
© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Group-Based Management of
Distributed File Caches

Darrell D. E. Long
Ahmed Amer

Storage Systems Research Center
Jack Baskin School of Engineering
University of California, Santa Cruz

Randal Burns

Hopkins Storage Systems
Laboratory

Department of Computer Science
Johns Hopkins University

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Outline
Motivation
The Aggregating Cache

Successor prediction and tracking
Client Cache performance

Filtering Effects
Server-Side Caching
Successor Entropy
Visualizing Filtering Effect on Predictability

Related Work
Conclusions & Future Work

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Motivation

Improved client & server caching by grouping
Reduced miss rates means fewer demand fetches
Resilience to client-cache filtering effects

Avoids pre-fetching drawbacks
Incorrect prediction penalties can be limited based
on storage system specifications
All relationship and prediction maintenance is not
time critical

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

The Aggregating Cache

The aggregating cache is based on the
retrieval of pre-built file groups
Server-maintained groups are ...

… based on file relationship modeling
… pre-constructed at the server

This avoids timeliness issues of pre-fetching

… based on an associated set of likely
successors for each file

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

The Aggregating Cache (cont’d)

Groups affect in-cache priority
Upon receipt of a request for a file, associated
group members are retrieved

Files already in the cache need not be retrieved again

Fewer fetches from the server occur
Results in decreased latency

Group sizes evaluated
From 2 to 10 related files (report on groups of 5)

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Aggregating Cache

Limited Local Storage

Server File
StoreRelationship

Metadata

Data Client

Single Request
and Retrieval

Local File System Interface Single
Request

Cache Manager Storage Server
Group
RetrievalSingle Request

and Retrieval

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Aggregating Cache (con’td)

Do the clients cooperate?
Clients gather statistics and forward to the
server, or
Allow the server to simply observe

More on this later…

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Successor Prediction

File grouping relies on predictive per-file
metadata
Per-file metadata consists of successor
predictions
Successor predictors are simple,
accurate and adjustable

Noah
Recent popularity

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

File Successor Prediction
Given:

Observations of the file access stream
Knowledge of the current file access
Limited per-object state

maintainable as file metadata

Successive file access events are
predictable using very simple schemes

Successor
Predictor

File(i+1) File(i) File(i+1) ?

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Static vs. Dynamic Prediction

Static - First Successor
The file that followed A the first time A was
accessed is always predicted to follow A

Dynamic - Last Successor
The file that followed A the last time A was
accessed is predicted to follow A

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Static vs. Dynamic
First and Last Successor

0
10

20
30
40
50

60
70
80

90
100

workstation server

A
cc

ur
ac

y
(%

)

First

Last

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Prediction with Noah

Last-successor predicts better than first-
successor

But transient successors cause double-faults for
last successor!

Noah
Maintains a current prediction
Changes current prediction to last successor if last
successor was the same for S consecutive
accesses

S (stability) is a parameter, default = 2

File(i+1) File(i) File(i+1) ?NOAH

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Noah, Static and Dynamic
Noah vs First and Last Successor

0
10
20
30

40
50
60
70

80
90

100

workstation server

A
cc

ur
ac

y
(%

)

First

Last

Noah

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

General and Specific Accuracy

There is a difference between …
… predictor accuracy over a workload
… accuracy per prediction

General Accuracy
Percentage of all events that are not
predicted or not predicted correctly

Specific Accuracy
Percentage of all predictions offered
that are not correct

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Noah: Varying Stability Parameter
Noah's Predictive Accuracy

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 1 2 3 4 5 6 7 8 9 10

Stability

Pe
rc

en
ta

ge
 o

f F
ile

 A
cc

es
se

s

Not Predicted
Predicted Wrong
Predicted Correct

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Recent Popularity (Best j of k)

File Access Sequence:

S: A B C D B C D B D B D B C B C B C A B A B A B A B

Per-File Successors Successor Counts
A:
B:
C:
D:

B,B,B,B,B
C,C,D,D,C,C,C,A,A,A
D,D,B,B,A
B,B,B,B

B:5
A:3, C:5, D:2
A:1, B:2, D:2
B:4

Best(3 of 6)(B|S) = A
Best(4 of 6)(B|S) = N/A
Best(4 of 9)(B|S) = C

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Recent Popularity (Best j of k)
Varying J Parameter (K=10)

Recent Popularity (K=10) Predictive Accuracy

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8 9 10

J value

Pe
rc

en
ta

ge
 o

f F
ile

 A
cc

es
se

s

Not Predicted
Predicted Wrong
Predicted Correct

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Recent Popularity (Best j of k)
Varying J Parameter (K=20)

Recent Popularity (K=20) Predictive Accuracy

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8 9 10 11

J value

Pe
rc

en
ta

ge
 o

f F
ile

 A
cc

es
se

s

Not Predicted
Predicted Wrong
Predicted Correct

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Successor Prediction

Static prediction schemes remain valid for
extended periods – and for very popular files
Variation amongst file successors is very
limited
Noah and Recent Popularity are effective and
adjustable successor predictors

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

File Grouping
Given:

Accurate file successor predictions
Per-file successor metadata
Knowledge of the current file access

A group of n files can be constructed of
those most likely to be accessed in the
near future

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

File Relationship Graph

File successor
observations give us
probability of a given
file following another

Fixed set of successors,
P(Y|X) ∈ [0,1,…,S]

Can construct a file
relationship graph

Nodes: Files
Edges: succession
probability

B

C

F

H

P(B|A)

P(D|B)

P(F|B)

P(C|B)P(C|A)

P(H|C)
P(E|C)

A

D

E

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Constructing File Groups

A B

C

F

H

2

2
2

1

2
1

1

Given an access to file
A, what n files
constitute A’s group GA

n Best Successor
algorithm

GA← {A}
GA← GA ∪ {X}, for X
with maximal P(X|A)
Repeat until |GA|=n

GA

D

E

Example of n = 3

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Constructing File Groups

A B

C

F

H

2

2
2

1

2
1

1

Given an access to file
A, what n files
constitute A’s group GA

n Best Successor
algorithm

GA← {A}
GA← GA ∪ {X}, for X
with maximal P(X|A)
Repeat until |GA|=n

GA

D

E

Example of n = 3

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Constructing File Groups

A B

C

F

H

2

2
2

1

2
1

1

Given an access to file
A, what n files
constitute A’s group GA

n Best Successor
algorithm

GA← {A}
GA← GA ∪ {X}, for X
with maximal P(X|A)
Repeat until |GA|=n

GA

D

E

Example of n = 3

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Constructing File Groups

A B

E

C
D

F

H

2

2
2

1

2
1

1

GB

GC

Given an access to file
A, what n files
constitute A’s group GA

n Best Successor
algorithm

GA← {A}
GA← GA ∪ {X}, for X
with maximal P(X|A)
Repeat until |GA|=n

GA

Example of n = 3

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Server-Maintained Metadata:
A Restricted Relationship Graph

……

……

m
Related Data ObjectsA simple graph of

restricted degree,
Maximum number of
vertices is equivalent to
the number of unique
files observed in the
access stream, N
Group size n N

m≤

1+≠ mn

Data
Objects

……

…
…

……

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Server-Maintained Metadata

For each file A, we maintain a list of m
successors Si and P(Si|A)
The feasibility of this strategy is dependent
on limited variation in file successors
For our workloads:

Over periods of ~1 month, files average less than
10 unique successors
Over periods of ~1 year, files average less than 20
unique successors

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Successor variability

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 10 100 1000 10000 100000

Number of Unique Successors

C
um

m
ul

at
iv

e
(%

)
of

 F
ile

s

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Successor Window Hit Rates

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8 9 10

Successor Window Size

A
cc

ur
ac

y optimal
stability
LRU
LFU
static

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Relationship Graph:
Example Simple Groupings

G2
A B

E

C
D

F

H

G1

G3

2

3
2

1

2
1

1Groups of size n
n-1 most likely
successors are
grouped with each
file

Example of n = 3

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Aggregating Cache
Miss Rates

users workload

0

2
4

6
8

10

12
14

16
18

20

60 260 460 660 860

Cache Capacity (files)

M
is

s
R

at
e

(%
)

LRU
G=2
G=5

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Aggregating Cache
Miss Rates

server workload

0

2
4

6
8

10

12
14

16
18

20

60 260 460 660 860

Cache Capacity (files)

M
is

s
R

at
e

(%
)

LRU
G=2
G=5

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Client Cache Filtering Effects

Filtered workload
Result due to misses from an intervening (client)
cache
When client and server caches comparable sizes
caching can be rendered ineffective for server-side
caches

Adding a cache is not necessarily a good thing!

Server-side caching
Filtered workloads observed when clients provide
no access information beyond cache misses

But filtered workloads turn out to be highly predictable!

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Single-Stage Client Caching
(original workload observed at the client)

Data Client
(Request Source)

Original
Requests

Final
Requests Data Server

(Request Sink)
Cache

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Server-Side Caching
(filtered workload observed at the server)

Data Client
(Request Source)

Data Server
(Request Sink)

Client Cache
(FILTER)

Filtered
Requests

Original
Requests

Final
Requests

Server Cache
(CACHE)

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Aggregating Cache
(used for server-side caching)

Data Client
(Request Source)

Data Server
(Request Sink)

Client Cache
(FILTER)

Group
RetrievalOriginal

Requests
Final
Requests

Single
Retrieval

Single Retrieval

Server Cache
(CACHE)

Filtered
Requests

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Aggregating Cache
Miss Rates (with client cache filtering)

users workload (Filter Capacity = 100)

0

10
20

30
40

50

60
70

80
90

100

100 200 300 400 500

Cache Capacity (files)

M
is

s
R

at
e

(%
)

G=5
LRU
LFU

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Aggregating Cache
Miss Rates (with client cache filtering)

users workload (Cache Capacity = 300)

0

10
20

30
40

50

60
70

80
90

100

100 200 300 400 500

Filter Capacity (files)

M
is

s
R

at
e

(%
)

G=5
LRU
LFU

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Aggregating Cache
Miss Rates (with client cache filtering)

Berkley Instructional Workload
(Cache Capacity = 300)

0
10
20
30
40
50
60
70
80
90

100

100 200 300 400 500

Filter Capacity (files)

M
is

s
R

at
e

(%
)

G=5
LRU
LFU

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Visualizing Caching Effects

Why do aggregating caches still work?
Intervening caches do not reduce access
predictability

How can we demonstrate this?
Using a new visualization tool (developed
in collaboration with the UCSC Viz group)
we produce Cache-Frequency Plots
These are based on successor entropy, a
single context-based predictability measure

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Successor Entropy

Traditional Self-Information (Entropy)
Higher values imply greater unpredictability
Predictability of an independent sequence
No context information

Successor Entropy
Entropy of individual successor sequences
calculated for each file accessed
Presented as a Predictability Histogram

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Successor Entropy

Traditional Self-Information (Entropy)
weighted sum of independent log-
likelihoods

Conditional entropy
given knowledge that condition c is true

∑ ⋅−=
i

ii ssH PP))(log()(

∑ ⋅−=
i

ii cPcP sscH))|(log()|()(

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Successor Entropy

Given observed accesses to m
successors si of file a, we define the
successor entropy of file a as:

∑
=

⋅−=
m

i
ii aPaP ssaH

1
))|(log()|()(

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Cache-Frequency Plots

X-axis
Files, ordered by
decreasing Z-value

Y-axis
Filtering cache sizes

Z-axis
Successor entropy

Surface-Point Color
File access frequency

Y - Cache size

X - Files

Z - Entropy

X - Files

Z - Entropy

Predictability
Histogram

Cache
Frequency

Plot

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Cache-Frequency Plots (cont’d)

Predictability histogram
Demonstrates variation in file access
predictability

The Cache-Frequency Plots
Effects of intervening cache sizes on
predictability histograms
Correlation between file popularity (access
frequency) and successor predictability

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Predictability Results

File successor predictability varies as
dramatically as file popularity

High skew among file successor entropy
Most have highly predictable successors

Predictability independent of popularity
Some of the most popular files have the
most predictable successor behavior

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Caching Effects

Increasing the capacity of intervening
caches …

… reduces the skew of access frequencies,
by reducing the number of very high-
frequency and unpredictable files
… actually increases predictability, and
reduces the variation among files

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Related Work

File Access Prediction
Krishnan, Griffioen, Duchamp, and Kroeger

Mobile File Hoarding
Coda, and SEER

Web Caching
Bestavros, Duchamp, and Wolman

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Conclusions

Aggregating cache
Most files see few unique successors
Simple grouping can significantly reduce
demand cache misses while providing
implicit pre-fetching
Can maintain reasonable hit rates in the
presence of cache filtering effects

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Conclusions (cont’d)

No pre-fetch timing issues
Explicit pre-fetching may hurt performance,
and demands timeliness
Relationship tracking is an optional activity
that can be safely delayed/ignored

If you have a client cache and a server
cache, you want to do this!

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Ongoing and Future Work

Examine alternate predictors
Program-based predictors (Yeh et al.)

Partial file transfer, block-level grouping
Storage allocation & placement
problems
Mobile applications
Multi-level caches

© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Further Information & Questions?

http://ssrc.cse.ucsc.edu/

http://hssl.cs.jhu.edu/

darrell@cs.ucsc.edu

a.amer@acm.org

randal@cs.jhu.edu

mailto:darrell@soe.ucsc.edu

	Group-Based Management of Distributed File Caches
	Outline
	Motivation
	The Aggregating Cache
	The Aggregating Cache (cont’d)
	Aggregating Cache
	Aggregating Cache (con’td)
	Successor Prediction
	File Successor Prediction
	Static vs. Dynamic Prediction
	Static vs. Dynamic
	Prediction with Noah
	Noah, Static and Dynamic
	General and Specific Accuracy
	Noah: Varying Stability Parameter
	Recent Popularity (Best j of k)
	Recent Popularity (Best j of k)Varying J Parameter (K=10)
	Recent Popularity (Best j of k)Varying J Parameter (K=20)
	Successor Prediction
	File Grouping
	File Relationship Graph
	Constructing File Groups
	Constructing File Groups
	Constructing File Groups
	Constructing File Groups
	Server-Maintained Metadata: A Restricted Relationship Graph
	Server-Maintained Metadata
	Successor variability
	Successor Window Hit Rates
	Relationship Graph:Example Simple Groupings
	Aggregating CacheMiss Rates
	Aggregating CacheMiss Rates
	Client Cache Filtering Effects
	Single-Stage Client Caching(original workload observed at the client)
	Server-Side Caching(filtered workload observed at the server)
	Aggregating Cache(used for server-side caching)
	Aggregating CacheMiss Rates (with client cache filtering)
	Aggregating CacheMiss Rates (with client cache filtering)
	Aggregating CacheMiss Rates (with client cache filtering)
	Visualizing Caching Effects
	Successor Entropy
	Successor Entropy
	Successor Entropy
	Cache-Frequency Plots
	Cache-Frequency Plots (cont’d)
	Predictability Results
	Caching Effects
	Related Work
	Conclusions
	Conclusions (cont’d)
	Ongoing and Future Work
	Further Information & Questions?

