
© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Group-Based Management of 
Distributed File Caches

Darrell D. E. Long
Ahmed Amer

Storage Systems Research Center
Jack Baskin School of Engineering
University of California, Santa Cruz

Randal Burns

Hopkins Storage Systems 
Laboratory

Department of Computer Science
Johns Hopkins University



© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Outline
Motivation
The Aggregating Cache

Successor prediction and tracking
Client Cache performance

Filtering Effects
Server-Side Caching
Successor Entropy
Visualizing Filtering Effect on Predictability

Related Work
Conclusions & Future Work



© D.D.E. Long, A. Amer and R. Burns July 2002, Munich, Germany

Motivation

Improved client & server caching by grouping
Reduced miss rates means fewer demand fetches
Resilience to client-cache filtering effects

Avoids pre-fetching drawbacks
Incorrect prediction penalties can be limited based 
on storage system specifications
All relationship and prediction maintenance is not 
time critical
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The Aggregating Cache

The aggregating cache is based on the 
retrieval of pre-built file groups
Server-maintained groups are ...

… based on file relationship modeling
… pre-constructed at the server 

This avoids timeliness issues of pre-fetching

… based on an associated set of likely 
successors for each file
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The Aggregating Cache (cont’d)

Groups affect in-cache priority
Upon receipt of a request for a file, associated 
group members are retrieved

Files already in the cache need not be retrieved again

Fewer fetches from the server occur
Results in decreased latency

Group sizes evaluated 
From 2 to 10 related files (report on groups of 5)
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Aggregating Cache
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Aggregating Cache (con’td)

Do the clients cooperate?
Clients gather statistics and forward to the 
server, or
Allow the server to simply observe

More on this later…
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Successor Prediction

File grouping relies on predictive per-file 
metadata
Per-file metadata consists of successor 
predictions
Successor predictors are simple, 
accurate and adjustable

Noah
Recent popularity
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File Successor Prediction
Given:

Observations of the file access stream
Knowledge of the current file access
Limited per-object state

maintainable as file metadata

Successive file access events are 
predictable using very simple schemes

Successor 
Predictor

File(i+1) File(i) File(i+1) ?
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Static vs. Dynamic Prediction

Static - First Successor
The file that followed A the first time A was 
accessed is always predicted to follow A

Dynamic - Last Successor
The file that followed A the last time A was 
accessed is predicted to follow A
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Static vs. Dynamic
First and Last Successor
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Prediction with Noah

Last-successor predicts better than first-
successor

But transient successors cause double-faults for 
last successor!

Noah
Maintains a current prediction
Changes current prediction to last successor if last 
successor was the same for S consecutive 
accesses

S (stability) is a parameter, default = 2

File(i+1) File(i) File(i+1) ?NOAH
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Noah, Static and Dynamic
Noah vs First and Last Successor
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General and Specific Accuracy

There is a difference between … 
… predictor accuracy over a workload
… accuracy per prediction

General Accuracy
Percentage of all events that are not 
predicted or not predicted correctly

Specific Accuracy
Percentage of all predictions offered
that are not correct
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Noah: Varying Stability Parameter
Noah's Predictive Accuracy
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Recent Popularity (Best j of k)

File Access Sequence:

S: A B C D B C D B D B D B C B C B C A B A B A B A B

Per-File Successors Successor Counts
A:
B:
C:
D:

B,B,B,B,B
C,C,D,D,C,C,C,A,A,A
D,D,B,B,A
B,B,B,B

B:5
A:3, C:5, D:2
A:1, B:2, D:2
B:4

Best(3 of 6)(B|S) = A
Best(4 of 6)(B|S) = N/A
Best(4 of 9)(B|S) = C
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Recent Popularity (Best j of k )
Varying J Parameter (K=10)

Recent Popularity (K=10) Predictive Accuracy
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Recent Popularity (Best j of k )
Varying J Parameter (K=20)

Recent Popularity (K=20) Predictive Accuracy
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Successor Prediction

Static prediction schemes remain valid for 
extended periods – and for very popular files
Variation amongst file successors is very 
limited
Noah and Recent Popularity are effective and 
adjustable successor predictors
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File Grouping
Given:

Accurate file successor predictions
Per-file successor metadata
Knowledge of the current file access

A group of n files can be constructed of 
those most likely to be accessed in the 
near future
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File Relationship Graph

File successor 
observations give us 
probability of a given 
file following another

Fixed set of successors,   
P(Y|X) ∈ [0,1,…,S]

Can construct a file 
relationship graph

Nodes: Files
Edges: succession 
probability
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Constructing File Groups
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Constructing File Groups
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Constructing File Groups
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Constructing File Groups
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Server-Maintained Metadata: 
A Restricted Relationship Graph
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Server-Maintained Metadata

For each file A, we maintain a list of m
successors Si and P(Si|A)
The feasibility of this strategy is dependent 
on limited variation in file successors
For our workloads:

Over periods of ~1 month, files average less than 
10 unique successors
Over periods of ~1 year, files average less than 20 
unique successors
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Successor variability
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Successor Window Hit Rates
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Relationship Graph:
Example Simple Groupings
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Aggregating Cache
Miss Rates
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Aggregating Cache
Miss Rates
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Client Cache Filtering Effects

Filtered workload
Result due to misses from an intervening (client) 
cache
When client and server caches comparable sizes 
caching can be rendered ineffective for server-side 
caches

Adding a cache is not necessarily a good thing!

Server-side caching
Filtered workloads observed when clients provide 
no access information beyond cache misses

But filtered workloads turn out to be highly predictable!
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Single-Stage Client Caching
(original workload observed at the client)

Data Client
(Request Source)

Original
Requests

Final
Requests Data Server

(Request Sink)
Cache
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Server-Side Caching
(filtered workload observed at the server)

Data Client
(Request Source)

Data Server
(Request Sink)

Client Cache
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Filtered
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Server Cache
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Aggregating Cache
(used for server-side caching)

Data Client
(Request Source)

Data Server
(Request Sink)

Client Cache
(FILTER)

Group
RetrievalOriginal

Requests
Final
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Single
Retrieval

Single Retrieval

Server Cache
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Aggregating Cache
Miss Rates (with client cache filtering)
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Aggregating Cache
Miss Rates (with client cache filtering)
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Aggregating Cache
Miss Rates (with client cache filtering)

Berkley Instructional Workload
(Cache Capacity = 300)
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Visualizing Caching Effects

Why do aggregating caches still work?
Intervening caches do not reduce access 
predictability

How can we demonstrate this?
Using a new visualization tool (developed 
in collaboration with the UCSC Viz group) 
we produce Cache-Frequency Plots
These are based on successor entropy, a 
single context-based predictability measure
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Successor Entropy

Traditional Self-Information (Entropy)
Higher values imply greater unpredictability
Predictability of an independent sequence
No context information

Successor Entropy
Entropy of individual successor sequences 
calculated for each file accessed
Presented as a Predictability Histogram
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Successor Entropy

Traditional Self-Information (Entropy)
weighted sum of independent log-
likelihoods

Conditional entropy
given knowledge that condition c is true

∑ ⋅−=
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Successor Entropy

Given observed accesses to m
successors si of file a, we define the 
successor entropy of file a as:

∑
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Cache-Frequency Plots

X-axis
Files, ordered by 
decreasing Z-value

Y-axis
Filtering cache sizes

Z-axis
Successor entropy

Surface-Point Color
File access frequency

Y - Cache size

X - Files

Z - Entropy

X - Files

Z - Entropy

Predictability
Histogram

Cache
Frequency

Plot
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Cache-Frequency Plots (cont’d)

Predictability histogram
Demonstrates variation in file access 
predictability

The Cache-Frequency Plots
Effects of intervening cache sizes on 
predictability histograms
Correlation between file popularity (access 
frequency) and successor predictability
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Predictability Results

File successor predictability varies as 
dramatically as file popularity

High skew among file successor entropy
Most have highly predictable successors

Predictability independent of popularity
Some of the most popular files have the 
most predictable successor behavior
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Caching Effects

Increasing the capacity of intervening 
caches …

… reduces the skew of access frequencies, 
by reducing the number of very high-
frequency and unpredictable files
… actually increases predictability, and 
reduces the variation among files
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Related Work

File Access Prediction
Krishnan, Griffioen, Duchamp, and Kroeger

Mobile File Hoarding
Coda, and SEER

Web Caching
Bestavros, Duchamp, and Wolman
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Conclusions

Aggregating cache
Most files see few unique successors
Simple grouping can significantly reduce 
demand cache misses while providing 
implicit pre-fetching
Can maintain reasonable hit rates in the 
presence of cache filtering effects
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Conclusions (cont’d)

No pre-fetch timing issues
Explicit pre-fetching may hurt performance, 
and demands timeliness
Relationship tracking is an optional activity 
that can be safely delayed/ignored

If you have a client cache and a server 
cache, you want to do this!
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Ongoing and Future Work

Examine alternate predictors
Program-based predictors (Yeh et al.)

Partial file transfer, block-level grouping
Storage allocation & placement 
problems
Mobile applications
Multi-level caches
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Further Information & Questions?

http://ssrc.cse.ucsc.edu/

http://hssl.cs.jhu.edu/

darrell@cs.ucsc.edu

a.amer@acm.org

randal@cs.jhu.edu

mailto:darrell@soe.ucsc.edu
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