)
as a function of the initial buffering. Observe that the rate
is given as a fraction of the access link capacity, which is
a natural upper limit on the maximum sustainable playback
rate. Indeed, the average rate is less than 1% of the access
link capacity, even though the system throughput is quite high
with an average of 332.44 block exchanges per round (out
of 500 maximum). Hence, despite the high throughput, the
random method results in low goodputs and bad performance
for video distribution.

Since nodes consume the blocks of the video sequentially,
a natural algorithm could be to download the blocks in the
playout order, i.e. sequentially. Indeed, Fig. 2 suggests that
this policy performs better than random and is able to sustain
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Fig. 2: Comparison of block scheduling

playback rates of roughly 13.2%. Observe, however, that the
peers have very similar blocks and hence there are fewer
chances to find and exchange innovative blocks. Indeed, the
throughput of the system reduced to an average of 65.97 block
exchanges per round (15% of the total capacity), which in turn
decreased the playback rate.

The segment-random policy attempts to combine the high
swarming rate of random and the good playback rate of
sequential. The method divides the file into segments which
are groups of consecutive blocks; for example a file of 250
blocks is divided into 25 segments of 10 blocks each. The
peers request blocks at random within a segment, but request
segments in order. Fig. 2 suggests that segment random has
a reasonable mean progress per round (170.21) and better
playback rates (35%) than the other algorithms. Still however
the performance of the segment-random policy is quite low.

V. NETWORK CODING

In this section, we study network coding techniques to op-
timize the goodput of the nodes, and the system’s progress.
Network coding has been proposed for improving the through-
put of a network for bulk data transfer [20], [22], [23].
Network coding makes optimal use of bandwidth resources,
and bypasses the block-scheduling problem by allowing all
nodes to produce encoded data blocks. A good overview of
network coding can be found in [24].

With network coding, any received block is useful with
high probability. On the other hand, the node has to wait to
download the complete file before it can start decoding. This
is not acceptable in the context of VoD systems where a node
wants to play the blocks soon after the download begins. We
avoid this problem by restricting network coding to segments.
A node only needs to wait until it downloads a complete
segment before it can start decoding. This limits the benefits
of coding since an encoded block is only useful to other nodes
interested in a particular segment (rather than all the nodes).
Moreover, this imposes an initial buffering time which is at
least one segment size. (Note that non-uniform segment sizes
can be used to minimize this start-up delay.) However, coding
prevents the occurrence of rare blocks within a segment, and
ensures that bandwidth is not wasted in distributing the same
block multiple times. In essence, coding minimizes the risk of
making the wrong upload decision.

We have evaluated the efficacy of network coding with our
simulator and our prototype. Fig. 2) compares network coding
against non-coding heuristics. (Please refer to [25] for the
terminology used.) We note that network coding achieves a
goodput of 62%, while the best rate without using network
coding is 42% (with a setup time of 30 rounds). Also, the
average progress of the system is 293.52 blocks with network
coding, as compared to 209.57 without coding.

We now present the results from our implementation and
evaluate the benefits of network coding. Consider a flash-
crowd where 20 clients Bn join the network. The server has
the entire file (100 blocks) divided into 10 segments; network
coding is applied over all the blocks in a segment. A segment
is decoded on-the-fly as soon as 10 linearly independent blocks
are received for each segment.
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Fig. 3: Average throughput under different policies that do no
coding (global rarest) and coding over a segment.

We compare this to a global-rarest policy which does not
use network coding. In the global-rarest scheme, a client
requests the globally rarest block in the target segment of
its interest, either from the server or from its neighborhood.
Note that this scheme requires global information which is
not available in such a system, and is considered only for
comparison purposes. Note also that this scheme performs the
best amongst non-coding policies.

Fig. 3(a) and 3(b) show the throughput and the goodput of
the nodes in the system with the global-rarest and network
coding policies. The bars mark the maximum and minimum
value. Given that global-rarest uses global information about
the system, we would expect that it performs optimally. How-
ever, this is not the case. Network coding provides a greater
throughput than the global-rarest scheme (about 14% better),
and, more importantly, it results in significantly less variance
and more predictable download times. We have also observed
that network coding provides greater benefits in other scenarios
that include dynamic arrivals and departures, heterogeneous
network capacities, and limited peer network visibility. Due to
limitations of space, we do not present those results.

In summary, network coding minimizes the risk of upload-
ing duplicate blocks within a segment. To further improve the
performance of the system, the next section considers better
algorithms for scheduling across segments.

VI. SEGMENT SCHEDULING POLICIES

We now take a deeper look at how segment policies can impact
the performance of a VoD P2P system. To this end, we will
use our implementation to get a better understanding of all the
interactions in a realistic setting.

Segment policies form the analogue of the block scheduling
problem ( [25]) at the segment granularity. As with naı̈ve block
scheduling, we show that a naı̈ve segment policy where clients
greedily request blocks from their earliest incomplete segments
adversely affects the system throughput. While block schedul-
ing inside a segment is amenable to coding, coding cannot be
used across segments since the entanglement it creates prevents
streaming VoD. Instead, we propose a heuristic-based solution
that schedules segments according to how poorly they are
seeded in the network. This approach is similar in spirit to
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Fig. 4: Average throughput in a flash-crowd (B1...20 join when
A is 75% done) under different segment policies.

traditional rarest-first approaches (though the caveats are not
discussed due to space constraints).

Segment policy affects the overall throughput of the system
when not all segments are equally represented in the network.
Consider a scenario where bandwidth-constrained node that
contains blocks from both under-represented and popular seg-
ments, uploads blocks from the under-represented segment.
This effect is most prominent when a flash-crowd arrives in
the middle of an ongoing download. Consider a server that has
the entire file, which is divided into 10 segments containing
10 blocks each. The block policy used within a segment is
network coding as described in Section V. One client A has
downloaded 75% of the file, when a flash-crowd of 20 clients
Bn join the network. For simplicity, we consider nodes having
equal upload and download capacities.

Under naı̈ve segment scheduling (as above), the server’s
upload capacity is shared between client A requesting blocks
from segments near the end of the file, and multiple clients,
Bn (number depending on the outbound degree of the server),
requesting blocks from the first segment(s). Since only the
server has the end of the file, and the flash-crowd causes
the server’s available upload bandwidth to be used in sending
blocks from earlier segments, the overall network throughput
is reduced.

Figure 4(a) shows the throughput experienced by A and the
average throughput of Bn as a function of time. Error bars
mark the maximum and minimum values. From the figure, A
initially enjoys good throughput (rate-limited by the server’s
upload bandwidth) until the flash-crowd joins. After this point,
A’s throughput is severely reduced as the server re-uploads
the initial parts of the file to some Bns. The server’s upload
bandwidth is wasted in uploading these segments already
represented in the network (at A).

The overall throughput improves if all the nodes seek to
improve the diversity of segments in the network. If the
segment policy is to upload a block from a lesser represented
segment whenever possible (worst-seeded-policy), throughput
improves significantly for both existing and new nodes as seen
in Figure 4(b). The figure plots the throughput for A and Bn

under our worst-seeded-first policy (fully described below).
Note that A’s throughput near the end of the file is noticeably



increased, because the server continues to serve blocks from
later segments to Bn, and A subsequently retrieves these
blocks from Bn.

Algorithm 1 SELECTSEGMENT(S,D)
Require: S is source node
Require: D is destination node

1: AS ← AVAILABLESEGMENTS(S)
2: CD ← COMPLETEDSEGMENTS(D)
3: P ← SORTSEGMENTSWORSTSEEDEDFIRST(AS \ CD)
4: CS ← COMPLETEDSEGMENTS(S)
5: ID ← EARLIERSTINCOMPLETESEGMENT(D)
6: for i = 0 . . . COUNT(P) do
7: if Pi = ID or Pi ∈ CS then
8: return Pi

9: end if
10: end for

Algorithm 1 describes our worst-seeded-first segment
scheduling policy in pseudo-code. We assume that the source
node has knowledge of the rarity of segments aggregated
across the other nodes in the network; the aggregation can
be performed either centrally at the tracker, or can be approx-
imated in a distributed fashion by gossiping between neigh-
boring nodes. Our implementation performs this aggregation
at a central tracker.

Our segment policy heuristically increases the diversity of
segments in the network. Amongst the candidate segments
available at the source node and not available in full at the
destination node (lines 1–3), our implementation picks the
segment that is least well-represented (lines 3,6) subject to
the conditions on line 7. If the poorly seeded segment is
immediately of interest to the destination then it is uploaded
(clause 1, line 7); otherwise, the source uploads blocks from
segments it has completed downloading (clause 2, line 7),
to ensure that the block is globally innovative with high
probability.

Our algorithm hinges on having a good estimate of how
well-represented a segment is. This estimate should include
nodes that have the complete segment, and those that have
partially downloaded the segment. In our implementation, the
tracker monitors the rarity of segments in the network. Clients
in our system report the fraction of blocks they have received
from each segment. Those fractions are used to estimate
the popularity of the segments; for example, a segment is
considered under-represented if the vast majority of nodes have
very few blocks from that segment.

VII. SUMMARY

In this paper we have examined the problem of designing a
video on demand service using mesh-based P2P networks.
Mesh-based P2P systems are relatively simple to engineer
and result in high utilization of system resources, and as a
result they have been very successful for large scale bulk
file distribution. Unfortunately, however, those systems give
very bad performance when used for VoD. We propose to
combine network coding that further improves the performance
of distributing segments, and segment scheduling that results
in high system throughput while delivering content “pseudo

sequentially”, to provide efficient VoD with small setup delays.
Our simulations and experiments suggest that the combination
of network coding and segment scheduling provides a signifi-
cant performance improvement compared to other algorithms
(even compared to algorithms that use global knowledge).
Though further work is required towards a better understanding
of the efficacy of our algorithms in more realistic scenarios,
we believe that the guidelines proposed in this paper can be
used to build high-performance P2P VoD systems.
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